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NATURAL OSCILLATIONS OF THE RIGIDLY FIXED RECTANGULAR
PLATE FABRICATED FROM THE COMPOSITE MATERIAL WITH THE
LOCAL CURVED STRUCTURES

Abstract

In this work the natural oscillations of the rigidly fixed plate fabricated from the
composite material with the local curved structures on the axis OX, are considered. The
Finite Elements Method is used. On the base of the obtained numerical results the
influence of curvature parameters on the values of the natural frequencies of the plate is
analysied.

One of the main problems in Mechanics of Composite materials is the problem
caused by the properties of their structures. One of the main properties of the structure of
composite materials is the curving of the armouring elements. As it was expressed in [4]
the curvatures in the structure of composite materials can appear as the result of the
technological processes making these materials or as the result of the constructive
requires to these materials. The form of the curvatures can be local or periodic. For study
of the mechanical problems of elements of the constructions made from composite
materials with the above pointed curved structures in [1] the continual approach was
suggested. In [2] in the frame of [1] and on the-base of Hamilton-Ostrogradsky variation
principle the approach was developed for investigation of natural oscillations of the
elements of the constructions fabricated from composite materiais with the curved
structures. The concrete investigations of natural oscillations of the composite materials
with the periodic curved structures using the Finite Elements Method (FEM) were
carried out in [6]. In this work the analogous problem is solved in the case when the
curving is local. On the base of the obtained numerical results the influence of the
curvature parameters on the values of the natural frequencies of the plate is analyzied.

Formulation of the problem and method of solving. Let’s consider the plate
fabricated from the many-layer composite material with the periodic curved structures

and suppose the plate takes the area R={0<ux <};0<x <shO<x,</}. The
armouring fayers are arranged in the plane OX, X, and the structure parameters of the

material of the plate satisfy the restrictions of the theory [1]. Moreover we suppose that
the armouring Jayers of the plate have curving only in direction of OX, axis (i.e. there is’

not any curving of the armouring layers in direction of axis OX;) and the curving form
in the system of coordinates OX, X, X, is represented by the following function:

e (x, ~c)2(xl -d)2 exp(— A (xy - 11)2”)
Xy = Flx) =4 cos{mml(x‘ —I])), i x €(c;d) (1)
0, if x e[O,c]U[d;l]
In (1) the dimensionless coordinates X =x,//;%, =x,/] and the dimensionless

parameters ¢ =c; /I, d =d, /1 have been introduced and the lines above x,,x, have
been omitted. Moreover in (1) the following denotations A =1/ (d - c), g=4A4/ (d ——c),
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f; = L/1 have been introduced, where A shows the maximal value of rise of the local
curving, L is the distance (in direction of OX, axis) between the origin of coordinates
and the point where the amplitude of the local curving has the maximal value. Parameters

n and m characterize some sides of the form of the local curving. If £=0 (i.e. there is
not any curving in the structure of plate’s material), taking into account that plate’s

G
material is homogeneous and orthotrop with the mechanical properties ., (with the

main axes of the elastic symmetry along OX,,0X,,0X,; ), we can write
9 _ :
tyap = 8767 4%+ (1- 87 Y orof + 576716y @
0 i 0. -
Ay = Gtoss As?s = Gy Ags = GIGZ
Here the denotations from [6] are taken. Note that in the case when & # 0, according to
the continual approach [1], the material of the considered plate can be considered
continuous homogenous anisotrop with the mechanical parameters ,uy.aﬂ(x,) whose

forms were given in [3].
Thus, let’s write complete system of the equations for investigation of the

prﬂb]e“l.
g _ ﬁzur . _ .
. “‘5;5“: Oy = My ..5.(x1)£xg;

4

3)

l(ﬁu éhﬁ .
gaﬁx—— 2.+ ]3 IaJ!a$ﬁ=15253 XpyXo, Xy €R.
2\Fx; &

In (3) the conventional notation is used. Now let’s formulate the boundary
conditions in the frame of which we will carry out the investigation. First of all note that

the boundary conditions given on upper (xz = h) and lower (x2 = 0) surfaces of the plate

&

will always have the following form:

52 xg=t =05 Ti3| o = O3

)

T

=0 = 0-12|x3=0 =O0n
The boundary conditions on the ends in the axis OX; will also always have the
following form:

i,

x=0y, = 0, 0-33|fx1=0;!3 =0. (5)
However the boundary conditions on the ends in the axis OX, for rigid fixing are
represented in the form:

%

=0 = 0) i= 15253 B (6)

Therefore, investigation of natural oscillations of the considered plate is reduced to the
solution of the problem (3)-(6) taking (1) into account and for solution of this problem in
the frame of Hamilton-Ostrogradsky variation principle the half analytic version of FEM
[7,8] is used. The displacement of the plate is represented in the form:

#, =98, (x,,x, )sin[%}e”" ,

3

uy =B, (x: 1 %2 )Sin[—?i)ew :

3
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uy = 85 (x,, %, )cos[i?i)e””. (7)

3

Substituting (7) into (3)~(6) we find that all the equations (3) and the conditions (4)-(6)
with respect to x; are satisfied automatically. After that using FEM we begin
determining the functions v,(x,,x,) (¢ =12,3).Using the known procedures we divide
the domain Q= {ngl <l; 0<x, < h} into finite number of elements €2, . Suppose,
that 2, are rectangular quadratic elements of Lagrange family [7,8].

For find of natural oscillations we introduce the equation

(k-o*M)a=0, (8)

where K is the matrix of rigidity; M is the matrix of mass; @ is the vector with the
components of displacement in nodal points. We take the values w for which the
solution of (8) with respect to vector @ approximate to «infinity», as the natural values
of frequencies. The expressed let study the problems of natural and forced oscillations at
the same time with use of Finite Elements Method. Thus, we begin to analyse the
numerical resuits relating to the natural oscillations of the plate.

Numerical results. The concrete numerical results have been obtained in the

case when the material of the plate consists of the alternating layers of two isotrop
homogeneous materials with the elastic properties E,, £, (Young’'s modulus) and v, v,
{(Poisson’s coefficients). We suppose that v, = v, = 0,3 and the mechanical properties
0
Ay
supposed that 7 =1, = 0,5; n=1 here 7, and 7, show the concentrations of the matrix

and the filler correspondingly in the considered material.
Thus, consider the data given in Table 1 where the values of @? and Q? for the

in (2) are determined through E,,E,,v,,¥, by the well-known formulas. It is

first modes for different /7 are represented for the case when E 2 g = 50, 7y=1
c=03d=07 §,=05, It is seen from the data of the table 1 that for all 4//

existence of the local curving in the structure of the material of the plate generally
reduces to decrease of frequencies of natural osciilations. With increase of 2/ the
influence of the local curving to the natural frequencies is getting less

Table i
2
hil, £ Ds
MOD1 MOD 11 MOD I
0.10 0.0 2.62 8.79 20.16
‘ 0.5 2.58 8.76 19.96
015 0.0 3.45 10.44 22.84
‘ 0.5 3.43 10.46 22.80
0.0 3.96 £1.35 24.26
020 0.5 3.95 11.42 24.32

The influence of change of relation E® 7 EW on the frequencies is shown in Table 2.
The values of the parameters of the problem which have not been given in the table, were
chosen as they were chosen for calcuiation of data given in Table I. Thus, from the
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numerical resuits in Table 2 in follows that with increase of E{z) IE(I} the values @?
and €2, grow monotonely. The influence of the existence of the local curving in the

structure on the value of natural frequencies with increase of £ @, g0 grows. It should
be noted that the analogous results were obtained for the corresponding two-dimensional
problems [4]. .

Table 2
5@ £ . w?
MOD 1 MOD I MOD 111
1 0.49 243 7.16
0 0.0 117 4,99 13.07
0.1 .15 498 12.97
i 0.0 171 661 1628
0.1 1.69 6.59 16.12
s 0.0 2.62 8.79 2016
0.1 3.58 8.76 19.96
00 0.0 332 10.20 22.48
0.1 3.28 10.19 2237

Consider the numerical results given in Table 3 which were obtained for £ @ gl = 50,
hilh=0Ly=1 m=2;6=05 [, =05 for different ¢ and d. The difference (d —c)
characterize the length of the segment in the direction of the axis OX, on which the
local ¢urving in structure is. From the mechanics point of view it should that with
decrease of the ditference (d —c) the influence of the existence of the local curving in

the structure of the material of the plate on the values of natural frequencies must get
weaker. The expressed is confirmed by the data given in Table 3.

Table 3
2
(C; d) (e
MOD 1 MOD I MOD 111
(0.30:0.70) 2.58 8.76 19.56
{0.35,0.65) 2.58 8.79 19.90
(0.40:0.60) 2.60 8.84 19.95

Finally, consider the influence of change of parameter m, which shows the
oscillation character of the local curving, on the values of natural frequencies given in
Table 4 where we supposed that gy gl 2 56 B/ L =01y =11, =05 £=0,5;
c=03;d=0,7
From the numerical results shown in Table 4 it follows that the growth of parameter m

generally reduces to the increase of values of natural to the increase of values of natural
frequencies.
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Table 4
w?
" MOD MOD 1l MOD Il
0 2.62 879 20.16
1 2.60 8.76 20.29
2 2.58 8.76 19.96
3 254 8.75 T 1960
5 2.48 384 19.15
7 2.48 920 19.62
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