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SOLTANOV K.N., FAYZIYEV A.S,
ON THE COMPLEXITY CHARACTERISTICS OF SOME PROBLEMS
Abstract

The complexity characteristics of optimal algorithms theory for the problems
being solved approximately are considered. The connections of the complexity category
with other complexity characteristics, namely with entropy on assumption of the existence
of algorithm of approximate solution of given precision are investigated. With application
of the obtained result the estimations of entropy for some concrete tasks are obtained.

Investigation of the complexity issue of processes is of great interest in various
fields of science, technology and economics. The study difficulties of many problems
arising as example in projecting of modern technology, in planning on the different
levels in controlling of the systems, in scientific basing of the evolutionary processes
prediction and others are mainly of the same nature. Namely in all these processes it's
required to establish the principle solvability of arising problems, and for algorithmically
solvable problems it should be found out their physical realizability. In other words, it's
necessary to estimate the minimal volumes of those and other resources required for
realization of a solution. The absence of precise definition of the "complexity” notion
didn't usually impede its recognition and investigation on empirical level. Starting with
50-s of the XX-century with increase of production scale and control levels, the necessity
of investigation of appearing mathematical models arised. And consequently the
mathematical models of applied problems appeared for statements and solutions of which
the heuristic representations of complexity weren't sufficient. Hence, the necessity of
introducing of the precise definition of "complexity” arised. A.N. Kolmogorov was the
first who suggested the way to forming of complexity category, to investigation of its
properties and perspectives of its applications [1]. Later on the other directions of
investigations related to computational complexity, information complexity, energetic
complexity, complexity of schemes and others appeared.

One of the basic applications of the "complexity" category is the theory of
optimal algorithms for problems that are solved approximately. Here, by complexity of a
problem is meant the true intrinsic difficulty of obtaining its solution not depending on a
method of determination of solution. The key issue in such problems is the choice of the
best algorithm for the solution of a problem. The choice of the best algorithm is a
multicriterial optimization problem among which we can note: simplicity of program
realization, time, the volume of occupied memory, stability and so on. The investigation
that is necessary for characterization and construction of an optimal (in some sense)
algorithm for the given concrete problem is a difficuit mathematical task and requires the
significant effort. Only in very rare cases we can find the exact value of mathematical
complexity of the problem, more often one is able to estimate it. And besides it's natural
and is dictated with the notion itself.

Now we introduce the necessary definitions and notions.

Let ¥ and Z be linear metric spaces with the metrics py, p respectively. By an

information operator on Y we understand any {maybe nonhinear) operator N:Y - 7,

with
N()= M) Ny (), yeY

The least non-negative number », 0<#n<+cc for which it will be found the
linear subspace I” from Z of dimension » containing N(Y ) (in particular it can be
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infinite dimensional) we call the cardinality of an information operator. By an algorithm
@ of ¢-approximation of elements of the arbitrary compact subspace X ¥ we mean

any {maybe nonlinear) operator @:I" < Z — K assigning within the finite number of
steps to information vector N(y)e I', ye X with finite cardinality » an e¢lement
o{N(3))e K as an ¢ -approximate solution

py . p(NO <.

Definition 1. [2] Ang - entropy of the compact set K we call the logarithm (on
the base of 2} of minimal number of balls with radius € covering this set.

The measure of the ball of the radius » in the space R” is determined by the
formula [3]

-?r—jrz"', if n=2m
uo,)="

2(271') 2m+1 : _

m?’ R ;fn—2m+1.

The optimality criteria of an approximate solution for a large class of problems is
the least quantity of calculations for determination of their solutions, i.e. construction of
an optimal algorithm using information of minimal length. In the given case the
complexity of the problem is accepted as the cardinality of optimal information.

The goal of paper is to obtain the estimations for complexity of the above
mentioned problems. Under assumption of existence of algorithm of approximate solution
of the given precision the connections of the complexity category of the given algorithm
with other complexity characteristics and namely with entropy of given problem are
investigated.

Assume that for a fixed non-negative number & >0 there exists the algorithm ¢

of ¢&-approximation of elements of the fixed compact set K from the space Y
determined on the image of the information operator N with the finite cardinality n(s).

Therefore we can take the space [ with finite dimensional n(s). Denote by ¢ s> €nfg) A

basis in the space I". Then the arbitrary element N{y) from N(¥) we can represent in
the form of

ne )
N(y)= 2 L)
i=1
where L; in general are nonlinear functionals.
Let w:I' > R”(e) be a natural homeomorphism between the spaces of the same
finite dimension establishing the correspondence N(y) ¢ (L;(¥),.... Ly()())-
Assume that the information operator N is continuous, then the set w(N{K)) is
also compact. Hence, there exists the finite number

Mg)= sui{]L,-(y]:izl,...,n(e)} (1)

such that we have

V)| ME)METE).
Then by virtue of compactness for an arbitrary number & >0 the sets w{N(X ) and
N{K) may be covered by a finite number of balls of the radius & .




124 Azarbaycan MEA-nin xabarlori
[Soltanov K.N., Fayziyev A.S.]

It's obvious that this number doesn't exceed the quantity
ul- MM )
,I-I(Oafz J
and consequently doesn't exceed the number

[ Eﬂ]ﬂw

8

*

where ¢ =const > 4.
Really, for n=2m we have

Ju([— M(s),M(a)]Z"'(a)): Q@M Y™ w12 _ (ﬁ)”‘ 'm!(M ]2"' '
P(Om] m” .5 K &
And for n=2m+1 we have

plE M ME") @MY @m s a2t 2 ams 1){5 " '[M T’"’”
T

plos2) 2-@r Y 5 5

c-M(a)

n(e)
We denote the centers of these balls by N{y;),i= 1,...,[ ] . Then for

arbitrary ye K it's found y; € K such that
pr(NB) N )<6 .
Assume that the algorithm ¢ is uniformly continuous. Then for arbitrary £>0 there
exists 8(¢)> 0 such that for any y, y, satisfying Pr (N (y), N (yi )) < (E.‘)
pre(WG oW (y: <e
is fulfilled.

We take as & previously fixed number £ for which there exists the algorithm ¢
of £ -approximation, and as 5(8) we take previous radius §. Then by virtue of the
triangle inequality we have

py 00Ny, < oy (0N O+ oy NG DN ().
The first addend doesn't exceed &£ by virtue of existence of the algorithm ¢ of &-
approximation, and the second addend by virtue of uniformly continuity of this algorithm.

Thus
oy oV (y, < 26
c- M)

nls)
—t balls of the radius 2e with
5(¢)

In other words the set X is covered at most [

the centers o(N(y,)) f=1,..,,[“'M (S)T(g}.

5(e)
Thus the following theorem is proved.

Theorem 1. Let & be a non-negative number for which there exists the uniform
continuous algorithm @ of ¢ -approximation of elements of the compact set K in the

linear metric space Y, n(s) is finite cardinality of nonlinear continuous informational
operator N, M (e) be a positive number determined in (1). Then there exists a positive
number 5(8) such that for 2¢ - entrapy the set K , the following inequality is valid.
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cM(z)
H, (28)< nle ) log———)— 2)
ie. 2¢ -entropy of K is lower estimation of problem of & -approximation of elements of
this set.

Applications of main result.

As it's known, many non-linear problems under mathematical modelling generate
non-linear problems about the determination possibility of analytical solution of which no
use to talk. Therefore the necessity to prove the existence of solution and to find the way
for obtaining the approximate solution arises. This in its turn reduces to approximation
and numerical approach and consequently to using of PC that requires the optimal
algorithm. The proved theorem gives the possibility for the problems of above mentioned
fype to prove that the optimal algorithm can't give the necessary information the length of
which doesn't satisfy the inequality (2).

We cite a few simple and characteristics examples that explain the importance of
this theorem.

Corollary 1. Let 4 be a closed one-10 mapping operating from the linear metric
space (X ; px) to the linear metric space (Y, py ), and K is a compact subset of Y for
which the inequality (2) is valid. Then for 2e -entropy of each pre-image (in the case of
multivaluability of inverse mapping) of the set K the following inequality is valid

¢ Mig)
<
—IK(E‘E') nfe): Iog 5G)

where under A K we understand one of the pre-images of K .

Really, from compactness of the set K and the lower semi-continuity of
mapping A we can represent a pre-image of K as union (maybe infinite number) of the
compact sets

Ak = UK , where A(K,)=K Vi.

Then the sets X ; are covered by same quantity of balls as the set X of the radius 2¢

yele)
with centers 4~ {p(N(y,))), 5:1,___{%%{‘_)]

Corollary 2. Let A be a non-linear operator operating from the linear metric
space (X, p,) to the linear metric sequentially-dense space (¥, py ) such that the pre-

image of arbitrary compact K Y is bounded and the constant ¢ 21 exists with the
condition

ANKNY0)) < Kot
where X, ¥, are finite-dimensional spaces correspondingly in X and Y with
dimensions i and j. Then for 2e - entropy of the set A'I(K ﬂY,,(E)) the following
inequaly is valid
c- Plg)

H [Kmn(al}(ze)ss-n(g)- log 56) (3)

where P(e) is determined from the conditions imposed on the operator A™".




126 Azorbaycan MEA-nin xoborlori
[Soltanov KN, Fayzivev A.8.}

Really, from definition of sequentially-dense of ¥ it can be represented as union

Y ={ ¥, of finite-dimensional subspaces. In other words for arbitrary y €Y there exists
H

the sequence y,(, ,) € ¥y, ) such that
Pr (y’yn(ﬁ:,y))s £.
Taking into account of compactness of X we can assume that

sup g, y}=nle)
yek

and for arbitrary ye X

oy (1. yaiesy )56
Consequently, for the set X analogously to the proof of the theorem we can obtain

KN Yy cy - Mle) ME)).

Taking notice of conditions imposed on the operator 47" we can say that there
exists a positive number P(g} such that

A (K NY,)< [ Ple) Pl
Hence we obtain the truth of the inequality (3).

Corollary 3. Let A be a non-lincar operator operating from the linear metric
space (X, px) fo the linear metric sequentially-dense space (Y, py) such that

AHAXINT) < Xt 4
where for arbitrary n min) is finite and for any yya € Alx) and x, eA_l(yJ),

xed(n)

Py 1.2)2 Fp,(x1,%,)), ()
where f:R, >R, is a continuous function satisfying the conditions f(0)=0;
fE)>0,0> O;f(r)-m—w .

Then for arbitrary compact K C Y the inequality

H,, (kraty an))(g (8))S min(e, K ))-log c 5%5 )

is valid, where Q(s) is determined analogously to the quantity P(a) from corollary 2 and
5 () from continuity of the function f .

Analogously to the proof of corollary 2 from the consequentially-density of the
space 1 for the arbitrary compact KX ¥ there is found a finite number n(e,K ) such

that for any ye K exists y,(; x) € ¥ye, k) With

Py(y:yu(a,K))s £
and taking notice of the theorem's proof we have that the set X[ A{X)N Yoex) 1s
c-M (s)
5i£i
continuity of the function f , the condition (4) and the inequality (5) there are found the

nle, K ]
covered by ( j balls of the radius 2¢. Then taking into account the
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numbers §(g) and Q(g) such that the set A_‘(KﬂA(x)ﬂY,,(E,K)) is covered by

[ C__a%(?}m(n(sﬂ )

Finally we introduce the application of theorem 1 for estimations of & - entropy
of one class of linear operator equations.

Let deN, G=[0,2n} and L,(G) be the space of square-summable functions
on & with the usual norm and the usual scalar product. For ne N and se [0,2::] we set

balls of the radius & (¢) that affirms the truth of corollary 3.

S e s=-—]—cosns e_\s =—1—sinns :
eo(s)-\/z; n() \[; ( ) —n() \[; ( )

Then for the multiindex i = (i,,....i, )€ Z the basis function e, € L,{G) is defined by
":(‘)= g ). eia’(‘rd)v
where 7 ={¢,,..., rﬂ,)e G.
The Fourier coefficients of the function gel,(G) are given by

g(i}=(g.e;), ie Z?. Moreover, for ie Z* assume |i|=i\ +..+1; .
Let re R, . As it's known we can determine the Sobolev space of the periodic
functions on G having the square-summable partial derivatives to the order r as the

following form
tr )
, :=( Z (l + ]i|2)§(f)2] < oo} }
iez?

For the first time in papers [5.4] in the case a =1 the class of the operator

equations
u-Tiu=g = u(t)— _[K(l,s}u(s)ds =g(£)

H'(G)={g:geLz(Gl le

was considered, where K{t,s)c# = {K € }1"((}2):“1(”r <1, “(I h?}()‘lﬂf_ » sl} and

ge BH’ is a unique ball in the space H™. Here the lower and upper estimations of

minimal error attained by the constructed algorithm are found. The Fourier coefficients of
kernel and a free term are taken as information operator of those algorithm.
And in paper [6] the following exact relation was established in the case of d =1
" between the minimal error and minimal information

1 1 rid
H(E)z (; lOg'E'j .

Then using the obtained in this paper exact relation and theorem 1 we can find the
following upper estimation for & -entropy of the compact set %" : B, :

rid
1. 1 c-Mlg)
Hig)<] —log— -lo .
( ) [S gé‘l E 5[8)
The authors thank A.S. Tagi-zade for notes that allowed to improve the main
result.
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SULEYMANOY S.E., MAMEDOVA Sh.D.

LIMITING ABSORPTION PRINCIPLE FOR THE
HELMHOLTZ EQUATION IN A MANY-DIMENSIONAL LAYER
WITH A GENERAL BOUNDARY CONDITION

Abstract

In the paper the Green function of the boundary value problem is constructed and
for this problem the limiting absorption principle is proved.

Introduction. Wave propagation in a homogeneous layer bounded from two
sides by plane-parallel boundaries leads to different boundary value problems in a layer
for the Helmholtz equation. The limiting absorption principle for the Helmholtz equation
in 2 two-dimensional layer with the Dirichlet or Neumann boundary conditions is
considered in L.M. Brekhovskikh's book [1], in a three-dimensional layer the limiting
amplitude and partial conditions of radiation for this problem are considered in
A.G.Sveshnikov's article [2]. In this paper A.G. Sveshnikov introduced also new
conditions which ensure the uniqueness of solutions of a boundary value problem for the
Helmholtz equation in a three-dimensional layer. Now these conditions are called A.G.
Sveshnikov's partial conditions. The radiation principle in a many dimensional layer for
the Helmholtz equation with Dirichlet and Neumann boundary conditions were studied in
[3]. The radiation principles in a three-dimensional cylindrical domain are studied in [4],
and in a many-dimensional cylindrical domain - in [5,6]. The radiation principles for the
higher order elliptic equations with constant coefficients in a many-dimensional cylinder
are studied in [7,8}). In [3,5-8] for the first time the resonance phenomenon was studied
and the rate of increase of solutions of non-stationary problem is mentioned when 1 — 0.
In [9] the radiation principles for the Holmholtz equation are studied in a many-
dimensional layer with impedance boundary conditions.

In the present paper the Green function for the Helmholtz equation is constructed
in a many-dimensional layer with a general boundary condition and the limiting
absorption principle is studied. The results by limiting amplitude principle for this
problem will be published later,

§ 1. Construction of the Green function.
Let

II= {x : (xrvxn+1)9 x; - (xl,XZ,...,Xn),— 0 < xj < +CD,j = 192’---”1;"_ h < Xr+l < +h}

be a layer in the n+1 dimensional Euclidean space R,,,. Consider the following
boundary value problem in 7

(A+k2Ju(k,x)=f(x), (1.1
8
[GxHH * p(k)}u(k’ xjxrm:ih =0, (1.2)

where A is a Laplacian operator, f (x) is a finite infinitely differentiable function with

supportin 7, k is a complex parameter with Imk >0, plk)=ak + b, a and b are real
numbers.

Definition 1. Under the solution of the problem (1.1)-(1.2) we'll understand the
decreasing on infinity function u(fc, x) satisfving the equation (1.1) and the boundary
conditions (1.2} in sense of generalized functions ([10], p.40-187).
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