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ASLANOV G.1I.

PARTIAL OPERATOR-DIFFERENTIAL EQUATIONS
IN SPACES OF TYPE §

Abstract

In the paper partial differential equations with unbounded operator coefficients
in space of type S. Theorem on existence and asymplotic representation of solution of the
~ given equation are proved. In conclusion examples of application of obtained abstract
results to solution of Newmann problem jfor elliptic equations in unbounded cylindrical
domains are give.

Differential equations with operator coefficients in Banach spaces were studied in
many papers [1-3]). Results of these papers have a series of applications in theory of
boundary-value problems. The main applications concern with the question of behaviour
of solutions in infinitive cylinder [4] or in the neighborhood of conical point of he
boundary [5].

In comparison with ordinary operator-differential equations few papers are
devoted to investigation of solvability of partial operator-differential equations in Hilbert
spaces. We’ll note papers [6,7], where solvability of boundary-value problems for some
classes of partial operators-differential equations in functional spaces are studied.

Partial differential equations with operator coefficients were investigated in a
number of papers [8-16]. Theorems on single valued, normal and Fredholm solvability,
on asymptotic behavior and smoothness of solution in Hilbert spaces such equations also
have applications in theory of boundary-value problems.

1. Let H be a Hilbert space. Consider differential operator

L{Du = ZA Dy

aSm

where 4, are bounded operators: H — H .
-1
Denote by R(l):{ Ay Aa:‘ the operator H -» H . At first we’lt define the
Jor|sm

space S(R";H). Let u(x)e H at any xe R” and D°w exists at all . Suppose that

(l + |x0p D%u

y <C, , take place at any p, @

Then we’ll say that u(x)e S( " H ) If it’s clear what ' we are talking about
then we’ll use denotation u(x)e S( ”). Let continuous mapping 7 :u(x}-> H
ulx) S(R") be given. The set of all such T we’ll denote by §'.

Theorem 1. If R()’.) exists at all real 2, infinity differentiable function A is such

|D°‘R(AH|H eC,f +1AF,
where s depends on o, then L(D) maps A on
D R(Y, <C.{+[Al).
Proof. If u(x)e S( "), then it’s clear that Ly ES(R”). Let feS(R”) We have
to prove that there exists such u{x)e S(R"), that L r}n ]. A

AVt

that

. Consider
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where #(A) and f(1) are Fourier transformation of the functions u(x) and f(x)
respectively. It’s clear that #(x)e S(R”). Inverse Fourier transformation #(A) of #(1) is
such function u(x)e S(R”) that Lu=f .

It's said that 7 is on the set Qc R", if from u(x)e S( ”), u(x)=0 in the

neighborhood © follows that Tu = 0.
Lemma 1. [f T € S is concentrated at one point x=0, then

Tu=Y.T,D%(x),,, (1)

||k
where T, - are some bounded operators in H .
Proof. Since 7 continuously maps § into A , then we can find such & that if
D*u(0)=0 at || <k, then Tu=0. Let ii(x)e S(R").
Consider the segment of its Taylor series
D" u(ﬂ)
ulx)= ¥ =00 o (x). (2)
oft !
We’ll rewrite formula (2) in the following form
ofeh)= 3, 20t} (00, @
faek
where 6(x)=0 at |21, 8(x)=1 at |x|<1.
We’ll apply the operator 7 € S’ 1o the both sides of (3). As a result we have:

Tlo(xW(x)]= 37, [p°u(0)]. @

a<k

Note that T[8(x)u(x)]=Tu, since G(x}u(x) u(x)=0 in the neighborhood x=0.
Therefore, necessary formula (1) follows from (4}

Tu= lg%k}”a [D“u({))].

Also note that any element 7 €S’ has the derivative DT € S'. Action of D*T on
u(x)e S(R") passes by the formula

(D‘IT,u)z (- I)M(T, D“u).

If TeS', 4 isabounded operator H — H ,then 4-T " can be defined, putting

(AT, u(x))= 4(Tu{x)).

The above said allows to define operator L on §'.
-1
Theorem 2. If R(A):{ Z(EA)GAE} is defined at A e R"/0 and there exists
[a]<k
such homogeneous polynomial P(L) of the order k , that P(A)%20 ot LeR"/0 and
b*p (A)R(Am <C, (1 + |)L|}g . where s depends on a . Then any solution of the equation
Lu=0,ues (5)

has the following form: w= Y T x>, where T, . H — H are bounded operators.
|af!

Proof, Fourier transformation in (5) gives
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L > 4, G }a(&): 0. (6)

ﬂlSm
Hence it follows that #{1)=0 at A R"/0.

Consider any element v{1)e S( ”) such that D*v{0}=0 at )a| <k, k is order of
P(2). From (6) it follows that (#{A),7(1))=0. Thus, #(1)e S satisfies the conditions of

lemma 1. It means that
"0)- 21, (D°u(0)).

ezt
Passing here to u(x) we obtain that
ulx)=>T x*,
|alst
where 7, - are some operators
Theorem 3. If R(1) satisfies conditions of thearem 2, f(x)e S (R”), then there
exists solution u(x) of the equation

Lu= f{x) (7)

such that u(x)e §°
“u(x]l < c(l + }xl)k - ®
atodd n and N at k <n ' _
)| < O+ ) 1+ ) (8"

ateven k2n.
Proof. Let ¥(x) be a solution of the equation

|
P[— i ™ }’ = g(x),
where g{x) is such, that its Fourier transformation is g(1)= P(A)R(A)?(A) .
Note that |[D® g(/ql {1+ |2.|)” <c,, atany a,p.

Such v{x) can be obtained by the formula
v(x)=T(x)» g{x), 9)

where T'(x) is a fundamental solution of the equation

P[— fé%}F(x)ﬁ (x).

Function I'{x) is a scalar function defined in R” /0. We’ll show that v(x) is a solution of

equation (7).
Indeed,
Y A4,0%= ¥ 4,0°[[(x)+ g()]= ¥ A[r(x)« D"g(v)|=
[alsm |eelsm |ecln (10
- ZFO a0 sto]- 0| a0

We’ll find Fourter transformation of the right-hand side of (10). It equals.
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e )[zAa(a)ﬂg(x)} A TAY E0)-

|a S

P(,a.)MAa(f*)"P(ﬂ)R(A)f(A) 7).

Consequently, the right-hand side of (10) coincides with f (x) .
Now we have to obtain estimation of function v(x) , defined by formulas (8), (87).

Let 7 be odd or n—k . Then T'(x,y)<clx - yr’_" From (9) we have

‘v(x]ic_ﬂx y|’r i"g,'(y):fy'*fc _ﬂx kng()’)dy"‘

2|x {y
foe=x" gy +e ey g0y =d,+ 1+,
el i
We'll estimate J, . We have:
J, sc _ﬂx - ylhn gy <c _ﬂyr_" (1 + ]y|)‘Ndy <c,(N)- \xl_N
|20 |21+
for any N . Estimate J,:

Jy<e fx- y/k_" gy <c, }xl_N F-»

|y|)2|x[ ; <|yi\:2|x[

k-n

dy<

el LN ksl -
éczixl \xl Sc3|x\ s

where N' is any number

Jy= |

X
i

Required estimation (8) for u(x) follows from these estimations.
In case n<k iseven n

() < cR_Dx —y [t + tnjx - y|1g(y)a} .

If we divide the integral in the right-hand side by three analogous to J|,J;,/; addends

ey

[e)dy<c

EY
<5

1,,1,,I, then the similar estimations are obtained for /,,/, and I; < clx| (l + ln\xl).

Hence estimation (8) follows. Theorem 3 is proved.
2. Equation

Y 4. D%u= f(x) (i1)

ia|$m
in a given form included only bour.ded operators 4, .

In order to consider the case of unbounded operators we consider a family of
Hilbert spaces H,D>H,>..oH,. Let f(x)eH,, 4,, is bounded operator:
H, 1o ™ H,.

Such a function u(x}e H,, is considered a solution, that D*uc H mfa 88 |a‘ <m

and equality (11) is satisfied at almost all xe R". Let §, ( 7 ) be a space defined with




(L]
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the help of &, . It’s clear that S, ©§,,, correspondingly S} > S,,. These definitions

allow to extend the notion of solution of equation §, 25 ;. As a solution we can

consider elements S, . Consider asymptotic properties of solutions of equation (11) in
case f (x)e S, and when f (x) has a compact support.

-1
Theorem 4. Lef R(A)z[ Z(il)’" Aa} be bounded operator. Hy, > H,, at any

lalSM

A€ R"/0. Suppose that there exists a homogeneous polynomial P(L) of order k such

that P(1)=0 and
P(AR(R)=ald)+ P()R (1)
where R, (J-L) is an analytical function in the layer lJml j-|£c such that

||R1 (/’L}| Hyot, < c(l + |l|)‘, at some C", is bounded in whole u(x) operator function .
Let u(x) be a solution of equation (11) such that

_“|u(x1 i,mdx <o .
”
Then u(x)=1u,(x)+ u,(x}, where
oo ), < e, . (12)
P[ufai}ul =0 at |x|2N and uu(xllH <c. (13)
x L

Proof. Applying Fourier transformation in {11) we obtain
ZAa) 4,5(a)= ().

Ja|5m

P(ﬂ)%(fz)“Aaif(i)=Pu)?(A)

From here

consequently
PJE()= RAP(RA)F ()= AR )F(2)+ R(A)P(A)F(R). (14)
Assume #,(1}= R (1)F(1).

Then u, (x) we’lt satisfy (12). From (14) it follows that P(,l)ic',(ﬂ,): A(l)f(l).
Consequently,

_p[_sgﬂu,(x):r' L7,

where F~' is inverse Fourier transformation of entire function. It’s known that such
function has a compact support. It means that #, (x) satisfies conditions (13). The theorem
is proved.

3. Operator AAu — Au satisfies the conditions of theorem 3.

in this case P{A)= !l2| .

4. Operator of Neuman problem on infinite layer satisfies the conditions of
theorem.

Let H:{x:0<x,, <1, (x.%p,.%,,)€ R"’]}.

[ S - o

)
T om w1 1
{ T ) ]
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with boundary conditions

Consider equation

n=l

2’ &’
ZE; + a(x,,)é-x—? =f(x), xeTI
i=1 i i

=0. Suppose H, =W;:[0,1}, H, =W, [0,1], H, = L,(0,1).
wlar

In this case P(A)= Wz . The function R,(1) will be regular in the layer [JmA,|<r .

The author expresses his deep gratitude to academician of AS of Azerbaijan

Gasymov M.G. and professor Bayramogli M. for their content interest to his paper and
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BAIRAMOYV R.A.

ON CONNECTIONS BETWEEN FUNCTION CLONES AND
VARIETIES OF ALGEBRAS

Abstract

A lot of theorems are established which are inspired by the duality between
congruences of clones and lattices of subvarieties.

This dudality is given by theorem 2 below. It was explicitly stated about 15 years
ago (independently by several authors), but has its roots in some works (1966-1973) of
AL Mal’cev, E Manes, W.Taylor and other authors. Using theorem 2 and some known
results we obtain, for example:

(i) the equational theory of congruence lattices of finite-valued clones is
trivial;
(i) if an algebra A generates the smali variety A and A contains the global

of A, then the clone of term functions of the global is isomorphic 10 the
clone of term functions of A.

A majority of results of the article was published in [2-4] and in other our works.
It is of review character (mainly) and its aim is to point out a lot of results inspired by the
duality between congruences of clones and lattices of subvarieties. This duality in the
exact form was formulated in the middle of 80-th years in [3, 17, 24} and is reminded
below- see theorem 2, whose sources are perceived roughly (without precise formulation)
in [9, 22, 29].

Theorems 1, 2 and a part of corollaries have been obtained in collaboration with
LA. Mal’cev - see [3, 4, 31] and bibliography in [2].

One can be acquainted with all undefined below notions in {10, 19, 28], while
notations F, (the clone of all finitary functions on a set 4), var(A) (the variety generated
by an algebra A), the finite-valued variant F, of the clone F, and others have been got
from [2].

On establishment of desired duality the solution of the question “will a factor-
algebra of a clone of functions be always isomorphic to a clone of functions” was found
essential, If “yes”, then the description of sets of truth values of functions from clones
obtained by a factorization is of independent interest also. Theorem 1 answers the both
questions. Let’s give informations which are necessary for truing to understand it.

Trivial congruences of function clones are: the zero-congruence y, {equality),
the unit (universal) congruence y, and the arity congruence y_. As is shown in {7, 12],

in the lattice Com{F) of all congruences of any function clone F the set
C'on(F)= {x eCon(F]x * x,} of its non-universal congruences coincides with the set
{x eCon(F] ¥ < za} of its subarity congruences and so forms the principal ideal in it.
Further, any y e C'on(F) induces on F an out arity equivalence y ::(x ov)U (v ° x),
where v is the thread equivalence on F, i.e. the partition of F into threads {every thread
begins with some function f € F and consists of f,Vf,V%f,., V'f,..(n< ®)). In this

inducing g, =z and x" ¢ConlF) for each y<y,: here y =2y and x s
incomparable with y,.But " Ny, = x is fulfilled for any ¥ eC'on(F).




