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APPLIED PROBLEMS OF MATHEMATICS AND MECHANICS
GASANOV K.K., GUSEYNOVA Kh.T.

THE NECESSARY CONDITIONS OF OPTIMALITY IN THE PROBLEM FOR
ONE CLASS SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER WITH ORDINARY AND GENERALIZED CONTROLS

Abstract

The integral and differential principles of maximum in the problem, controlled by
system described for one class of the system of partial differential equations of the first
order with generalized and ordinary control are derived at the paper.

Introduction. By investigating chemical-technological processes the problem of
optimal control, described by the partial differential equations of the first order [1-5],
appears. At these papers the necessary conditions of optimality are obtained and the
theorem on the existence and uniqueness of soluticns of initial boundary problems at
fixed ordinary controls is proved. It must be to noted that in solving many applied
problems it is natural to introduce the generalized controls too. In the given paper the
necessary conditions of optimality both ordinary and generalized controls in the processes
described by the partial differential equations of the first order, are concluded.

1. Statement of the problem. Let the controlled process be described by the
system of equations: )

%}’; - Mo, y,z,m(t,x))+bl(t,x)%?»,

Z = o)+ 265, Ea)eQ
ox dx
with the initial conditions
y(tg,x)=(pl(x,§(x)),xe[xo,xl], (12)

2
2t x0)= 0 (1)), 1<[ro.5)
Here all the derivatives are understood in the meaning of generalized functions [6,7];

Q=(t0,r1)x(x0,x1); £, ¥,2,0), 9'(s,») - are given n, - dimensional vector
columns; bi(r,x)~ nxm; are matrix functions; {(w(r,x),&(x),n(t),ulr),v(x))-are
¥ + 1 +ry + m + my - dimensional controlling parameters.

Let’s denote by VB,,(a,b) the space of m -dimensional continuous from the left
on (a,b) functions u(t) of bound variation on [a,b] with the norm

"u" VB, (a,b) = "u(all + Va:r;’,fJ "u(tlI [8], where |] . || is 2 Euclidean norm.
Let Qu(), (), 0U(LV() be convex sets in I (Q),Lg (x0-%1),

L% (t:1y). VB, (r0,11). VB, (xp.3;) respectively. The functions (ot x)2(x)nle)udt)Ax) e
Uy = Qo )x 2 ()x Qa0 )x U{)x V() are taken as admissible controls.
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Further we’ll denote by VB((a,b),Lg (c,d )) a space of n-dimensional measurable
functions h{r,x) such that [A(r,- )] (e d)eVB(a,b). In this space the norm will be

determined in the next form

il val{ab)Is(cd)) "h(a=' )NL; ey T Var, “}’(’ > ]
Let’s introduce the space

W(0)=r=00,2): y € VB0, s (x,1 ) 2 € VBxg, m): 152 (0,11 )}

with the norm

B{cd) "

"h“w(Q) = Mm[{:o A ) T ”z”VB((xn,xl B (pty))
The vector-function (y(r, x),z(t, x))eW(Q) satisfying almost everywhere in (0
the integral system

¥, x)= ¢ (x,£(x)) + ]fl(‘r,x,y(r,x),z('r,x),co(t,x))dr+ !_[bl(r,x)du(r), (1.3)

is called the weak solution of the problem (1.1), (1.2) at the control
(o, x,E(xLnlr) ult) v(x))e U5, where the last integrals are understood in the meaning of
Lebesque-Stielties.

Let’s consider the minimization of the functional

7= (0005 e, ) 2 Dheole i+ 0Nl sl +
Y ) ty (1.4)
T2, o)

given on the set of the weak solutions of the problem (1.1), (1.2).
Let the next conditions be fulfilled:

1. The functions f l‘(.r,x, y,z,w), i=1,2 are continuous together with the partial
derivatives f;, f;, f(f; by (v, z,a))e Ry +ny4r for almost everywhere (t.x)eQ
measurable by (t,x) for all {y,z,»} and satisfy the condition-Lipschitz

IF'6x5.2.8)- r txp o) MiF-)+ -4+ 5-off 09
for (y,z,m)e Ry +ny+» and for almost everywhere (r,x)eQ. Besides the derivatives
£y fi, fuy locally satisfy the Lipschitz condition by (y,z.@), f'(t,x,00.0)e L5 (Q).
i=12.

2. b (t,x)e CI([to,ill; Ly (xo,xl)}, b? (t,x)e CI([x 2 X ];ngmnz (ro,rl)) where
g, b}, 5™ (c,a’)]is a space of continuous differentiable mappings [a,b] > L5*™(c,d).

3. The function ¢'(x,& )((p2 (t,n)] is continuous together with the partial
derivatives L"pl§ (x,‘c_’,)(tp?:, (I,n)) by £ € Ry, for almost everywhere x (x9.%1) (by ne Ry,
for almost everywhere f & (to,tl }) and measurable by x for all & (is measurable by ¢ for
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all »n) and locally satisfies the Lipschitz condition by & (by n). Besides
q)l (x,O)E L? (xmxl) (‘PZ (I,O)E L;z (30 o4 ))

4. The functions (I)O(r,x,y,z,a)), d)l(t,z,u,n),dbz(x,y,v,é) are continuous
together with the partial derivatives @2,@2,@2,,@2,@;@;,CDE,,(DE,CD% by
(r,z,0)¢ Ry imy+rs (z,u.m)e Ry vmyan s (v.&)e Ry, 4my+r, for almost all (t.x)eQ,
almost all  z€fty ,r[], almost all  xefxg,x] and measurable by
(t,x)e Q,re[rg,rl ],xe[xg,xl] for all (y,z,m),(z,u,n),(y,v,é)' and locally satisfy the
Lipschitz condition by (y,z,m).(z,u,n).(»,v.&) respectively, ®°(1,x,0,0,0}e L,(0),
@'(,0,0,0)e L, (t,.1, ), ®*(x,0,0.0)e Ly{xg,x,).

At these conditions analogously [5] we can prove that the unique weak solution

of the problem (1.1)-(1.2) exists at fixed controls and the solution is correct at variation of
controls.

2. The conjugate system. Let’s introduce the function
Ht,x, 3,2, p,q,0)= pf {1, %, 1, 2,0)+ gf (.5, 3, 2,0) - D°(t, x, y, 2,0)  (2.1)
and let’s consider the conjugate system
@, H,(t.x,v.2.p,q.0)=0,
ot 2.2)
% + Hz(t,x,y,z,p,q,a)) =0, (t,x)e 0.
satisfying the conditions
p(lI ,x) + @i(x,y(t, ,x),v(x),é(x))z 0, x[xo,x, ], (2.3)

Here p,q.H y,HZ,CI)‘;,d)i are assumed as a vector rows. Let’s denote that the
conjugate system doesn’t contain the generalized effect, its solution p(r,x) is absolutely
continuous by re[to,tl] for every x € [xo,xl], and ¢{t,x} is absolutely continuous by
xe[xo,xl] forevery t e [to,rl].

3. The increment of functional. Let (y{t,x).z(s,x)} be a weak solution of the
problem (1.1), (1.2) at control (m(t,x),g(x),n(r),u(t),v(x))e Ups and (3{,x),2(t.x)) is a
weak solution those problems at the control (65(1‘, x),& (x),7(t), ﬁ(t),'ﬁ(x))e Uas. Then
v, x)= 3t x) - ple, x),82(¢, x) = 7{t,x)— z{t,x) are weak solutions of the system:

80)_ a7 ex )2 . 5) )28,

ot
(3.1)
W) ns s ) el )+ 72D (e
with the initial conditions
@(‘osx)ﬁﬁgwl(xsé'(x)), xe[xp.x} 32)

&(Iaxo)=ﬂﬁ@2(ﬁﬂ(f))s fe[fosfl]s
where
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5u(t) = if(r) - u(t), ) v(x) = F(x) - v(x); A;;_af" (t,x, y(l,x), z(t,x),a)(f,x))s
= f! (t,x, :v"(t,x), %'(t,x),&)'(t,x))— fj(t, X, y(l,x), z(t, x),a}(t,x)), i=L2, 3.3)
2:0' (.2 () =0 E(x)- 9 (2B, 4,020 =07 (1)~ 9 (.nr)).

According to the definition of a weak solution of the problem (3.1}, (3.2) we have:
e, x)= 850" (. 6(x))+

+ IA sa ) (@ x, ¥, %), 2(r, x), (e, x))de + Ib (z, x)d(5ulr )},
Sz(r, x)= Aﬁ(pz(t,n(t))+

pw 2,5, y{t,5) 26, shole, s + 5200, ) (E(s)).

Using the notatlon (2.1) and the system (3.1) we obtain the expression for the increment
of the functional {1.4) at the variation of control

(3.4)

(3.5)

8l = H{p(r,x)g%y—) + q(t,x)a—(ai)——- Ay 3.5 H(t x, ylt, x),z(r x), plt, x),q(t x),oft, x))}dxdt +
@

Ox

R O TOL ) 2 N AR RS

iy X

ff x {4
| [plep ke e~ f| faleok ke o). G6)
fo\ X0 g\t

Applying Lagrange theorem to the difference and using continuity of partial derivatives
we’ll get:

AyzaH %, %), 2(1,x), p(t, x) gl x) 0ft.x)) = ﬁty(r,x)ﬁy(r,x) + % {t.x)oz{r, x) +
+#, (6, x)olt, x)+y, 5. x)+ ¥, 02(t, x)+y36cu(t x)
Az 7@ (200 b ul ()= L6, 20, % ) ulehnfe ozt x, )+
+ @y (6,20, x ) n(0)oule) + 7, (1,206, 3, Jule) e Do ) +
+ 7482t %, )+ ¥ s5ulE) + y 5n(0),

A5 5 5P 0 M, D)V EG) = @3, ylry, )l E (DBl x) +
+ CD% (x, y(tl , x), v(x), s (x))6v(x) +@ é (x, y(tl . x), v(x),é(x))ﬁé (x) +

+ 780y, x) + ygdvlx) + 798 (x),
Az0' (x,£(x)= 0k (x, ECNOE (x) + 71085 (x),
Ag@* (1) = o7 0 )on() + 110n(),
where ’#y(t,x)r- H, (t,x, (¢, x), (¢, x), ple.x).q(t,x) o, x)).... are the values of v, tends to

zero, when 8y, 8z,6w,8u,0v,88 ,8n tends fo zero, i=1,2,...,11

From (3.6), using the expression (3.7) and taking into account that
(&/(1,x).62(z,x)) and (p(t,x),4(r,x)) are the weak solutions of the problem (3.1), (3.2) and

(3.7
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the conjugate problem (2.2), (2.3) we can write the increment of functional at variation of
control in the form:

1=~ Aol i+ ’]{q) ! (e 2t el )oee) +

+ [0 (62t 5 )l b)) - gt % Jo2 n(,«))]an(:)}m [{o2(e 70 ) (x) £(Bolx) +
020 e, lx) 26 - plio, 2ol - b ()~
- ![ _{ p(t,x)b (t,x)dx}d(& u(t )»~ J{J‘q(t, x)b (t,x)dt]d(&v(x)ﬁ 7, (3.8)

where

n= *Q‘(yléy(r,x) +y,82(t, x) + Y35m(f,x))dtdf +
+ tiﬂ}'aa"'(’axl)"' ysdule)+ (s - glt. %, ny )57?(")}13‘ + 3.9)
Tl 0+ 728+ b — plt )

Integrating by part from (3.8) and using the system (2.2) we obtain

51—~ [ .3~
-:g{::r[w,,(r,xw(:,xrpo,x)b:(z,x)]dx-cba(:,z(f,xl),u(rln(r))}zs««)dr-
—:H:J,{%(r,x)bz(r,x)w(t,x)bf(t,x)]dr—fbi(x,y(n,x).-v(x),é(x)) ek

ot 3 ) -0} e x Yt~

f'j(p(xo,x)ma (26) - @2 s e 2 (D (e -

i(r ' 6. o], - ;q(: B o] . (3.10)

Let’s introduce the functions

He)= [, 06 0 2) - plex)b (D)~ @ 120, e b)),
2(x)= I, (007 (13) e )82 (.t - @2, (1 xR RV EGR)),
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r{0)=alt,xo Jon e.nfe)) - g e, 200, e n(0)).
Ax)= plto, 2ot (x.£(x) - ©F (=, v, ) v(x) £ ().

Using these notations from {3.10) we finally get the expression for the increment of the
functional (1.4) at the variation of the control:

o1 = [, (1, oole, et — [(he)oulr)  (e)om(e )l -

g

(3.11)

= Hglrla) + (eI (o - Jalex e x)orlk - (3.12)
= Tole e xuldad! + 7.

4. The estimation of remainder term. To get the remainder term 7 in the
formula (3.9) first of all we’ll get the estimation for the solution {Sy(t,x),82(r,x)) of the
probiem (3.1), (3.2). From (3.4) and (3.5) we’ll get:

t

"5}’({,‘]&;] R MAg(pluL? o) + r_[zl;,"z",(‘ﬁf‘(r,...}dr +

0 13 (x0,%) (4.1)

!
] .
+ I:}mb (f, 1 Lg] <1 (ID,I] )”d(Su(r)]',
"52(-’36)1‘?«22 (foaf)gnAﬁ(pz 2 r)+ J-Aiiﬁfz("sw')ds +
p IR ] 1
0 L2 {1g.1) (4.2)

1020 e, N

From here usiﬁg the Holder inequality [9] and the ineguality
(a+b+c) < 3(.::2 +h 4 c") we’ll get:

243

< 3{“‘&‘5'(!’1"; tos) + (t -ty )]]‘"A?,mf} (r,s,y(‘r,s), z(’r,s),m('r,s)jlza'rds +

e

"52 ("xmi‘gl (o) <

nyxm
L {ro.1

< 3{HAﬁ(P2H;2 (o) + (x - Xy ):{:;m&;,;p—fz(r,s, y(r,s),z(r,s),a)(r,s“'z dtds +




Transactions of NAS Azerbaijan 203
[The necessary conditions of optimality]

2
)Ild(5 v | - (4.3)

X
“ [P
Xy
Let’s introduce the functions

{r,x)= |‘5y(:,-)||§;1 vory 2l%)= ]|&z(-,x);|§;2 o) (4.4)
and using the Lipschitz condition (1.5) from (4.3) we’ll obtain

t x
Y(t,x)<9ME(H - 15) [¥(z.x)d= + oMt 1) [zt s)ds + m (e, %), (4.5)

Iy

LYt
L2 {10,

X !
Z(e,x)<9M3{x; — xg) [2{e.s)ds + 9M3 (x) — x0) [Y(e.x)d7 + o (e, 37), (4.6)
X fy
where

Itz )= 3{|‘Ag¢1 n;( * 3MP{ty ~10) [ Joeolt, x Y st +
1 Xg:% Q

+ [:J}Hbl (r,-ﬂ] T )”d(au(f))’] ’

(. x)= 3{“%(&’2

2 2 ~ )
oy M1 0 Bl i+

+ ij ”b 2('“*‘ L2 (e 1, )ld(av(x)]’] |

Applying to (4.5) for fixed x the Cronwall lemma for Y{t,x) as function of ¢ [10] we’ll
obtain:

Y(I,X)S[hl(fl,x])+ 9M12(t1 —IO)X_[Z(I,s)ds]exp(QMlz(rl —tg)z), (.x)eQ. 4.7

g

Analogously from (4.6) we have:

t
Z(t,x)< [hz (11,1 )+ 903 (; - xg) _[Y(f,x)dr]exp(9M22 (x - x{,)z), (t,x})eQ. (4.8)
i
Substituting (4.8) in (4.7) we have:
[ 3 4
Y(e,x)< sl x )+ M; | fYie,shsdr , (49)
IQX{)
where

My =8IMT M3 (- 1o M, -xo)eXP(E’Mzz(?TI —xo)z)s
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st 31)= (. % )exp(9M12 (6~ f0)2)+

¥
+ 9M,2 (xl - .71:.3)exp(‘im{z2 (xl - xo)z) jhz(r, ,s)ds.
*0
In the inequality (4.9) again let’s apply the Crownwall lemma for Y (r,x), but
now as a function of two arguments (7, x) [10] we’ll obtain:
Y(t x) < h3(.*1,x1 )exp(M3(t1 - IO)(xl xo)) (f .1‘)&‘ Q. 4.10)
By analogous substituting {4.7) into (4.8) the inequality: :
Z{t, %)< by (1, %) Jexp(M 4 {6y — 0 X1y = x0)). (x}e @, (4.11)
where
My =8\MEM3 () —19)x ~ Io}exp(9M12(f1 - fo)gl
hy (e, x, )=m,( 2 %) )exp(‘)M:z (n - x0)2 )+

+ M2, ~1, )exp(9M 2 -1, )) AN

fg
is proved.

From (4.10}, (4.11) taking into account the notation (4.4) we have:
l

lovte l‘,ﬂ.m o F < (s (e, x, Jexpl(Aa, (x, ~ %0 oy “o)) relt.t
1
“52(',"1',;;:(,0_,1) = (hd(thxl )eXP(M«;(xl '%X‘l —1 )))2 » X€ [xosxl ]
From the equality (3.4) at subdivision of the segment [tg,] by the points
ty =t <71 <73 <..<T, =1, we'll get:

n-}
1)~ 34 )

+rwbl(t’1 L™ (x5,3,) "d(&‘(f))’a
"tsy(tﬁ’mm(xu 5) " H i(P (g,

From here using the Lipschitz conditions for the function f* (r, X, y,z,m),(pl (x,v), cpz (t,u)
and inequality (4.12) we have:

(4.12)

+

Ly(xg.x1)

[

”1

“6 Y "VB{(:U i rm) T
(4.13)
o (PRS- T S 7 P . My ¢
Analogously from (3.5) we can get that
“5 zu Xg Xy 5L0E (2010 =
Bl(x 2, 1132 (0.1} (4.14)

= O("&" “;,; o) " (23 “171 (o) T "‘5'?“1;2 ) T "5“||m,,, (i) T v "VB,2 (g ,xl}] :

From (4.13) and (4.14) it follows that the solution of the problem (1.1), (1.2} is
correct at the variation of the controls. From the obtained estimation (4.13) and (4,14}
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using the explicit form (3.9) of the remainder term n of functional, we can get the
estimation:

1=0{ 1600y + 1083y Bl W, oy ) 415)

5. The necessary conditions. The necessary conditions for the given problems
we'll formulate as theorem

Theorem 1. Let (m(t,x),g(x),n(t),u(t),v(x))e Uy be optimal controls in the
problem (1.1), (1.2), (1L4), and (y(t,x),z(t,x)} and (plt,x),q(t,x)} be the solutions of the

problems (1.1), (1.2) and (2.2),(2.3) corresponding to these. controls. Then the next
necessary conditions

arll:z}é) Hﬁ’fw (&, )5 (s, X )dxdt = Hﬁ‘m (t, x)m(t,x)dxdt, (5.1)
o Q

X

max A (e = 2 e, ﬁggﬁ_;}r(r)ﬁ(t)df=r'jr(t)r,(;)dt, 5.2)

Ee(),

o [HORGX= ety ToF 0K~ felMor, (53)
ﬁrgg?é)(— l)‘”l x_il p(tt-,x)bl (I!‘,JC)‘I‘(U(II- )dx - (_ [)i+l x_][ p(tirx)bl(ti’x}u(tf)dxa (5.4)

e 1P ol B2 6on e =Y Jalon bl =00 59

are fulfilled
Proof. By virtue of optimality of the control (wfr,x),&(x)n(r)ulr)v(x))e U; for

any controls (c'ii(t,x),g (x) 7). (t),'i"(x)}e U the inequalities

St =~{[# ol i - T0He)out)+ rie)omfe e -

- x_1[(.!%‘(3‘3)5"@‘) + A(x)&g (x))dx - {]q(r, x)b2 (t, xbv(x)dt ;‘; - {5.6)
Tl o, + 0,

where
Sorlt,x)=ale,x)-oltx), 86(x)=£(x)-&(x). 6nl) =) - nlr),
Sult)=u(e) - ulr), &v(x)=v(x)-v(x)
are fulfilled.

Let’s suppose that the condition (5.1) isn’t fulfilled. Then exist &{t,x)e Qq()
such that for da{t,x)=@{t,x) - o(:,x) the inequality

[, (.xPole, x)dvdt > 0 (5.7

is fulfilled.
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From the convexity of the set Qg() it follows that for 0<g <1 the control

OJE(!,I)=CU(I,X)+E(SCD(t,Jt)EQ(}(-). For the control (mg(r,x),ﬁ(x),n(r),u(t),v(x))eUa
from (3.12), (4.15) we’ll get:

8 =& g‘a’tw (1. x Beolt, x)dxds + ole).

Hence taking into account the condition (5.7), at sufficiently small number
£>0we get that 87/ <0. But this contradicts to the condition (5.6). Consequently the
condition (5.1) is fulfilled. Analogously we can prove the conditions (5.2), (5.3).

Let’s prove the condition (5.4) for i =1. If this condition isn’t fulfilled then there
is the control #{f)e U() such that for the functions Su(t)={t)— u(f) the inequality

[xjp(ll,x)bl(t; ,x)dx]ﬁu(t; ) >0 (5.8)

is fulfilled.

Then by the virtue of convexity of the set U() for O<e<l, ty<t;—¢& the
functions u, (1)=ult) + edu(t) for te(t) —e,n] and u {t)=ult) for teftg,ty ~ €] are
admitted.

For the control (co(t,x),ﬁ(x),n(t),ua (). v(x))e Uy from (3.12), (4.15) we get:

o =5 [l - s[xjp(rl,x)bl(Il,x)dx}cﬁu(ﬁ )+ ofe).

31 -£

This equality we can write in the next form:
|
of = —s[ _[ plt ,x)ﬁi(rl ,x)dx]c?u(tl% o(s).
Xg

From here by virtue of the condition (5.8) for sufficiently small number ¢ >0 we get that
0! < 0. This contradicts to the condition (5.6} i.e. the condition (5.4) for i =1 is fuifilled.
The correctness of other conditions is analogously considered.

The theorem is proved.

6. The differential maximum principle. For the class of admissible controis Uz
we take the functions

(ole ¥ lednle) ule) vix))e L (Q)% L (vo, 5, )% L3 {60, 12 VB, (15,4, )x VB, (xy.3,),
satisfying the limitations e{f,x)e 2y almost everywhere {f,x)cQ, &(x}e(Q,, almost
everywhere xe [xg,xl ], n(t)eQ,, almost everywhere 1eltg,f ], ult)eU,te [ro,rll,
v(x)e¥, xe(xp,x1), where Qg,0,,Q,,U,V are convex sets in R, Ry,R, Ry . Ry, .

Theorem 2. Let (owlt,x)&(x\n{t)ulhv(x))eU, be an optimal control in

problem (1.1), (1.2), (1.4), and {p(t,x),z(t,x)) and {plt,x)q(t,x)) are the solutions of the

problem (1.1), (1.2) and (2.2), (2.3} corresponding to these controls. Then the next
conditions:

msgﬂ(?ﬂ (t,x)a) =%, (t,x)w(t,x), almost everywhere (r,x) €@, (6.1}
;n?;{ Ax)E = Mx)e(x), almost everywhere x & [Juc0 X% ], max ity = r(x)n(t)
€k neldy

almost everywhere 1t € [tg,1; ] (6.2)
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?:gh(t}u =hehule), telrg.n ], Teagg(x)v = glxp(x), xexg,x], (6.3)
max(- 1)1 § ol 8 = PPl B bk, 60

max(~ 1) ]q(t,xf)bz(t,xj)vdt:(—1)”1 _I[q(t,x;)bz(t,xj)v(x‘-)dt, i=0] (6.5

are fulfilled. .

Proof. For proving the condition (6.1) by the Qg let’s denote the totality of the
points O which are the points of Lebesque for the functions a)(t,x) and #_(i,x). Then
evident the mes{Q — Q)= 0 and for the point (8, p)e QO :

::ffm(e,p)c.)(a,,c.)=1im—]—2 [#, (. x)olr, x)dxdt,
e~ e K(a)

where K (g) is circle with the center at the point (8, p)of radius £, contained in Q.

Let’s suppose the condition (6.1) at the point (G,p)e Qr is not fulfilled. Then
there exist @ € Qq, & >0 such that

%,0,0)0 =%,(6.p)0(6.p)+a. (6.6)
Let’s consider the variation contro!
@ (t,x)z co(t,x), (t,x)e K(S), W (t,x)z cu(t,x)+ s(&i - w(f,x)), (t,x)e K(s), 0<e<l. )
From the convexity of the set Q follows that w, (¢, x)& Q almost everywhere {t.x)e0.
For the control (o, (r,x),‘g'(x),n(t),u(r), v{x))e U, from (3.12), (4.15) we obtain:

5l = _ggpfzﬂ, (1, 2@ ~ ot x et + olelfs ~ 06N, )

From here by virtue of the equality (6.6) for sufficiently small € >0 we get that o/ <0.
This is contradiction to the condition (5.6). The other conditions of the theorem are
proved easily,

The theorem is proved.
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GULIYEV LK,

ON FATIGUE WEAR OF ELASTICO-PLASTIC PLATE AT PULSING
TEMPERATURE ACTION

Abstract

The tensors components of stresses and deformations, the remainder stresses and
deformations, the intensivity of remainder deformations are determined in the plate at its
elastico-plastic deformation and the next full elastic unloading at every cycle in the case
of pulsing temperature loading. The analytic formulas for the time and for the
temperature cycle have been got af which in result of thermic fatigue wear from the
surface layers of plate distracting the material of given thickness is determined.

Let’s consider an elastico-plastic with linear hardening plate of thickness 4 in
any form, which in a plane is free of external loadings. Let’s apply the rectangular
cartesion systems of the coordinate (xl,xz,x3). Let’s arrange the axes x5 and x3 in the

middle of the surface. It is clear that in this case the axis x; will be perpendicular to this
surface. On the both boundary surfaces of plate is realized the absorption of the heat ¢(t},
where ¢ is time. Moreover it is considered that the heat stream ¢(r) quite slowly changes
by the time by the force of pulsing cycles. At =0 we suppose ¢(0)=0. We’ll consider

the domains of plate on sufficiently deleting it from its edges. We suppose that all
constants of materials don’t depend on temperature. Subject to above noted distribution of
the temperature T(x,}=T(x;,1) will be symmetric with respect to the middle surface

x1 = 0. From this and according to [1,2] we’ll suppose the temperature field of the plate
in the following form

2
T(x,t)=T(x, ,x)=33@)§L, (1)
xh

where y is a heat condition coefficients.

We’ll denote continuity of every temperature cycle by #, the time before the
destruction of plate by #,{x;}. In addition the number of temperature cycle will be
N.(x)=1,{x;)/t+ an which will happen the destruction of plate will begin from the

h : e .
surface layers x| = iE and will be extended in direction x;. It means that the separation

of materials will begin from the surface layers, i.e. the process of thermal fatigue wear
will begin. However the process of wear won’t get the surface x; = 0 . Because the plastic

. h .
deformation occurs when x; =i-2— and at any cycle the central plastic zone won’t

happen.

Let’s define the elastico-plastic stress-deformated state (also the remainder
stresses and deformation’s) of the plate at any cycle of temperature action for getting the
t.(x1) (or N,(x)). By the conditions of problem every tempcrature cycle consists of
temperature loading during the time ¢ /2 and full temperature unloading during the same
time,

First of all let’s consider the elastico-plastic deformation problem of the
investigated plate from the natural state at temperature loading (1) in interval time

1 w8 (=) wes wrsnar ywr lIIT®

|




