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LOCALIZATION OF SPECTRUM AND ITS APPLICATIONS, 111
NUMERICAL RANGE AND SPECTRUM OF OPERATOR-FUNCTIONS

Abstract

In the paper the classes of operator-functions are selected in a Banach space for
which the analogs of theorems on behavior of numerical ranges different geometrical
operations are proved. These geometrical properties of numerical ranges of operator-
Junctions are applied to obtain the localization relations for spectrum of operator-
Sunctions by its numerical ranges.

Introduction. One of the problems of spectral theory is obtaining for operator
functions analogies of classical theorems on localization of spectrum of operator by its
numerical ranges. As was noted by Hadeler K. [4] it is impossible for arbitrary operator
functions and he proved the analogy of Wintner-Stone’s theorem on localization of
spectrum of linear multiparametric operator in a real Hilbert space. The sufficient
condition of localizability of spectrum of o.f. given by Hadeler suggests the selection of
one-(multi) parameter operators in Banach space on which a series of facts of the
classical theory of numerical ranges can be carried over. On the other hand technique of
work A.Brown’s and R.Duglas’ [5] allows to adapt and use the scheme of Hadeler's
proof for holomorphic ¢.f. in a complex Banach space.

The basic aim of the present paper is to obtain for o.f. analogies of the theorems
on behavior of numerical ranges at different geometric operators and apply them to the
guestions on localization of spectrum of operator functions. The notice of these results is
given in [14b].

Attraction of geometric properties of numerical ranges of o.f. and Banach spaces
brings to light the main role of Teoplitz’s theorem on localization of point spectrum and
Wintner-Lumer’s theorem on localization of approximative poimts spectrum in the
questions on localizability of spectrum (and its parts) by numerical ranges. 1t turmed out
that all the localization theorems can be derived from these two theorems and if we use
the adaptation of Berberian’s construction for the spaces with semiinner product-just from
Teoplitz's theorem.

We’ll describe contents of the paper which is a continuation of the first two parts
[14c]. In §5 the three types of domains of regularity of o.f. in Banach space are
introduced and influence of geometric properties of the space and numerical ranges on its
hierarchy is considered. The three natural classes of holomorphic o.f. in Banach space for
which the analogs of geometric and spectral properties of numerical ranges of operators
are selected.

In §6 the one-parameter analogs of geomeiric properties of numerical ranges of
operators: G. Lumer’s (K.Mc. Gregor) theorem on closed convex hull of Lumerian
{Bauerian) numerical range; B. Bollobas’s theorem on behavior of Bauerian numerical
range relative to conjugation and S.Berberian’s and G.Orland’s theorem on extension (by
Berberian) of Hausdorff numerical range are proved. Then using these geometric
properties of numerical congruences and also the localization correlation for the
compression spectrum [l4c, §1, proposition 1} the one-parameter analog of theorems:
Winter-Lumer’s theorem on localization of approximative point spectrum by Lumerian
numerical range; Lumer’s theorem on localization of spectrum by algebraic numerical
range; William’s theorem on localization of spectrum by Bauerian numerical range and
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Winter-Stone’s theorem on localization of spectrum by Hausdorfian numerical range are
derived.
The notions, terms and notations used here are reflected in previous parts of the
paper [14c].
§5. Numerical ranges and regular operator functions.

5.1. We'll consider the following objects whose defining is motivated by the
notion of numerical range of linear o.f. in Hilbert space introduced by Hadeler [4].

Availability of three types of numerical range of operators in Banach space [14c)
generates three kinds of numerical ranges of o.f. of general form which are the exact
analogs of Lumerian (Bauerian) (or spatial) and algebraic numerical ranges of operator,

Let 4:G — B(x) be arbitrary operator valued function (briefly o.f.) defined in

domain G of complex plane C with the values in algebra B(x) of bounded lincar

operators acting in Banach space X with the norm v and let s be semiscalar product
(s.L.p.) in X, coordinated with the norm ¥ .

W.[A]={AeG:s[A(A)x,x], xeS(x)} (5.1)
is called Lumerian numerical range W,{A] of the o.f. 4 respondent to s.i.p. s
V[4]1={AeG: f(4(L)x)=0, f € D(x,X), xe S(X)} (5.2)

is called Bauerian numerical range ¥, [4] of the o.f. 4.

Here S(X) is a unit sphere in X and D(x,X)= {fEX' Cf(xX)= “f”z“x"zl}.
To the previous two typer of numerical ranges of o.f. we’ll add one more denote it by
B(X), briefly by B and consider the set D(/,B)= {feS(B'): f(I):l}, where [ is a
unitin B and S(B') is a unit sphere in the conjugate Banach space B" .The set

2[4]={AeG: F(4(1))=0, e D{,B)} (5.3)
is called algebraic numerical range %[ A] of the o.f. 4.

Right away note that for the operator 7 < B(X) the “classical” numerical range
W.(T),V,(Ty and %(T)are particular cases of W [A],V, [A4]and 2[A4] respectively if
we’ll take o.f. of the form

AQ)=T-A,AeG=0C, 5.4
which later on we’ll call “classicai” o.f., generated by the operator T .

Some of initial propertics of sumerical ranges of operators remain valid
unchanged for arbitrary or continuous o.f. in Banach spaces.

Not dwelling on this in detail just note two facts that we’ll need later on. At first, the

correlation between three types of numerical ranges of o.f. in Banach space is the same as
in the case of operators: at any s.i.p. s, generated the norm v in X

Wld) ¥, [4]c 7] 4] (5.5)
holds and secondly for continuous of. 4:G — B(X) the algebraic numerical range
Y[ A] 1s closed in domain G .

However, the way of exact copy of classical case rapidly terminates. For
example, ?[4] and V,[A4] may be disconnected sets, whereas for the operators V(T') is
connected one and (T} is even convex. For continucus o.f. many other important
properties of numerical ranges of operators are not valid. For example, the following
relation W (T)=2(T) between Hausdorff and algebraic numerical ranges is broken and
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as was first noted by Hadeler [4] in a Hilbert space for o.f. the Winter-Stone’s localization
relation W (') =%(T) between spectrum and numerical range of operator is broken.

This situation induces to find condition on o.f. at which the containing facts from
the theory of numerical ranges of o.f. can be obtained. The approach to this problem is
suggested by the ideology of Hadeler’s paper [4] confirmed by Brown’s and Duglas [5]
technique.

5.2. We'll associate with each o.f. 4:G — B(X) in Banach space X with the
norm v three types of subsets from domain G '

Q,[A]={ € G: 0 e, (4N},
Q[4]= {1 G: 0 V.(4A)), (.6)
QAl={A e G: 02 TBW, (AL},
which are called domains of s -weak regularity, regularity and strong regularity of the o.f.
A respectively.

The following proposition describing the domains of regularity of “classical” o.f.
(5.4) generated by the operator T e B(X) establishes relation with the theory of
numerical ranges of operators.

Proposition 5.1: For the of. (5.4) at any s.i.p. generated the norm v in X the
following equalities are valid: Q [A]=C\W (TY; Q,[4]=C\V (I);Q[4] = C\%(T).

Proof immediately follows from translation property of numerical ranges of
operators, compactness of their closures and behavior of arithmetical sum of sets at
closing,

This proposition justifies the naturalness and non-triviality of domains of
regularity and also motivates the choice of terminology. Indeed if take into account the
correlation of these three types of numerical ranges of operators, closeness and
boundedness of algebraic numerical range, Wintner-Lumer’s and William’s localization
theorems (see 1 part of the present paper) and non-emptiness of approximative point
spectrum of operator, then the following statement is evident: for the o.f. (5.4) the set
Q[ A} hies in field of regularity of the operator T at any s.i.p. s, generated the norm v in

X, and Q [A4] and Q[ A4]} consist only of regular points of this operator where any of

these three domains of regularity doesn’t coincide with the domain of definition of the
o.f. (5.4) and isn’t empty. Remaining that for the operator T € B(H) in Hilbert space H ;
is called field of regularity C\o_(T), or set of regular type; C\W (T)is called an
external field of regularity; and the resolvent set &\ o (7) is called set of regular points.
It’s important to note that at the same time there exists o.f. with empty domain of
regularity (see example in the proof of theorem 6.4 from §6).

We’ll dwell briefly on the question of comparison of different types of regularity
domains of o.f. and influence of geometry of space on their hierarchy. First of all, for any
of. 4 in arbitrary Banach space its domain of regularity are related with each other by
the following chain of inclusions

QA Q,[A)c Q4] .7
where s is any of s.1.p. generating the norm v . If Banach space is smooth then any of.
has only one domain of weak regularity which coincides with the domain of regularity. In
particular in Hilbert space of the space all three types of domains of regularity coincide
between each other. [n a general Banach space the chain of inclusions (5.7) will be strict.
If while the right inclusion from (5.7) may be strict only in non-smooth spaces then the
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strictness of the left inclusion is possible even in smooth uniformly rotund finite-
dimensional Banach space.

All that was said can be confirmed by examples from geometry of numerical
ranges in a finite-dimensional Banach spaces. Some of them will be considered in the
next part of the paper in connection with estimation of Gershgorian domain of matrices
by their numerical ranges. Note that smoothness of Banach space which is sufficient isn’t
necessary for coincidence of the sets Q,[4] and €,[4]. 1t follows from the following
geometrical effect.

Proposition 5.2. In two-dimensional complex space I} with the octahedral norm
v(x) = |x1[+ |Jc2 |,x =(x;,%, )€l there exists 5.ip.s generating v and such that for any

linear operator T in !]2 the equality P—IFS(T Y=V(T) holds.

5.3. For obtaining the contensive statements it’s necessary to narrow the general
notion of o.f. We’ll use the following class of o.f. [2, p95]: 4:G->» B(X)is called
holomorphic o.f. in the domainG c €, if one of the following equivalent conditions
holds: a) for any functional f e B(X) function foA4:G— € is holomorphic in the
domain G; b) of. 4 is differentiable by norm of the space B(X) in each point of the
domain G .

As we see in contrast to the case of operators domain of regularity of o.f. may be
empty one. Therefore in the theory of numerical ranges natural one-parametric analogies
of operators containing the classical case are o.f. with non-empty domains of regularity.
Here each of these three types of domains of regularity assigns its class of o.f.

Definition. Let X be Banach space with the norm v. Holomorphic of.
A:G— B(X)is called strongly regular, s -weakly rvegular if Q[A4],Q,[A4],Q2,[A4] are
non-empty respectively, where s iz s.ip. generating v .

From consideration of item 5.2 follows the chain of inclusions of these three
classes of o.f. and their non-triviality. Also note that conditions of weak regularity of o.f.
respective to different s.i.p. s, and s, generating the norm v in X generally speaking

aren’t connected between each other from simultaneous weak regularity of o.f. at all
s.1.p., generating v, in general case regularity of this o.f doesn’t follow.

§6. Geometrical behavior of numerical ranges and localization of
spectrum of operator functions.

6.1. In this item we’ll give the series of statements on geometrical properties of
numerical ranges of regular operator functions whose applications to the question of
localization of spectrum are posed in the next item.

The theorems on geometrical behavior of numerical ranges of o.f. simplifying proofs of
localization relations for spectrum give new proofs of localization theorems even for the
case of operators.

The first suggested theorem gives one-parametric analogies of Bollobas’ theorem
{81 on behavior of Bauerian numerical range of the operator at Banach conjngation
operator and as a corollary invariance relative to conjugation of closure of numerical
range {numerical range itself) of o.f. in Banach (reflexive) space.

It’s worth to note that two facts from geometry of Banach spaces underlie the
proof of these properties of numerical range: improved by Bollobas {8} Bishop’s and

Phelps‘s theorem on density by norm in § (X ') of support functional set of Banach space
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X and Goldstine’s theorem [1, p.460] on *-weak density in the bidual space X of the
ranges of unit ball L/(X) at canonical embedding X into X .
In the next theorem for 0.f. 4:G — B(X) in Banach space X with the norm v

the conjugate o.f. 4" :G — B(X ') in the conjugate space X~ with dual norm v' is defined

by the relation 4"(1)= A(A) forany AeG.

Theorem 6.1. (on behavior of numerical ranges of o.f at conjugation). For the
regular of A:G-—> B(X)and conjugate to it A :G—> B(X") the following chain of
inclusions takes place

A AN SAY) 6.1)

here left inclusion in (6.1} is valid for any o.f.

Proof of the left inclusion follows from analogous relation for operators and the
right inclusion for regular o.f. follows from above mentioned Bollobas® theorem and
reasoning in the proof of theorem 1 from [14a, p.137)] about domain of regularity of o.f,
We’ll enumerate some corollaries of this theorem. First of them gives invariance of
closure of Bauerian numerical range of o.f. relative to conjugation.

Corollary 6.1. For the regular o f A:G —> B(X) the equality

AN ArY 6.2)
is true.
Like the previous corollary the next proposition is about invariance of algebraic

numerical range of o.f. at conjugation in proof of localization theorem for spectrum of o.f.

Corollary 6.2. For arbitrary of. A:G — B(X)the following symmetry is true.

24]=2]4'] (6.3)

The some symmetry of Bauerian numerical range of o.f. takes place at restriction
on the space geometry.

Corollary 6.3. In reflexive Banach space for any o.f the following equality is
true

AnEary 64)

The second suggested theorem combines at the same time the analogs of the next
two known facts on behavior of numerical ranges of operator in Banach space relative to
convex closure operation. This is Lumer’s theorem [6] on independence of closed
convex hull of Lumerian numerical range of operator on the choice of s.i.p., conformed
with the norm of the space and consisting of the equality

UT) = col,(T), (©6.5)
where 7 & B(X), s is an arbitrary s.1.p., assigning the norm vin X and ¢o is a convex
closure. While Mc Gregor’s result [7] asserts realizability of the relation

V(T) = coV,(T) (6.6)
which, however immediately follows from (6.5)

Theorem 6.2. (on convex hull of numerical ranges of o.f). For strongly regular
of A.G— B(X) in Banach space X at any s.i.p. s, generated the novrm v in X the
Jollowing relation is valid

col, [ A] = col’, [ 4] = cot| A]. (6.7)

Proof of the inclusions to the right of equality (6.7) corrected for arbitrary o.f.

immediately follows from the chain of inclusions (5.5) in force of isotone property of the
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operator co relative to inclusion of sets. Check up of reverse inclusions in the sequence
of sets (6.7) already suppose the strong regularity of the o.f. 4and consist of proof’s
fragment of theorem 2 from [14a, p.138)} regarded to the domain of strong regularity of
o.f.

We'll finish the present item by the one-parameter analog of Berberian’s and
Orland’s theorem [10] on behavior of Hausdorff numerical range of operator in Hilbert
space at extension (on Berberian). Here we’ll include the relation between algebraic
%[ A] and Hausdorff W[ 4] numerical ranges of o.f. 4:G — B(H) in Hilbert space H .

Berberian’s representation for o.f. looks as follows. The o.f. 4°:G — B(K): s

called extended for the o.f. 4:G — B(H) defined by the relation 4°(A)= A(A)" at each
AeG, where Hilbert space K is Berberain extension of the space H, and
o:B(H)— B(K) is Berberian representation of the algebra B(H) [9, 13].

Theorem 6.3, (on behavior of Hausdorff set of of at extension). Let
A:G > B(H) be regular of in Hirbert space H and A°:G — B(K) be its extended
o.f. Then the following equalities are satisfied

wla°]=204]- 7 (4] 69)

Proof of the first equality in (6.8) follows from coincidence of the algebraic
numerical range in Hilbert space with the closure of its Hausdorff numerical range with
consequent application of Berberian-Orland’s theorem [10]. The inclusion #W{A]c 2[4]
in the second inequality from (6.8) follows from the following fact: algebraic numerical
range of continuous o.f. is closed. The reverse inclusion subject to Toeplitz-Hausdorff’s
theorem on convexity of Hausdorff numerical range [3, chapter 17] is a particular case of
the following more general statement: if Bauerian numerical range F{A4(1))of the
operator A(A) of regular 0.f. 4A— B(X)in Banach space X is convex at any AeG,
then V4] coincides with 2{4].

Note that Berberian construction may be adapted for the spaces with s.i.p. and
consider behavior of numerical ranges of o.f. in Banach space at extension operation.
Then the localization theorems for spectrum, which we’ll consider in the next item can be
derived from Teoplitz theorem on localization of a point spectrum using geometric
properties of numerical ranges of o.f.

6.2. Now using obtained above results on geometric properties of numerical
ranges we’ll obtain one-parameter analogs of the classical theorems on localization of
operator spectrum by numerical ranges. For that consider the notions of spectrum and its
parts for the of A4:G-»B(X) in Banach space X and note some of its simplest
propertics. These objects are defined by the following way: spectrum
o[A]={AeG:0co(4(M))}, point spectrum o ,[4]= LeG:0e O'P(A)}, approximately
point spectrum o, l4]= {JL eG:0eo (4AA)), defect spectrum
o;[4)= {A eG:0eo; (A(l))} and compression spectrum o, [ 4] = {A eG:leo, (A(/’L))}.
It’s obvious that for “classical” o.f. generated by the operator 7' < B(X) (see (5.4) from
1.5.1) these definitions give the corresponding concepts of o, (T), o5(T) and o (T} for

the operator T .
Among the properties of operator spectrum (and its parts) remaining valid for o f.
note those of which we’ll use by proving the theorem on localization of spectrum. This is
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a correlation between parts of spectrum of o.f. and its behavior at passage to the conjugate
o.f.

o,ldlce, 4y o, ldlc o, L4 oll=o, (AU o 4=, [4lUa, [}

osldl=0o, [A'}cr [4]=0 p[A'} and at reflexivity of thespace X o ,[d]=0, [A*].

In the following theorem for o.f. analogs of Wintner-Lumer theorem on
localization of approximately point spectrum of operator by closure of Bauerian
numerical range and Lumer’s theorem on exclusion of a spectrum by algebraic numerical
range of operator are given.

Theorem 6.4. Let 4:G— B(X) be o.f in Banach space X . Then the foliowmg
statement are valid.

1. If 4 is s-weakly regular at some s.i.p.s assigned with the norm in X', then the
following inclusion takes place
o f4lc 7 [4] 69)
2. For the regular o.f. 4 in arbitrary Banach space X or for s -weakly regular o.f. 4 in
reflexive X the relation
o, (e [4] (6.10)
is valid.
3. Atsome s-weakly regularity of 4 with bounded spectrum or at strong regularity 4
the inclusion
coo| 4] co, [ 4] (6.11)
holds.
Conditions of regularity in all these statements may not be omitted.

Brief proof. 1) Localizability of o, [4] by ,[4] for s -weakly regular o.f. 4 is
justified by reasoning from proof of theorem 3 in [14a, p.139} and therefore we omit
them. The statement on independence of relation (6.9) on choice of s.i.p. s for regular o.f.
is obvious.

2) Localization correlation (6.10) for s-weakly regular o.f. in a reflexive X
follows from the first part of the theorem and proportion 1 [14c., §1] on exclusion of
compression spectrum of operator by its Bauerian numerical range. In the case of
regularity of the of. A in arbitrary Banach space X at first one-parameter Toeplitz
theorem on localization of point spectrum is applied to prove inclusion (6.10): at any
s.i.p.s, generated the norm in X for arbitrary of. A the inclusion o, (4lew [4] is

valid. To complete the proof it remains just to check the correctness of the following
proposition.

Lemma. The defect spectrum o [A] of the regular o.f. A is contained in closure
V{4 of its Bauerian numerical range.

3) In order to justify the focalization relation (6.11) for s -weakly regular o.f. 4
at boundedness of spectrum ar[A] at first note that using continuity of A it’s easy to
show that the boundary 8c[4] of the spectrum is contained in o, {4]. This according to
the first part of the theorem implies the inclusion do{4] toW,[4]. Then the variant of
Krein-Milman’s theorem {2, p.86] by virtue of compactness of cr[A] subject to previous

inclusion leads to the relation (6.11) follows from the second part of the theorem and
theorem on convex hull of numerical ranges of o.f. (see 1.6.1).
In order to be convinced in importance of the conditions of regularity of o.f. in
tatement of theorem we’ll use the following adaptation from example [4, §41.

e ——
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We’ll take in Banach space X the of. of type A{A)=AT, where AcC and
T e B(X) is compact operator whose numerical range lies on a real positive semi-axis.
Then it’s easy to see that the spectrum cr[A] coincides with the set C of all complex
numbers. At the same time according to {14c. §4] approximately point spectrum o, [A]
contains whole spectrum. On the other hand, it’s easy to check that W, [A]z {O} at any

s.i.p.s, generated the norm in X and therefore ¥]4]={0}. Thus, all statements of the
theorem are checked.

6.3. In conclusion we’ll make some remarks on the previous theorem. William’s
classical theorem [11] on localization of operator spectrum in a Banach space by closure
of Bauerian numerical range is obtained as a particular case of relation (6.10), moreover
with the proof which differs from the original one.

In addition the same relation in particular for s-weakly regular of. 4 in a
smooth Banach space gives localizability of its spectrum by the closure W:[A] of
Lumerian numerical range, proved in [12] for the operator at additional assumption of
uniform rotund of the space.

The second statement of theorem 6.4 at regularity of the of. 4 is exact one-
parameter analog of Williams theorem and at s -weakly regularity-its weak variant, but
both of them in a Hilbert space turn into one-parameter Wintner-Stone theorem [13). The
last theorem follows also from Toeplitz theorem on localization of point spectrum by
Hausdorff numerical range of o.f. af Berberian extension (see [13]). The analogous way
of proving is right also for o.f. in a Banach space, if to adapt Berberian construction for
the spaces with s.i.p.

If we’ll based on the classical Lumer’s theorem on localizability of spectrum
o{T) of the operator T € B(X) by algebraic numerical range WT), then for any o.f. A4

in a Banach space its following one-parameter analog is immediately obtained
cocr[A] - co\{A]. (6.12)
However, the third part of theorem 6.4 gives other two variants of such analog without
using this classical Lumer’s theorem. At that the last theorem in both variants, in
particular, obtains proofs which differ from the original one. In the case of strong
regularity of the o0.f. A the relations (6.11) and (6.12) coincide.
We’ll complete by the remark that all stated above are correct for multiparametric

operators (m.p.0) A4:G — B(X) in Banach space X, where G is a subset of C" and

even for the systems ;I(Al,...,A,,) of mp.o 4,:G-» B(X), j=1,..,n under conditions of
definiteness of the system by Atkinson.
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MECHANICS
ABBASOVA L.A.

PROPAGATION OF THE FAILURE FRONT IN THE DAMAGED ROUND
THICK PIPE SUBJECTED TO TEMPERATURE

Abstract

The investigation of the thermoelastic failure of the thick pipe which occurs due
to the temperature difference of pumpable product and enviromment is an important
engineering problem. In the present paper this process is investigated in the aggregate
with the failure process of the material of the pipe. Taking into account the resistance of
the material of the pipe behind the failure front is important. The influence of this factor
on the character of distribution of the failure front defining the process of failure of the
pipe is clarified

In spite of numerous articles on the thermoplastic failure of solids, this tendency:
remains actual. It is associated with the fact, that majority of machine components,
mechanisms and constructions work in extremal thermal conditions. However, we have to
take into account the factor of formation and accumulation of defects in the bulk. The
attendant process of damaging can make important contribution and at times is
determining one in the process of thermoelastic failure. In the paper [1] the process of
thermoelastic failure of the thick cylindrical pipe was investigated under conditions of thé
plane deformation, when the temperatures on the interior and exterior surfaces of the pipe
different by their value are given. Then criterion of failure of the damaging theory [2] on
the greatest stress, which is tangential one was used. The time of failure of the interior
surface the incubating time was found. The equation of motion of the failure front
provided that the material of the pipe behind the front of failure completely loses its load-
carrying capacity, was obtained and analyzed. In the present paper this investigation was
carried out taking into account the resistance to loading of the material of the pipe behind
the failure front. It’s supposed that the material of the pipe behind the failure front
preserves its load-carrying capacity to a less extent. That is in each moment of time which
is greater than the incubating onc is the pipe of two-layer construction, whose a part
before the failure front of the source material and the other part behind the failure front is
the material with sharply decreased rigid characteristics.

Analysis of the formulas of hoop thenmoelastic stress, which is maximal one
shows that in the case when the temperature of interior surface exceeds the temperature of
exterior surface which is accepted in [1], failure first begins on the interior surface, where
the hoop stress achieves its maximum and later on the failure front representing on
expanding circular zone moves to the exterior surface of the pipe. In t he present paper it
is also assumed that the interior temperature exceeds the exterior one. In this case the
source material before the failure represents the domain S, adjoining to the exterior

boundary of the radius R, of the pipe (fig.1). The domain S; adjoining to the interior
surface of the radiuses Ry of the pipe represents the domain behind the failure front. The
failure fromt is a cylindrical surface of the alternate increasing radius Ry .

We’ll denote all the parameters related to the domains S; and S, by the
corresponding index numbers. Previously we’ll give the solution of the thermoelastic




