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MECHANICS
ABBASOVA L.A.

PROPAGATION OF THE FAILURE FRONT IN THE DAMAGED ROUND
THICK PIPE SUBJECTED TO TEMPERATURE

Abstract

The investigation of the thermoelastic failure of the thick pipe which occurs due
to the temperature difference of pumpable product and enviromment is an important
engineering problem. In the present paper this process is investigated in the aggregate
with the failure process of the material of the pipe. Taking into account the resistance of
the material of the pipe behind the failure front is important. The influence of this factor
on the character of distribution of the failure front defining the process of failure of the
pipe is clarified

In spite of numerous articles on the thermoplastic failure of solids, this tendency:
remains actual. It is associated with the fact, that majority of machine components,
mechanisms and constructions work in extremal thermal conditions. However, we have to
take into account the factor of formation and accumulation of defects in the bulk. The
attendant process of damaging can make important contribution and at times is
determining one in the process of thermoelastic failure. In the paper [1] the process of
thermoelastic failure of the thick cylindrical pipe was investigated under conditions of thé
plane deformation, when the temperatures on the interior and exterior surfaces of the pipe
different by their value are given. Then criterion of failure of the damaging theory [2] on
the greatest stress, which is tangential one was used. The time of failure of the interior
surface the incubating time was found. The equation of motion of the failure front
provided that the material of the pipe behind the front of failure completely loses its load-
carrying capacity, was obtained and analyzed. In the present paper this investigation was
carried out taking into account the resistance to loading of the material of the pipe behind
the failure front. It’s supposed that the material of the pipe behind the failure front
preserves its load-carrying capacity to a less extent. That is in each moment of time which
is greater than the incubating onc is the pipe of two-layer construction, whose a part
before the failure front of the source material and the other part behind the failure front is
the material with sharply decreased rigid characteristics.

Analysis of the formulas of hoop thenmoelastic stress, which is maximal one
shows that in the case when the temperature of interior surface exceeds the temperature of
exterior surface which is accepted in [1], failure first begins on the interior surface, where
the hoop stress achieves its maximum and later on the failure front representing on
expanding circular zone moves to the exterior surface of the pipe. In t he present paper it
is also assumed that the interior temperature exceeds the exterior one. In this case the
source material before the failure represents the domain S, adjoining to the exterior

boundary of the radius R, of the pipe (fig.1). The domain S; adjoining to the interior
surface of the radiuses Ry of the pipe represents the domain behind the failure front. The
failure fromt is a cylindrical surface of the alternate increasing radius Ry .

We’ll denote all the parameters related to the domains S; and S, by the
corresponding index numbers. Previously we’ll give the solution of the thermoelastic
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problem for the thick two-layer cylindrical pipe under conditions of plane deformation
when the temperatures Ty and 75 on the interior and exterior surfaces are given.

Fig.1.

For the stationary temperature field the distribution of temperature on circular
section of the pipe will be the same as in [3]:

I=Rlnr+p;
'"InR,/R nR,/R,

where r is the cutrent radius.

Then the necessary later on radial displacements in both sections and the hoop
stress in the domain S will have the form:
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There @ is the pressure on the contact surface of layers.

The incubating time will be defined by the formula, obtained in [1] based on the
criterion of faiture [2]:

L+ M" b5 = 0, (4)

where M is an operator of damaging, o is the ultimate strength of defectless material.

For obtaining the incubating time for the hoop stress it’s necessary to take its
value on the interior surface of the pipe, i.e. it’s necessary to assign in (4) that
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Gg =0Og|,=R, - Moreover, given value can be obtained from (3), where we have to

replace R) by Ry and assign O =7. Then for the incubating time to

Ty 2
J'M(r)dr:ffo(l';ﬁo)lnﬁo_l; BO:_R_Q (5)
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takes place, here M (¢) is the kernel of the operator of damaging.

For the time ¢ > ¢, the picture of the process of failure which is led in fig.1 takes
place. .
For obtaining the equation of the failure front we’ll previously transform the
expressions (2}, (3) replacing the modulus of elasticity £4 by the corresponding operator

containing the operators of damaging which according to the theory developed in [2] has
the form:

“'g“]fjél;(] ') (6)

where M~ is the integral operator of hereditary type. We’ll assign also the following
denotations
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For passing to dimensionless quantities we’ll give the following form to the formula (1)
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Besides we’ll assign the following dimensionless quantities:
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In addition assume that times ¢ and » are dismeasured simultaneously with dismeasuring
the parameters of the kernel of the operators of damaging M *. For example, if
M(t)=mexp(- Ar), then we have to consider A—A/m and z—mt dimensionless
herewith that the parameter m have to be assumed as unity, i.e. the dimensionless kernel
has the form exp(- 4¢).

Taking into account denotations introduced above we’ll obtain the following
expressions for the dimensionless displacements and stress
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Here ng)(t,r) and c;f; (t,z) are the displacement and the stress on the surface of the
radius 7, Ry < r £ Ry respectively where the failure front will reach at the moment of time
t, when the failure front has the coordinate R; comresponding to time 7. In addition
B= ﬁ(t) is the dimensionless pressure on the failure front.

The criterion of failure defining the low of motion of the failure front according
to {4) has the form:

A(z) 4 ;\[2’)
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0

Taking into account (11) in {12) we’ll find the explicit form of the equation of failure
front
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This equation contains two unknown functions B(t) and g(r). We’ll obtain the second
equation from condition of continuity of displacement on the failure front
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Thus, we have system of two nonlinear integral equations (13) and (14) with respect to
two unknown functions q(t) and B(r). It must be noted that evaluating the integral term
with the function g(r) from (13) and substituting into (14) we can find the explicit
analytical expression for the function ¢{t) by means of the function B(¢). Then

substituting the obtained expression in (13) we can obtain cone integral equation with
respect to one function B{r) - the radial coordinate of the failure front,

For instantiation of the system of equations (13), (14) we’ll take into account the
expression of the functions of distribution of the temperature (8). Consider the particular
case 7; = 0. Then for the temperature integrals we’ll obtain:
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In addition we have to note that for unknown functions ¢(t) and S() appearing in the
system of equations (13), (14) the following representation is true
Bo; 0st<1ty; 0, 0Lt<ty;
pl)=1"\ qlt)= (16)
Ble): t>10; qt): 1 >10:
and equations {13) and (14) hold for the time ¢ > 15 . We’ll introduce denotations
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Then we’ll give the form to the equations (13) and (14)
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Adding (18) and (19) we’ll find the explicit expression for g(¢) the function of pressure

on the failure front

q(r)={cr(l3(t))—A(ﬁ(flt)~C(l3(t))+
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Taking into account the obtained expression in (18) or (19} we’ll obtain one integral
equation with respect to the function of radial coordinate of the failure front 8(r). We’ll
substitute (20) in (18)
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The equation (21) is nonlinear concerned with none of known types of integral equations.
Its analytical solving is not possible. We’ll use approximate numerical method for solving
it based on replacing integral by integral sums. On each step of calculation this leads to
necessity of solving the nonlinear algebraic equation.
The calculation was realized for the particular case of dimensionless kernel
M(z)=1, for o 221 =1 v =v2;o‘8 =4,
for dimensional relation of modulus of elasticity behind the failure front and before it

Y2 _ B _ 5 0;0,001; 0,005 0,01;902; 903.
y1 B
The curves characterizing the moving of the failure front constructed on the basis of
numerical calculation is in the fig,2.
From them it follows that the failure front is spread with the accelerated velocity
and the weakening of the material behind the failure front leads to noticeable acceleration
of the failure process.
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AMIRASLANOYV LA, ABDULLAYEVA L.A., AMIRASLANOVA N.I.
DEVELOPMENT OF CANAL IN A PACKED LAYER
Abstract

The problem on the development of surface canal with increase of expenditure of
flow is solved, the domains of physical parameters of problem responding to
homogeneous pseudo-liguefaction and condition with the formation of open canal in a
packed layer are determined.

One of the basic problems frequently originating on pseudo-liquefacted layer is
formation of open canals in layer. Sufficiently small size initial canals are always present
in dense layer of rigid particles in consequence of non-uniformity of packing. In pseudo-
liquefacted layer we can consider such initial canals as some unavoidable fluctuations in
random mutual disposition of particles. In this addition the question on the laws of
development of long and narrow canals in dense and pseudo-liquefacted lavers of rigid
particles arises,

In paper [2] effective solution of hydrodynamic problem of flow in the given
canal of finite length in packed layer of rigid particles is constructed and the sewing
parameter is determined.

Now we consider the question on development of initial canal in packed layer.
It’s obvious that on the bottom of canal the greatest gradient of pressure is valid, therefore
with increase of 3y the local zone of pseudo-liquefacted state, and also separation and

wear of particles by flow of liquid arise first on the bottom of canal. Namely the local
separation of particles from the bottom of canal is responsible for its development along
its axis in packed layer of particles.

Later on we’ll apply the general approach of collapse mechanics [5].

The force moving the canal is given by the next invariant of the I'-integral

F=y [l-8%n, +29,9. Jz,
z

[y = pr2e?, 92 =92 +92). (1)
Here X is an arbitrary non-closed surface covering the bottom of cylindric cavity in
packed layer, the comtour of £ coincides with some closed curve on the cylinder
r=ry, n, is a constituent of the vector by unit external normal to Z on the axis z.

We remined that the right hand side of the equality (1.1} is equal to zero for any
closed surface of integration in packed layer. Using the invariance property, it’s
convenient to choose X that Z=2Z5+Z, +X_, where Z; is a lateral surface of a
cylinder r =r., £_ is an end-wall of a cylinder z=-/—-L, ¥_ is an end wall of a
cylinder withthe hole z=—I+ L, ry <r<m.

We choose the distance L as minimal so that one could ignore the influence of
three-dimensional effects of flow near the bottom of the canal, not subjected to the
description in frames of suggested approach. We remind that the bottom of canal
corresponds to z < ~/, r <#y. The integral (1.1) by the surface Ly is equal to zero, since

[3,4,6]

n,=0,8. =0 on Zy. The integral (1.1) by the end-wall I, is equal to ~zyr’ 97,




