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FAINSHTEIN A. S,

ON THE FREDHOLM INDEX OF THE KOSZUL COMPLEX FOR
MODULES OVER NILPOTENT LIE ALGEBRAS

Sttt

The conditions for Koszul complexes jfor modules over finite-dimensional
nilpotent Lie algebras to have zero Fredholm index are studied. The main result is the
following: if a finite-dimensional nilpotent Lie algebra of bounded operators on a Banach
space contains a nonzero compact operator and the related Koszul complex is Fredholm
and the kernels of its boundary operators are complementable then its index is zevo.

The Koszul complex for modules over Lie algebras and some its modifications
were used in several papers [2, 3, 4, 5, 7, 8] to develop spectral theory for
noncommutative operator families. In particular a notion of joint essential spectrum was
studied in [5] and some results on Fredholm Koszul complexes and the joint essential
spectrum were announced in {8].

In this paper we study the index of Fredholm Koszul complexes for modules
over nilpotent Lie algebras. Remind that a complex is called to be Fredholm if its
homology spaces are finite-dimensional and the index of a Fredholm complex is defined
as alternating sum of dimensions of its homology spaces. The results of the paper give
conditions for Fredholm Koszul complexes to have zero index.

At first we prove Fredholm versions of some results of [7]. Let £ and F be
complex finite-dimensional nilpotent 1ie algebras and a complex vector space X be a E-
module. See below for the exact definition of the Koszul complex Kos(EX). It is a
corollary of the projection property [7] that if £ is a Lie subalgebra of £ and Kos(F.X) is
exact then Kos(E,X) is also exact. We prove that if Kos(#,X) is Freholm then Kos(Z,X) is
Fredholm and its index is zero. Further it is proved in [7] that if 2:F—>E is a Lie algebra
epimorphism then the Koszul complexes Kos(E,X) and Kos(F,X) (the structure of F-
module on X is induced by A) are simultaneously exact. We prove here that these
complexes are simultaneously Fredholm and if A4 fails to be an isomorphism then the
index of Kos(F,X) is zero.

Now let L{X) be the algebra of all linear operalors on X (operators are
considered to be bounded if X is a Banach space) and let £ — L(X). We prove that if £
contains a nonzero finite-dimensional operator then Kos(E.X) has zero index. The main
result is that if X is a Banach space, £ contains a nonzero compact operator and Kos(£,X)
is A-Fredholm (i.c. it has finite-dimensional homology spaces and the kernels of its
boundary operators are complementable as subspaces of Banach spaces, in particular if X
is a Hilbert space) then the index of Kos(E,X) is zero{This is the answer to a question of
Yu.V. Turovskii.}

The author wishes to thank Yuri Turovski{, Anar Dosiev and Daniel Beltita for
useflul discussions,

1. Let £ be a finite-dimensional complex Lie algebra, X be a complex vector
space, L(X) be the algebra of all linear operators on X. Say that X is K-module if there is a
Lie algebra morphism E—L{X). The action of E on X is denoted by ux with ucE and
xeX. Denote by AE the exterior algebra generated by £, by A”Ethe subspace of
elements of AE of rank p. For definitions of chain complexes, homology spaces,




26 Azoarbaycan EA-nin xoberleri
[Fainshiein A.8.]

Fredholmness and index of complexes see for example [1]. The chain Koszul complex
K.os(E X) is the complex of spaces

0 X B XQFE o %2 XQAE2

with @, x®u = f(*l)’"' 2x®@uh Y (1) e @y u A ur , Que X O AE,
=l f<f
u= s A U, APE |~ denotes the omission of the element with the respective index.
Because of K is finite-dimensional Kos(£,X) has a finite length. Homology spaces of
Kos(£,X) are denoted by H(E.X). If Kos(EX) is Fredholm we denote its index by
ind(£,X).
We remind the construction of the cone of a morphism of a chain complex. {f_t__

&

OP__XU(_.LXI (._.."ﬁ_.__”_{ fat {Yp4 o)

be a chain complex (X, @) and operators f,.X, —X, define its morphism fi.e. a8, =f.a,
. The cone of Fis the following complex Con((X.@),5):

Qe— Xy el X @D X« et X

with 7 Ax 9V ~(ax+ oy, -ap13), () Xy O,
We use below the following well known properties of Euler characteristic
formulated here for the index of Fredholm complexes.
Lemma 1. [9} Let
Qe (XN,a)e () (Z,y) 0
be an exuct sequence of complexes. If any two of these complexes are Fredholm then the
third one is also Fredholm and the following equality is valid:
ind(¥, fy=ind{(X,a)+ind(Z,y).
Lemma 2. [9] If the spaces X,...,X,of a complex (X,a)are finite-

a1
o BX, T

al .
dimensional then ind (X, a) = Y (1) dim X,.
=0
Corollary 3. If the space X is a finite-dimensional module over a finite-
dimensional Lie algebra E then ind(E,X) = 0,
Proof. According te Lemma 2 ind(£.X} = Z(~1)”C,f dim X =0 where n=
=0
dim E, C7 are binomial coefficients.
The next two lemmas are essentially known.
Lemma 4. If (X,e) is a Fredholm complex and p is its morphism then
Con((X,@).5) is also Fredholm and its index is zero.
Proof. There is a short sequence of complexes
0« (X,a)«Z—Con((X,a), Byel—(X,a)« 0
with j : X,2X,PX,0, jx = (x,0), 7: X, ®X,—X, , r(xy)=(-1)"y . It is a corollary of
Lemma 1 that Fredholmness of (X,a) implies Fredholmness of Con((X,4),) and its index
is equal o the sum of indices of (X, @) with opposite signs i.e. is zero.
Let 7 be a Lie ideal of £. The space X®AJ is a E-module with respect to the Lie
algebra morphism 8 E—>L{(XQAI},

A)(x®V) = @y + i(—-l)""x @ [uv,]av™ with xeX, ucE, v =viA...Avye AP

i=]




Transactions of AS Azerbaijan 27
[On the Fredholm index of the Koszul complex]

It is clear that X is a J-module and Kos(7,X) is a subcomplex of Kos(£,X). It is
easy to verify (cf. [7]) that the operator@ () is a morphism of Kos(ZX). Here and below
the equality of complexes denotes their isomorphism.

Lemma 5. Let I be an ideal of E of codimension one, ucE\U, X is a E-module.
Then

Kos(E,X) = Con(Kos{(/,X), &) .

Proof. cf. {7, Lemma 1.5].

Remind that a Lie algebra & is called to be nilpotent if the decreasing sequence
of its ideals {E,} with £y = E, E;., = {E,E] terminates at some k-th step i.e. E;= {0}. It is
clear that a nilpotent Lie algebra of dimension » has such a basis e, ... .e, that [e,e.,]
belongs to the linear span of ¢, .1, ..., €,.

Proposition 6. Let E be a finite-dimensional nilpotent Lie algebra, F be its
proper Lie subalgebra, X be a E-module. If Kos(F.X) is Fredholm then Kos(£.X) is also
Fredholm and ind(E,X) is zero.

Proof. Let ¢,,....e, be the basis of E with the mentioned property. Denote by
Lie(S) the Lie subalgebra of £ generated by a set S\ Consider the following increasing
sequence of Lic subalgebras of £: Lo = F, Li= Lie(F.e,), L, = Lie(F,e.,e,) , ... . Ly =
Lie(F,ey,...,e,) = E. It is clear that every L, is an ideal in L, and if it is a proper one then
its codimension is one. Now the proposition is a consequence of Lemmas 4 and 5.

In what follows up to the end of this section £ is a finite-dimensional Lie
algebra. A:F—E is a Lic algebra epimorphism which fails to be an isomorphism, G =
Ker#, X is a £-module and the F-module structure in X is induced by A

Propesition 7. Let [F,G] = 0. Then the complexes Kos(F.X) and Kos(E.X) are
simultaneously Fredholm and ind(F . X) = 0.

Proof. We wuse the construction of [7,Proposition 2.5]. Denote by

AG A NF the subspace of A”'YF generated by g\ A...AgAfin..Af, with geG, feF. It is
casy to prove that the following sequence is exact:

0 XOANGINEL XBNGCANF— XRAGAANTF 0
with / is the inclusion and
h (xBg A ABANA ) = XA A LRI AR, .

The operators # and { commute with the relative boundary operators due to the fact that
GX = 0and [G,F] = 0. So we have the exact sequence of complexes:

0« AG ® Kos(E,X) « A’G A Kos(F.X) « AY"'G A Kos(F.X) « 0.
Consider for every ¢ > 0 the relative exact sequence of homology spaccs (we denote for
brevity H(X.E)=H,, H,(A'G AKos(F,X)) = HY, in particular H(X,F} = H,O ; it's clear
that H,{ A’G ®Kos(EX) = H, @ A'G):

06 H,®@ NG - H « 0« H ® NG « Hf « Hi' « H,® NG « Hf «
HY ..

Repeating the arguments of [7] we show that H(X,E) are finite-dimensional for every i if
and only if H,(X,F) are fintte-dimensional for every i. It remains to show that

ind(£,3) = 0.
Denote for brevity = ind(EX), x, = ind(A'G AKos(F.X)) in particular

Xo = Ind(F.X), m = dim G. It is clear that ind( A’G ® Kos(EX)) = C!. Applying
Lemmas | and 2 to the exact sequence cf homology spaces above we have the following
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equality for every ¢, 0S gsm : Cly—x, — ¥, =0 (with g, =0). Multiplying each

equality by (—1)* and summing we get:
0 Z( })q(jmx = (ZD + Zl)_(/r} +Z2)+ +(_1)MHI (Zm-l + Zm)+(—_l)m Zm = ZO -

The pl’OpOblthl‘l is proved.

Proposition 8. If the Lie algebra F is nilpotent then the complexes Kos(EX)
and Kos(F.X) are simultaneously Fredholm and ind(F,X) = 0.

Proof. We have to repeat the arguments of [7, Proposition 2.6).

2. Now let £ be a finite-dimensional nilpotent Lie subalgebra of L(X).

Lemma 9. Let J be a proper ideal in the algebra L(X) and J E # 0. Then there
is nonzero ke J~ E with [k,E] = 0.

Proof. Let f € JNE, f =0 and J, = [...[f, El.....E] (with » brackets). Because £
is nilpotent ./, = 0 and .J,, # 0 for some n. Take nonzero k € J,.,.

Proposition 10. If £ contains a nonzero finite-dimensional operator and
Kos(E,X} is Fredholm then ind(E.X)=0.

Proof. According to Lemma 9 we may assume that £ contains a nonzero finite-
dimensional operator k in its center. Let N = Kerk, N is invariant for £. We have a short
exact sequence of E-modules:

0>No>X>XN->0
{with the natural inclusion and projection) and the relative exact sequence of complexes:
0 = Kos(E,N) — Kos(E,X) > Kos(E,X/N) — 0.
Prosition 8 implies that ind(£,/) = 0. Indeed let £y be the restriction of £ to N. Then we
have Lie algebra epimorphism £—Ey which fails to be an isomorphism because & 1s
mapped into zero. Further X/V is finite-dimensional, hence according to Corollary 3
ind(£,X/N) = 0. Hence Lemma ! implies that ind(£,X) =0.

Now assume that X is a Banach space and L{X) is the space of all bounded
operators. We need some preliminaries on A- Fredholm essential complexes (cf. [1]).

A sequence (X,a) of Banach spaces X, and (linear, bounded) operators «,

0 Xy e 2 — X, 2o -Faden X 0

is said to be an essential complex if the products a,a

, are compact. There is a natural

definition of Fredholmness for essential complexes based on the functor in the category
of Banach spaces introduced by B. N. Sadovskii ([10], see also [1, 61). Remind for
completeness that the Sadovskii functor of a Banach space X is the space
X =m(X)/k(X) where m(X) is the space of all bounded X-valued sequences endowed
with the sup-norm, k(X)} is its subspace of all precompact sequences. It is proved [6] that
an (ordinary) complex of Banach spaces (X,@} is Fredholm if and only if its Sadovskii
functor (X.&)is exact. It seems to be natural to call an essential complex (X,a) to be

Fredholm if its Sadovskii functor (X,&)is exact. Unfortunately no definition of index for
Fredholm essential complexes in this sense is known. There is, however, a restriction of
the notion of Fredholmness for essential complexes allowing 1o define index. This is the
following notion of A-Fredholmness.
Let (X,a) be an essential complex. It is called [1] to be A-Fredholm if there exist
operators f,. X, —» X, with the following equalities fulfilled for each p
ﬂ Y- +ap,8 =] k
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where 1| means the identity operator and operators &, are compact. Note that for ordinary
complexes the definition of A-Fredholmness leads to the condition that the kernels of
boundary operators have complements as subspaces of Banach spaces. It is proved in {1]
that an essential complex of Hilbert spaces is Fredholm (in the sensc of Sadovskii
mentioned above) if and only if it is A-Fredholm.

The following characterization of A-Fredholmness in terms of exactness given
in [ 1] is essential for us. Let X, ¥ be Banach spaces, L(¥,X), K(¥,X)be the spaces of all

bounded and compact operators from ¥ to Y respectively, C, (X)=L(¥, X))/ K¥, X).
For a fixed ¥ C; (.} is a functor in the category of Banach spaces transforming bounded
operators ¢ X, — X, into left multiplication operators:
L :Co(X) ~> Cp(Xy), L+ KX, X D =au+ KXY, X,), ue LY, X))

It is clear that essential complexes are transformed into ordinary complexes. It is proved
in [1] that an essential complex (X,a) is A-Fredholm if and only if C,(X.a)is exact
complex for every Y.

The index of A-Fredholm essential complex is defined in the following way {1].
Detine the following operators:

A:?sz—) G;)sz, , AXx =(a2p_,x,/j’2px);

A,:? X2p+l ‘*?XZ;; * A'x = (aszs ﬂ2p+lx) .

It is easy to verify that A’A and AA"are compact perturbations of triangular operators
with identities in the diagonals. Hence these operators are Fredholm with zero indices.
Hence A and A" are Fredholm operators. Note that ind A = - ind A’ . Now define ind(X,a) =
ind A.

Our main result is a consequence of the following

Proposition 11. Let X,....X, Banach spaces and there is an essential

complex(X @ X, d):

e XX ®X, 5 X, 00X, 2 X BX, b X «0,

w1

T ¥y

r Yp

If the essential complex(X © X, d) is A-Fredholm then its index is zero.
Proof. Note that operators a, : X

where operators d, are represented by matrices { J with compact operators y ,.

s —> X, form essential complex (X, &) (take

the product of two matrices d,,,d, and use compactness of it and y,). We'll show that
(X,) is A-Fredholm. Consider the following exact sequence of essential complexes:

0> X, a)— (XX, ) > (X.a)>0
with the inclusion i:X,, > X, @X, , and the projection j: X, @X , >X, .
Applying the functor C, we get the short exact sequence of ordinary complexes with the
related sequence of homology spaces:
O Hye Hi« 0 H «H«H«H«H e . «H «H «H

0 M, «H, <0,
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where 7, and H| are homology spaces of C,(X,a) and Cy (X @ X,d) respectively. It
is clear that triviality of H, implies triviality of H, (and conversely) hence the complex
Cy (X, a) is exact so the essential complex (X, a) is A-Fredholm.

Now consider the continuous family of essential compiexes (X®X, d(r)) with

(@,

spaces XX, and operators d,(f) =
\tcsp p-l
arguments deduced A-Fredholmness of (X,¢) from that of (X@X, d) work now in the
converse way and deduce A-Fredholmness of (XX, d(¢)). The continuity of the index of
A-Fredholm essential complexes [1] implies that ind(X®X, d) = ind(XBX, & ). So we
have to prove that

}, te[0,1}. Denote d(0) by & . The

ind(A®X, &)=0.

Consider operators g, Aand A’ related to (X.@)(see the definition of A-
Fredholm complexes above) and construct the relative operators for (X®X, o ) denoted
by EP,K . For (x,)e X, QX set Ep(x, =(8,x5,,¥). It is easy to verify
thath_,&'p_] +Epﬁﬂ =1+Epwith compact J;;u. Further A maps ?(le ®X,,,)into

(?(szﬂ ® X,,) in’ the following way: Alx,y)= (A pyX: Uy YY)+ LBy %, By 1 V).

Regrouping spaces X, we represent A as the direct sum of operators:
A@A':(?sz)@(?)(z }— (?sz-n)e(?sz)-

B+l

Hence ind A =ind A +indA’'= 0.

Now let E be a finite-dimensiona! nilpotent Lie subalgebra of L(X), X be a
Banach space.

Proposition 12. If £ contains a nonzero compact operator and Kos(E,X) is
A-Fredholm then ind(E.X) = 0.

Proof. According to Lemma 9 we may assume that there is a nonzero compact
operator k in the center of £. Denote by X the subspace of £ generated by & and by F its

complement in £ Then £ = F® K and hence A’E = A"F @ (A"'F A K). It is clear that

A'F =N F AK (because dimK = 1 and K has zero intersection with F). So each space
of Kos(£,X) has the following decomposition:

XQNE=(XQANF)B(X®N 'FAK).So we have to represent boundary operators

d,: X ®AN"E > X ® A’Eby matrices [jp :,p]), show that y, are compact and
ro Yy
identify o,with ) in view of the isomorphism X®A’F=XQ@A'FAK. The
restriction of d, to X ® A™'F is decomposed into the sum of a,and J, in the following
way:
d,(x®@uw =Y (- uxSu™ 3 DY@ u AN S u e F

So a,cuts off the summands of [x,#,] containing k¥ and gives them to o, .Then
consider the restriction of d, t0 X @ A" F A K . It is decomposed into the sum of

7 mand a,. We have
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_ d, (x@unrk)=
=S ux@uh Ak + (D ke Qu+ Y (1) s @uyu, 1A u Ak
V(X ®unk)=(-1)"kx®u, hence y,,, is compact. Further it is easy to see that«, acts

as a,becausc the factor Akalso cuts off the summands of {u,,u;] containing 4 So it

remains to apply Proposition 11 to the complex Kos(£,X) . Proposition is proved.
We finish with the following
Question. Is Proposition 12 valid if Kos(£,X) is Fredholm (not A-Fredholm)
complex?
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