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THE APPROXIMATION OF SOLUTION OF THE STATIONARY PROBLEM
OF SALINE FINGERS AT HIGH SUPERCRITICALITY

Abstract

The problem of stationary binary finger convention has been considered. The
article proved that the conception of paralysis layer is quite just. The solution of this
problem is described by means of simple and the algebraic equation. In the layers
attaching the ends of saline fingers the problem leads off to the solution of non-linear
regional sum for ordinary equation with the parameter depending on the sgquare function.

1. Saline fingers very often appear in ocean at warm up and salinization of sea-
water from above and create very intensive mechanism of heat and salt transport in top-
layer of the ocean. The basic experimental and theoretical facts about saline fingers stated
in the monograph [1); point to the lag of the theoretical investigations of stabilization of
saline fingers was clarified quite recently [2], and direct numerical analysis of the
problem [3] was carried out at not do high supercriticaly in the parameter region far from
the real oceanic conditions. In this connection in papers {4, 5] the mean field method for
description of double convective diffusion (of heat and salt) in sea-water quite analogous
to the mean field theory for the ordinary convection [6] was developed.

The single-mode theory of saline fingers allowing to reveal the qualitative
regularities of the phenomenon was suggested in paper [7]. Papers [8, 9] are divoted to
defining the limits of applicability of the single-mode approximation.

In particular, in these papers it was clarified that single-mode approximation is
suitable for not high supercriticality and description of saline fingers was advanced to
mild supercriticalities [8, 9].

It’s important to note that the investigation of stationary situation for the free
layers was carried out in papers [7-9], since in the all pointed out earlier papers the
solution of non-stationary equations for saline fingers reach to stable stationary mode
independent on initial data, and boundary conditions for velocity don’t exert considerable
influence on the solution of problem [1].

Papers [8, 9] showed that with increasing the supercriticality the number of
generated modes sharply increases with connection of which at high supercriticality it's
rational to refuse from the mode analysis of the problem which use the Fourier
expansions of dynamic variables on the vertical coordinate.

2. It’s easy to obtain dimensionless stationary correlations of non-linear theory of

saline fingers in the approximation of mean field at large Luise numbers 7 =V% >>1
{vg and v, are the coefficients of thermal diffusivity and salt diffusion) from the

equations given in paper [7).
These cotrelations have the form

(6202 <1fw =gl - (62D -1)s], (1)
w(F +ws)={52D* ~1)s, )
DS=F+WS~r, 3

where

o-ralé), D=4/, | @




Transactions of NAS Azerbaijan 187
[The approximation of solution of the stationary problem]

and the boundary conditions for the system (1)-(3) are
w(O)=w"0)=w"(0)=0, ${0)=5(0)=0,

Win)=W"(zx)=w"(z)=0, S(x})=S(x)=0. (5)
Here in addition to (1)-(5) there is one more boundary value problem
(207 -r=w, (6)
DT =WT - F,, (7)
7(0)=T(0)=T(z)=T(z)=0. (8)

Here W.,5,T are dimensionless vertical distribution of the vertical and also the
fluctuations of salinity and temperature, § and T are dimensionless mean magnitudes of
salinity and temperature, F is dimensionless diffusion flux, £ is some part of the heat
flow, z, is dimensionless vertical variable, Ra are Rayleigh numbers. The dimensionless
variables are

k, =%, 5 =%-, 5 =kyz, W=0(xyWk Wiz)/6r,
B é A8
§= (IJ(x, y)?—-S(zl) , 8= @(x,y)u—-—T(z,),
¥ kot

L L

= Blz — A1 = F
s :};";'S(zl)s 8 :;"'TTT(ﬁ)s Fy =V9A(_1+F9/’fz)s Fy ‘:"VSB?’

is 1

[P‘:/RE%T}. (9)

Here H is the thickness of the layer, ¥, and k are vertical and horizontal wave
numbers, x, v are horizontal coordinates and z is vertical coordinate, B and A are the
given vertical salinity and temperature gradients, R is floatability number, o and § are
density coefficients of the temperature and salinity, ®(x, y) is the function satisfying the
Helmholtz inequality

R — 52 62
Ay@+ kD=0, =1 [Aﬁza?+? (10)

and describing the horizontal structure of saline fingers.
It is easy to see [4, 5] that the pulsating variables W,5,7 are even, but mean

magnitudes S.T are odd functions with respect to the middle of the layer, i.e. points
z, = % . Hence it follows that in addition to the condition (5), (8)

E(%)zf(%)zo. (an

Then integrating the correlations (3) and (7) over z, from 0 to % we’ll obtain

ZV .
Far-2{Wsdz,, 2y
Ty
A
F =2 fWszl. (13)
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It’s easy to show that the integrals in (12), (13) are negative, ie. F>0,F; <0,

which corresponds to the evident physical meaning on the directions of flows of heat and
salt.

The equations (1), (2) with the conditions (4) and with the definition of F from
(12), Q@ and D from {4) completely define the nonlinear boundary value problem for the

variables W and S when the external parameters Ra and r are given if the
dimensionless value & = k 4 defining the width of the connective bolt nest is known.

The problem (6), (7) is easily solved in exactly the same way if the function W(zl) is
known and the value F, is defined from (13). In order to define the known value § we’ll

use the extremal principle of maximal power of weighting [7], generalizing the well-
known Molcus principle on maximum of the heat flow [10]. The weighting power
averaged on layer in the dimensionless variables (9) will take the form

%
< f, >=gvoa— _[W(T — S)iz, .
T g

Then maximal power of weighting principle will take the form

%
{w(r- Sk, = max (14)
0

or allowing for (12) and (13)
F + Fy =max.. (14%)

3. As is well known [1] at high supercriticality, i.e. sufficiently large values Ru
and r saline fingers are very thin, i.e. § << 1. In this case we can use ideals of boundary
layer [11] solving the given system and as “external” solutions we can use equations with
theorem addents of the order § and higher, Obviously this system is reduced to algebraic
one and we write its solution as:

5, =L r &y 1 -w=F L 4,
& @+1 ' 0+1
v _@+1 =_ Q9 o
D8, ===, Dl === F - Fy. (15)

The formulas (15) show that external solutions for all pulsatinal vaiables are
constants and for mean fields they are linear functions from vertical variables satisfying

the condition (11). Further the condition of existence of nontrivial external solution has
the form:

F>Q+1

, (16}

and the physical condition for the mean salinity fields S to indemnify the given external
salinity field BZ has the form

r>Q$1. (17)

This condition leads to the fact that the complete salinity gradient in the external
region turns out to be less than given external salinity gradient B. Such a “rinsing out” of
the salinity gradient was repeatedly justified by the experiment.
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It’s also clear that the external solution is true outside of small neighborhoods of
the points 0 and n with the length of the order 5 and as & less as the condition (15)
becomes more “representative”.

4. It’s absolutely obvious that ali the structure of solutions is defined exactly in
narrow band of the boundary layers with the width of the order §. In this case the
problem on solving of the boundary value problem (1)-(5) appears which evidently can
be realized only by numerical methods. However, the approximate analytical solution of
the problem to which we’ll pass now is of interest.

Consider the problem (1)-(5) where at first the parameter & will be supposed
known. We shall formulate the following procedure of the method of successive
approximations

620? —fw,, =0, -(67D* - 1)5,.,] (18)
(62D2 -l)gnﬂ :Wn(Fn +WnSn)" (19)
2%
Frx =F - _[Wm-lsnﬂdzl : (20)
T g
(n=0,.2,.)

where ¥, and S, satisfy the boundary conditions (5). We’ll choose the external solution
(15) as zero approximation. Then the system of the first approximation will take the form

(6202—1TM=Q[PV1-W€Q;}, ' @
(5202 -1)s, :leWg. (22)

Defining #° through W, with the help of the formula for %, in (15) we’ll obtain that the
formula (12) will take the form

"
ms.dz, . (23)
0

Fn':“Q;)-l(Iﬂ2 +1):r—§~

For dimensionless temperature from (6) we’ll obtain

(6207 -1}, = ;. 4)
the boundary value problems (21), (22) with the conditions (5), (24) and (8) are linear and
their solution is easily found by the Fourier method and has the form:

o0

W8, =Y W,,5,.T, }sin(2k - 1)z,

W:4 (Q+1)We = _ =_4 (Q“H)We’
‘ ﬂ(zk-l)[g+(1+5§)’}’ n Ok - +87)’
— Wk - _
T=-1" 55,(5,(—(% 15). (25)

The expressions for the flows F° and F; can be represented in the form

FG=Q+I+~1—(r~-Q~t—I—J, (26)
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o | & |6
RO = [QH 1LW, @7
where
y =4 (6,0)=52 Jz o3 dbsol)eal | 28)
m’ 1“”5& (= 1+53[Q+(1+5,f)3]
& =£,(6,0)=—3 ©+1 . 29)

TR 2k - 1)2(l+6,([(1+6,c)3 +Q}

5. Now we’ll estimate the asymptotic behaviour of the values &, (5,0) and
£,(5,0) at 8 >0 formally assuming that (@ is a parameter independent on &.
Replacing summation in (28), (29) by integration on trapezoidal formula

f=Xfi= 7 + j frdk
k=1
we'l] represent the series (28) and (29) in the from

o wgf[l + fQ)+ 0(3.0), (30)
where

o(8,0)= 452 Q+(1+5 f+3fivs2)rot

% 1+6 [Q+1+52)3]

3 ¥ (3+3x2+x4)
- S+ f dx b, 31
2 a?‘ctg +é(1+x2[g+(l+x2)3] ( )
2% beaiast) )
f(Q) “6](1+x3{Q+(1+x2)3} ’ (
& =1+y(6.0), (33)

ols Q)_46 Q+(1+6 )3+i1+64)+34
’ T 1+5 [Q+ 1+8 )3}

——g arclgd +?] Q+ 3x2+x“L dx;. (34)
0 o(1+x2IQ+(1+x2)]}

From (31} and (34) follows that at 0 <& <<
08.0)=0,(0006;),  v(5.0)=w,(QN(E) (35)
holds.

Then from (30) and (33) we have
28
sy 5 {1+ f(O)), & =1 (36)
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and formula for the flows F° and F, take the form
oL 21, {(r - 1) -1]
' % ]269U(Q)+ i)
0 ~ r—1 ~1 . id
o9+ 260 .

e-nf3])

Further the function f (Q) is easily found in explicit form if the integral (32)

would be calculated with the help of the theorem on residues, the function f (Q) defined
in such a way has the form

f(Q)f—-;E 3. 11€ %—‘;Q(z~p~g}’5]\/2+2p—.@% D)
[HQ%)
i p:[Q%"Q%HJ%'

at the same time it’s easy to show that at Q — 0 the formula (39) have a sense at @ — 0
we ’

(37

£(0)=1,0833-0,74510 + 0{0?). (40)
6. Using formulas (37)-(39) from the principle (14%) the value of & for each
given value Raz an r can be found and then the connective dimensionless salinity flows
Nu; —1 depending on the effective Rayleigh numbers Ra,, = Ra, — Ra= (r - I)Ra can
be defined. This procedure was carried out numerically.
The results are in table 1.
The results of numerical computation of the first approximation

Table 1
Ra ¥ Qo 50 FO (Nu.v - 1)‘Ras
10> 10 0.1499 0.6182 1.059*10° 0.9531*10"
100 0.02733 0.4039 1.528%1¢° 1.5127*10°
10° 10 0.2457 0.3933 1.503%10° 1.3527%10°
100 0.03545 0.2424 2.476*10° 2.4512*10°
: 10 10 03111 0.2346 2.414%10° 2.1726*10°
100 0.04039 0.1408 2207%10° 2.1849*10°
10° i0 0.3504 0.1359 4.073*10° 3.6657*10°
100 0.04344 0.08065 7305%10° | 7.2315*1¢°
108 10 0.3741 0.07769 7.045%107 6.3405%10°
[ 100 0.04514 0.04759 1.282*%10* 1.2692%10"°

e
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The dependence of Ra,{Nu, —1) on Ra,y = Ra, — Ra according to data of table

1 in double logarithmically coordinates is represented in fig. 1. The data for

r=10°,10*,10°, being absent in the table are brought in the same place. With the

exception of some first values archived at comparatively small Ra,; all other values are
sufficiently good placed on the straight line, whose equation has the form

Ra (Nu, -1)~0,384(Ra, — Ra)""" . (41)

10"

4 1 A
>
10 1 10

Fig. 1. Independence Ra,(Nu, — 1) of Ra,; = Ra; ~ Ra for the first

approximation,

The dependence (41) practically coincides with the dependence given in numerical
calculations of Straus [3) though it rather deviates from “the law % ”, Nevertheless the

formula (41) gives the values of the flow of salinity which are less almost for an order
than those, which were observed in the experiment of Temer [1}. Such variance can be
connected first of all with insufficiency of the first approximation. For clarification of
circomstances of this variance the complete numerical analysis of the nonlinear boundary
value problem (1)-(12) is necessary to which the special paper will be devoted.
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ON NON-LINEAR LONGITUDINAL VIBRATION OF
RECTILINEAR PILE

Abstract

The paper is devoted to the investigation of longitudinal vibrations of rectilinear
pile. The effect of frequencies to the critical loading is studied. The field of application of
linear theory is shown.

The given paper is devoted to the investigation of longitudinal vibration of
rectilinear pile subject to the geometrical non-linearity. As is known [1], there exist such
values of frequencies at which the permutations increase infinitely, i.e. the linear theory
isn’t applicable. Therefore for these cases it is necessary to take inlo account the
geometrical non-linearity.

In frames of geometrical non-linear theory at Lagrangian approach the vibration

has the following form [2]:
) 52,5
[09(65" +u,k-)1-zp——, (1)
PR 2
where & ,—k is the Kronecker symbol, the comma means the covariant differentiating, p-

is density of non-deformed body. [n addition the tensor’s components of deformation &

are determined by the components of the vector of permutations u; by the following
form [2]:
1 k
813.:5 Upy jHU o TUs U g ) (2)
In case of longitudinal vibrations it is accepted
Uy -—-u(x),uy =u, =0.
Then in Descartes coordinate system we’ve:

Bu 1(6::)2 8 [ au) a%u
E=—+——| ; —lo|1+—|i= p—.
A 208x) " ox ox ot

Supposing the material of the pile to be elastic, finally we’ll get:
~ 2
29 i‘i[l+l@) [Hﬁ] :a_‘i, (3)
x| ox 2 0x &x or?
where c=\/E/p .

The boundary conditions we’ll take in the following form:
when x=0 u=0,

when x=1 lo’(l‘f—aﬁ Egg[ldrlﬁli] 1+@—}:r05inwgr. )
E &) ox 2 x ox

So, the equation (3) at the boundary conditions (4) aliows to investigate the
longitudinal vibrations of points of the pile. Let’s note that in common case to find the
analytical solution of the equation (3) is impossible. Therefore the necessity of applying
the approximate methods appears. One of the effective methods is the variational one. In
our case let’s apply the Reysner’s variation principle. As for the considered equations the
Reysner functional has the following form [2]:




