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APPROXIMATION OF BOREL DERIVATIVES
OF FUNCTIONS BY SINGULAR INTEGRALS

Abstract

The definition of right and left Borel derivatives are given and the theorems on
approximation of functions, having Borel devivatives, by the sequences of linear integral
operators with positive kernels are established.
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1. Approximation of functions and its derivatives by the sequences of integral
operators with positive kernels (so called singular integrals) or, in general, by linear
positive operators wave investigated by many authors. Many results in this direction may
be found in books [1]-[4]. We also refer to papers [5]-[8].

This paper is devoted to a problem of approximation of functions, having a Borel
derivative. The function f has a Borel derivative B'f(xq)=+wo at xq if

lim — [f("ﬂ”t FG0) 4 - prr(sy)

h—0 h

and has a symmetrical Borel derivative B! f{x,)= 0 at x; if

lim lff(x0+t) f(xl) )dt:B;f(xo)

h—tﬂh 2
k h
where I = lim _[ (see, for example, [5]).
0 £0 €

Obviously, if the ordinary first derivative f{x;) exists, so does Borel derivatives
and B'f(xg)= B, f{xy)= 1’(x). The converse is not hold.

As usual may be given a definition of right and left Borel derivatives B, f(x;)
and B.Lf (xo). Namely, we shall say that the function f has a right and left Borel
derivatives at xp if

lim — 1 ff(xo +t) f(xO)df B f(x0)3

h—>0h

fim L rf(xo) ;f(xo-f)

h—>0 h

dt= Bf.f(xg)
Clearly, if B, f and B_f there exists then there exists also

B, o) =3 (811 x0) + B £ (5).

2. Let (— R,R'),R:»O is finite or infinite interval and n=12,.... Consider a
sequence of integral operators

Li(Fi)= (7K~ ) M
~R
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where the kernel X, (r) satisfies the conditions:
a) K,(r) is positive, even, infinitely differentiable function, X, {t} decreasing on (0,R)
and '

R
K, ()t =1, ¥n=12,..;
-R
b) for any fixed >0
lim X,{5)=0 and lim supl(dK;(t})=0; )

H—30 H—-)Oszd .

¢) if R=co, then for any fixed & >0

o

lim [K,()d=0.

o
Note that in the case of R<a we additionally assume that f and X, has a period 2R.
Theorem 1. Let the hkernel K, (t) of operator (1) satisfy a)-c) and
feLi(~R,R). If there exists Borel derivatives B, f and B at x,, then
. B, "
lim L;U;XO): +f(x0)+ B f(X(])’ (3)
R0 2

, d
where L, (f;xo)= E;L,, (f;xj x=xg *
Proof. We have

R R R
L= [ FOSK e ~2)= - [ 7O ZK, (= 0)== £+ 0 (O
—K .y -R
and therefore by a)

17 x)= U Geo )~ £ — IR () @

Let
F)= [aeo £z

0

o )= L0280 G028 (5 fo)+ Bfl0).

Then by the definition of right and left Borel derivatives

where

h
i
l'lll — A ,f 'dt = 0
n-»l eh{-}[ (xo

and therefore
IFt)<er if 1<8=6(¢). (6)

Fixed this number &, we can write
5 5

L) == o B ) B o) ok =

0

. (7)
= [lf Gy + )= flwo - K )at =1 + 17 + 17
&
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l-p
K t}=K  t)= .
n(} p() 1+,c!2 —~ 2pcost

Operator (1) with the Kernel X, {¢r) is Poisson integral P, (f:x). Since

|K:o(t1=| 2psint(1—p2) |S l1-p
(l+pz—2pcosr)z Zpsin“%

¥

thenfor &6 <1<z

sup(t|K;,(r])£—£— =p —0 as p 1.
zp .4 6
sin” —
All other conditions also holds and we have from theorem 1.
Theorem 3. If the function fel, (~ m,n) has a finite right and left Borel
derivatives then for Poisson integral
limPﬁ; (f;xo): B+f(x0) - B f(xﬂ)
p—l 2

holds.
Corollary. If the function f has a Borel derivative B'f(xy) then
E_IRP; (f3%0)}= Bf (x,).
This result were proved early in [5]. -
Application of theorem 2 to the integral operators (1) with kemels

no o

n i
K iltl=— , Kil)=—/———
=T, K ()= T

gives the theorems on approximation of Borel derivatives of functions by singular
integrals of Gauss-Weierstrasse and Abel-Poisson correspondingly.
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THE SCATTERING PROBLEM FOR A HYPERBOLIC SYSTEM OF FIVE
FIRST ORDER EQUATIONS ON SEMI-AXIS WITH TWO GIVEN INCIDENT
WAVE

Abstract

At the paper the direct scattering problem is considered for a hyperbolic system
of five equations of the first order on semi-axis with two given incident waves.

At the given paper the direct scattering problem on the semi-axis x =0 is solved
for the system of the following five equations of the first order:

Oult) dulxr) icg.{x,:);f(x,r) (i =1,....5;—00 < < +0). ()
J=1

5' at Ox

The direct scattering problem on a semi-axis is studied paper [1] for the system of
five equations of the form (1) in case when &, >&, >&,>0>&, > &5

At the system (1) the coefficients C, (x,t) are supposed as complex valued,
measurable by x and ¢ functions which satisfy the following estimations:

|C P (x, rjs ( c )1+£ s

1+ ) e (|
and the condition C,(x,7)=0, i=1,...,5.

Under the solution of the system (1) we’ll understand such local-integral vector-
function u{x,7)= {u, (x,2),...,us(x,¢)}, which in general case satisfies the system (1).

Let in the system (1) Cg(x,t)=0 (t,7=1,..,5). Then we get five independent
equations:

C>0,e>0 (2)

au,-(x,r) Ou, (x,r) e s
3 PR ~0 {(i=1,.5). (1%
it is known that every bounded solution of this system has the following form:
ulx,t) = {£,( + é]x)rfiz(’ +Ex b folt + é‘sx)} s
where }{s) is an arbitrary function from the class I, (R) (1' = 1,...,5).
Every essentially bounded solution of the system (1) when x—+w

asymptotically approximates to the solution of the equations (1°). Exactly the following
theorem is true.

Theorem 1. Every essentially bounded solution u(x,t)={u, (x,t)....us (x,0)} the
system of the equations (1) with the coefficients C, (x,z) satisfying to the conditions (2)

admit on the semi-axis x 2 0 the following asymptotics representations:
u(x,0)=a,(t + £x)+ 0(1)
uy{r,0) = a,{r + £,x)+ 0(1)
uy{x,0) = by e + €,x) + 0(1) )
u (x,1)= b, (t + &,x) + 01}
ws{x,2) = bt + £ x}+ 0(1)




