JAFAROV N.J.

UNIQUE STRONG SOLVABILITY OF THE FIRST BOUNDARY VALUE PROBLEM FOR PARABOLIC GILBARG-SERRIN EQUATION IN THE PARABOLOID TYPE DOMAINS

Abstract

In the paper the first boundary value problem for parabolic Gilbarg-Serrin equation is considered in paraboloid type domains. Unique strong solvability of this problem in weighted Sobolev space is proved.

Let \mathbf{R}_{n+1} and \mathbf{E}_n be (n+1)-dimensional and n-dimensional Euclidean spaces of the points $(x,t)=(x_1,...,x_n,t)$ and $x=(x_1,...,x_n)$ respectively. Let's call the domain G, situated in half-space t<0, P-domain, if its intersection with every hyperplane $t=-\tau \ (\tau>0)$ has the form $\left\{x:\frac{x}{2\sqrt{-\tau}}\in D\right\}$, where D is some bounded domain in \mathbf{E}_n .

The domain D is called generating for the domain G. Let further $G_T = G \cap \{(x;t): t > -T\}$, where $T \in (0,+\infty)$. Let's consider in G_T the first boundary value problem

$$\mathcal{L}u = \Delta u + \lambda \sum_{i,j=1}^{n} \frac{x_i x_j}{4(-t)} \frac{\partial^2 u}{\partial x_i \partial x_j} - \frac{\partial u}{\partial t} = f(x,t), \tag{1}$$

$$u|_{\partial G_{\nu}} = 0, (2)$$

where the numerical parameter λ satisfies the following condition

$$-\frac{1}{d^2} < \lambda < \infty, \ d = \sup_{\xi \in D} |\xi|. \tag{3}$$

The aim of the given paper is to prove the unique strong (almost everywhere) solvability of the first boundary value problem (1)-(2) in corresponding weighted Sobolev spaces. The equation (1) is called the parabolic Gilbarg-Serrin equation. We know [1-2], that the first boundary value problem for parabolic equations of the second order of nondivergence structure is uniquely strongly solvable in the space $W_p^{2,1}(1 in an$ arbitrary boundary cylinder domain, if the coefficients of equation are uniformly continuous, the right hand side belongs to the space L_p , and the domain of cylinder foundation is the double smooth surface. In case p=2 the analogous fact holds also for some class of equations with discontinuous coefficients in particular satisfying the parabolic Cordes condition [3-6]. As to parabolic equations given in non-cylindrical domains then even for equations with smooth coefficients the unique solvability of the first boundary value problem holds only in weighted Sobolev spaces [7]. It is easy to see that the equation (1) satisfy the parabolic Cordes condition not at all the values of the parameter λ . Nevertheless as it is shown at the given paper the unique strong solvability of the first boundary value problem (1)-(2) in weighted Sobolev spaces holds at any value of the parameter λ , satisfying the condition (3).

Let's agree now in some notations. By u_i and u_{ij} we'll denote the derivatives

$$\frac{\partial u}{\partial x_i}$$
 and $\frac{\partial u}{\partial x_i \partial x_j}$ respectively, $u_{xx} = (u_{ij}); i, j = \overline{1, n}; u_x^2 = \sum_{i=1}^n u_i^2; u_{xx}^2 = \sum_{i,j=1}^n u_{ij}^2$. We'll

suppose that the numerical parameter γ satisfies the condition

$$\gamma \in \left(\frac{n^2 \left(\lambda - \frac{1}{d^2}\right) + 2\lambda n}{8}, + \infty\right). \tag{4}$$

Let $C_0^{\infty}(G_T)$ be the space of all infinitely differentiable functions with compact support in G_T , $A_0^{\infty}(G_T)$ is a space of all infinitely differentiable in G_T functions for which the integral $\int_{G_T} (-t)^{\gamma} u^2 dx dt$ is finite.

Let's denote by $L_{2,\gamma}(Q_T)$ and $W_{2,\gamma}^{2,1}(Q_T)$ the Banach spaces of the functions u(x,t), given on G_T with the finite norms

$$\|u\|_{L_{2,\gamma}(G_T)} = \left(\int_{G_T} (-t)^{\gamma} u^2 dx dt\right)^{\frac{1}{2}}$$

and

$$||u||_{W_{2,\gamma}^{2,1}(G_T)} = \left(\int_{G_T} ((-t)^{\gamma} u^2 + (-t)^{\gamma+1} u_x^2 + (-t)^{\gamma+2} u_{xx}^2 + (-t)^{\gamma+2} u_t^2 \right) dx dt$$

respectively. Let finally the $\dot{W}_{2,\gamma}^{2,1}(G_T)$ is the subspace of $W_{2,\gamma}^{2,1}(G_T)$ dense set in which there is a totality of all functions from $A_0^\infty(G_T)$ vanishing on ∂G_T . Let's denote by S_T and D_T the set $\partial G \cap \{(x,t): -T \le t \le 0\}$ and $G \cap \{(x,t): t = -T\}$ respectively. We'll use two statements which are proved at the paper of the author [8].

Lemma 1. For any function $\vartheta \in \dot{W}_{2,\gamma}^{2,1}(G_T)$ the inequality

$$\varepsilon \int_{G_r} (-t)^{\gamma} \vartheta_x^2 dx dt \le - \int_{G_r} (-t)^{\gamma} \vartheta \mathcal{L} \vartheta dx dt$$
 (5)

is true, where the positive constant ε depends only on λ , n, d.

Lemma 2. For any function $v(x,t) \in A_0^{\infty}(G_T)$ equal to zero on D_T and near S_T , the estimation

$$\int_{G_T} (-t)^{\gamma} \frac{u^2}{4(-t)} dx dt \le \frac{4}{n^2} \int_{G_T} (-t)^{\gamma} \sum_{i,j=1}^n \frac{x_i x_j}{4(-t)} u_i u_j dx dt$$
 (6)

is true.

We'll denote by $\mathcal{A}_0^{\infty}(G_T)$ the class of functions given in lemma 2. Let's ingage in obtaining the basic coercive estimations for the operator \mathcal{L} . To this aim let's denote by K_R the intersection of P- domain K with the set $\{(x,t):t>-T\}$ such that generating domain for K is the ball of the radius R strongly interior with respect to the D.

Let's finally $K_{R,\sigma} = K_R \cap \{(x,t): t > -\sigma\}$, where σ is sufficiently small positive constant.

Lemma 3. For any function $u(x,t) \in \mathcal{A}_0^{\infty}(K_R)$ the estimation

$$\int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{xx}^2 dx dt \le C_1 \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L}u)^2 dx dt$$
 (7)

is true.

Here and further by C we'll denote the positive constants which depends only on γ , λ and d .

Proof. Let's fix an arbitrary k, $1 \le k \le n$, and, allowing for that

$$\Delta u = \Delta u + \lambda \sum_{i,j=1}^{n} \left(\frac{x_i x_j}{4(-t)} u_j \right)_i - \lambda (n+1) \sum_{i=1}^{n} \frac{x_i u_i}{4(-t)} - u_i,$$
 (8)

in the estimation (5) we put the function S instead of the function $-tu_k$. We'll get

$$\varepsilon \int_{K_{R,\sigma}} (-t)^{\gamma-2} \sum_{i=1}^n u_{ki}^2 dx dt \le -\int_{K_{R,\sigma}} (-t)^{\gamma+1} u_k \mathcal{L}((-t)u_k) dx dt, \qquad (9)$$

where σ is an arbitrary fixed sufficiently small positive number.

But on the other hand

$$\mathcal{L}((-t)u_k) = \Delta((-t)u_k) + \lambda \sum_{i,j=1}^n \left(\frac{x_i x_j}{4(-t)}(-t)u_{kj}\right)_i - \lambda (n+1) \sum_{i=1}^n \frac{x_i u_i}{4(-t)}(-t)u_{ki} - u_{ki} + u_k = (-t)\mathcal{L}(u_k) + u_k.$$
(10)

Therefore

$$J_{1} = -\int_{K_{R,\sigma}} (-t)^{\gamma+1} u_{k} ((-t) \mathcal{L} u_{k} + u_{k}) dx dt = -\int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{k} \mathcal{L} u_{k} dx dt -$$

$$-\int_{K_{R,\sigma}} (-t)^{\gamma+1} u_{k}^{2} dx dt.$$
(11)

On the other hand

$$-\int_{K_{R,\sigma}} (-t)^{\gamma+2} (u_k \mathcal{L} u_k - u_k (\mathcal{L} u)_k) dx dt = \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{kk} \mathcal{L} u dx dt -$$

$$-\int_{K_{R,\sigma}} (-t)^{\gamma+2} \frac{\lambda}{2(-t)} \sum_{i=1}^{n} x_i u_{ki} u_k dx dt = \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{kk} \mathcal{L} u dx dt -$$

$$-\frac{\lambda}{4} \int_{K_{R,\sigma}} (-t)^{\gamma+1} \sum_{i=1}^{n} x_i (u_k^2)_i dx dt.$$
(12)

Allowing for (12) in (11) we get

$$J_{1} = \int_{K_{n,a}} (-t)^{\gamma+2} u_{kk} \mathcal{L}u dx dt - \frac{\lambda n - 4}{4} \int_{K_{n,a}} (-t)^{\gamma+1} u_{k}^{2} dx dt,$$

that together with (9)-(11) gives

$$\varepsilon \int_{K_{R,\sigma}} (-t)^{\gamma+2} \sum_{i=1}^{n} u_{ki}^{2} dx dt \le \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{kk} \mathcal{L} u dx dt + \frac{\lambda n - 4}{4} \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_{k}^{2} dx dt . \tag{13}$$

From (13) for any $\varepsilon_1 > 0$ we have

$$\varepsilon \int_{K_{B,\alpha}} (-t)^{\gamma+2} \sum_{t=1}^n u_{kt}^2 dx dt \leq \frac{\varepsilon_1}{2} \int_{K_{B,\alpha}} (-t)^{\gamma+2} u_{kk}^2 dx dt + \frac{1}{2\varepsilon_1} \int_{K_{B,\alpha}} (-t)^{\gamma+2} \left(\mathcal{L}u \right)^2 dx dt +$$

$$+ \frac{|\lambda n - 4|}{4} \int_{K_{R,\sigma}} (-t)^{\gamma + 1} u_k^2 dx dt . \qquad (14)$$

Summing by k from 1 to n, from the last estimation we get

$$\varepsilon \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{xx}^2 dx dt < \frac{\varepsilon_1}{2} \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{xx}^2 dx dt + \frac{1}{2\varepsilon_1} \int_{K_{R,\sigma}} (-t)^{\gamma+2} \left(\mathcal{L}u \right)^2 dx dt + \frac{\left| \lambda n - 4 \right|}{4} \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt . \tag{15}$$

It is easy to see that the inequality (5) holds if we replace the exponent γ by $\gamma + 1$. Therefore for any $\varepsilon_2 > 0$ we get

$$M_{2} = \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_{x}^{2} dx dt \le C_{2} \int_{K_{R,\sigma}} (-t)^{\gamma+1} u \mathcal{L} u dx dt \le \frac{C_{2} \varepsilon_{2}}{2} \int_{K_{R,\sigma}} (-t)^{\gamma} u^{2} dx dt + \frac{C_{2}}{2 \varepsilon_{2}} \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L} u)^{2} dx dt .$$

$$(16)$$

On the other hand according to (6)

$$\int_{K_{R,\sigma}} (-t)^{\gamma+1} \frac{u^2}{4(-t)} dx dt \le \frac{4}{n^2} \int_{K_{R,\sigma}} (-t)^{\gamma+1} \sum_{i,j=1}^n \frac{x_i x_j}{4(-t)} u_i u_j dx dt =$$

$$= \frac{4}{n^2} \int_{K_{R,\sigma}} (-t)^{\gamma+1} \left(\sum_{i=1}^n \frac{x_i}{2\sqrt{-t}} u_i \right)^2 dx dt \le \frac{4d^2}{n^2} \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt.$$

Therefore

$$\int_{K_{R,\sigma}} (-t)^{\gamma} u^2 dx dt \le \frac{16d^2}{n^2} \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt.$$

$$\tag{17}$$

Allowing for (17) in (16) we conclude

$$\int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt \le C_3 \varepsilon_2 \int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt + \frac{C_3}{\varepsilon_2} \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L}u)^2 dx dt.$$

Now choosing $\varepsilon_2 = \frac{1}{2C_2}$ from the last inequality we get

$$\int_{K_{R,\sigma}} (-t)^{\gamma+1} u_x^2 dx dt \le C_4 \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L}u)^2 dx dt.$$
 (18)

Allowing for (18) in (15) we arrive at the estimation

$$\varepsilon \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{xx}^2 dx dt - \frac{\varepsilon_1}{2} \int_{K_{R,\sigma}} (-t)^{\gamma+2} u_{xx}^2 dx dt \le \frac{1}{2\varepsilon_1} \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L}u)^2 dx dt + C_5 \frac{1}{2\varepsilon_1} \int_{K_{R,\sigma}} (-t)^{\gamma+2} (\mathcal{L}u)^2 dx dt.$$
(19)

Now choosing $\varepsilon_1 = \varepsilon$ and tending σ to zero from (19) we get the required estimation (7). The lemma is proved.

Lemma 4. If the conditions of previous lemma are fulfilled, then any function $u(x,t) \in \mathcal{A}_0^{\infty}(K_R)$ the estimation

$$||u||_{W_{2,\gamma}^{2,1}(K_R)} \le C_6 ||\mathcal{L}u||_{L_{2,\gamma+2}(K_R)}$$
 (20)

is true.

By virtue of lemma 2 the inequality (18) and the statement of lemma 3 to prove the estimation (20) it is sufficient to prove that

$$\int_{K_R} (-t)^{\gamma+2} u_i^2 dx dt \le C_7 \int_{K_R} (-t)^{\gamma+2} \left(\mathcal{L} u \right)^2 dx dt . \tag{21}$$

Let δ_{ij} is Cronecker's symbol. We have

$$u_{i}^{2} = \left[\sum_{i,j=1}^{n} \left(\delta_{ij} + \lambda \frac{x_{i}x_{j}}{4(-t)} \right) u_{ij} - \mathcal{L}u \right]^{2} \le 2 \left(\sum_{i,j=1}^{n} \left(\delta_{ij} + \lambda \frac{x_{i}x_{j}}{4(-t)} \right) u_{ij} \right)^{2} + 2(\mathcal{L}u)^{2} \le C_{8} \sum_{i,j=1}^{n} u_{ij} + 2(\mathcal{L}u)^{2}.$$
(22)

Now it is sufficient to apply lemma 3, and from (22) follows the required inequality (21). The lemma is proved.

Now let's make substitute of variables $\xi = \frac{x}{2\sqrt{-t}}$, $\eta = \ln\frac{1}{-t}$. It is easy to see that Jacobian of this transformation equals to $2^n e^{-\frac{\eta(n+2)}{2}}$. At such transformation our domain $K_{R,\sigma}$ will be mapped into the cylinder \mathbb{C}^{σ} whose foundations are n-dimensional sphere of the radius R and arranged on hypersurfaces $\eta = \ln\frac{1}{T}$ and $\eta = \ln\frac{1}{\sigma}$ (without loss of generality we suppose T < 1). Let $\widetilde{\mathcal{L}}\widetilde{u}$ be a product e^{η} and the image of $\mathcal{L}u$.

Then from lemma 4 follows that

$$\int_{\mathbf{c}^{\sigma}} e^{-\gamma \eta} e^{\frac{-\eta(n+2)}{2}} \left[\widetilde{u}^{2} + \widetilde{u}_{\xi}^{2} + \widetilde{u}_{\xi\xi}^{2} + \left(\sum_{i=1}^{n} \xi_{i} \widetilde{u}_{\xi_{i}} + 2\widetilde{u}_{\eta} \right)^{2} \right] d\xi d\eta \leq$$

$$\leq C_{9} \int_{\mathbf{c}^{\sigma}} e^{-\gamma \eta} e^{\frac{-\eta(n+2)}{2}} \left(\widetilde{\mathcal{A}} \widetilde{u} \right)^{2} d\xi d\eta , \qquad (23)$$

where \widetilde{u} is an image of the function u and the constant C_9 doesn't depend on σ .

Let's denote by C_1^{σ} a cylinder that is coaxial and equihigh to C^{σ} whose bases are the balls of radius 2R.

Lemma 5. Let u(x,t) be infinitely differentiable function from $W_{2,\gamma}^{2,1}(K_{2R,\sigma})$, vanishing for t=-T. Then there exist the constant C_{10} , depending only on λ , n, d and R such that

$$\int_{\mathbf{c}^{\sigma}} e^{-\gamma \eta} e^{-\frac{\eta(n+2)}{2}} \left[\widetilde{u}^{2} + \widetilde{u}_{\xi}^{2} + \widetilde{u}_{\xi\xi}^{2} + \left(\sum_{i=1}^{n} \xi_{i} \widetilde{u}_{\xi_{i}} + 2\widetilde{u}_{\eta} \right)^{2} \right] d\xi d\eta \leq$$

$$\leq C_{10} \left(\int_{\mathbf{c}_{\eta}^{\sigma}} e^{-\gamma \eta} e^{-\frac{\eta(n+2)}{2}} \left[\left(\widetilde{\mathcal{Z}} \widetilde{u} \right)^{2} + \widetilde{u}^{2} + \widetilde{u}_{\xi}^{2} \right] d\xi d\eta \right). \tag{24}$$

Proof. Let's consider the following function $z(\xi)$: $z(\xi) = 1$ if $\xi \in B_1$, $z(\xi)$ out of B_2 , $z(\xi) \in C_0^{\infty}(B_2)$, $0 \le z(\xi) \le 1$ and there exists the constant C_{11} depending only on n, such that

$$|z_i| \le \frac{C_{11}}{R}; |z_{ij}| \le \frac{C_{11}}{R^2} \quad (i, j = \overline{1, n}).$$
 (25)

Here B_1 and B_2 are foundations of the cylinder C^{σ} and C_1^{σ} respectively.

Now we apply the inequality (23) to prove the estimation (24) to the function $\vartheta = \widetilde{u} \cdot z$ in cylinder \mathbf{C}_1^{σ} and take into account the estimations (25) and the equality $\vartheta = \widetilde{u}$ for $(\xi, \eta) \in \mathbf{C}^{\sigma}$.

Let's denote the left hand side of the inequality (23) by $\|\widetilde{u}\|_{W_{2,\gamma}^{2,1}(\mathbf{C}^{\sigma})}^2$, and $\int_{\mathbf{C}^{\sigma}} e^{-\gamma \eta} e^{-\frac{\eta(n+2)}{2}} \widetilde{u}^2 d\xi d\eta \text{ by } \|\widetilde{u}\|_{L_{2,\gamma+2}(\mathbf{C}^{\sigma})}.$

By virtue of interpolation inequality we arrive at following corollary from lemma 5.

Corollary. In conditions of the lemma for any v > 0 there exist the constants C_{12} and C_{13} such that

$$\left\|\widetilde{u}\right\|_{W_{2,\gamma}^{2,1}(\mathbf{C}^{\sigma})} \leq C_{12}\left\|\widetilde{\mathcal{L}}\widetilde{u}\right\|_{L_{2,\gamma+2}(\mathbf{C}_{1}^{\sigma})} + v\left\|\widetilde{u}\right\|_{W_{2,\gamma}^{2,1}(\mathbf{C}_{1}^{\sigma})} + C_{13}\left\|\widetilde{u}\right\|_{L_{2,\gamma+2}(\mathbf{C}_{1}^{\sigma})}.$$

At this the constant C_{12} depends on λ , n, d and R, and the constant C_{13} depends also on v.

Let's denote for $\rho > 0$ the set $\left\{ \xi : dist(\xi, \partial D) > \rho \right\}$ by D_{ρ} , and let $\widetilde{G}_{\rho,\sigma} = D_{\rho} \times \left(\ln \frac{1}{T}, \ln \frac{1}{\sigma} \right), \ \widetilde{G}_{\sigma} = D \times \left(\ln \frac{1}{T}, \ln \frac{1}{\sigma} \right).$

Lemma 6. Let $\widetilde{u}(\xi,\eta)$ be infinitely differentiable function in closure of \widetilde{G}_{σ} vanishing for $\eta = \ln \frac{1}{T}$. Then for any $\rho > 0$ and $\nu > 0$ there exist the constants C_{14} and C_{15} such that

$$\|\widetilde{u}\|_{W_{2,\gamma}^{2,1}(\widetilde{G}_{\rho,\sigma})} \leq C_{14} \|\widetilde{\mathcal{L}}\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})} + v \|\widetilde{u}\|_{W_{2,\gamma}^{2,1}(\widetilde{G}_{\sigma})} + C_{15} \|\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})}.$$

At this the constant C_{14} depends only on λ , n, d, domain D and ρ , and the constant C_{15} - also on v.

To prove this it is enough to cover $\widetilde{G}_{\rho,\sigma}$ by the cylinders of form \mathbb{C}^{σ} when $R = \frac{\rho}{2}$ and apply the corollary from the previous lemma.

Let's denote by $H_{\rho,\sigma}$ the set $\widetilde{G}_{\sigma} \setminus \widetilde{G}_{\rho,\sigma}$.

Lemma 7. Let $\widetilde{u}(\xi,\eta)$ be infinitely differentiable in closure \widetilde{G}_{σ} function vanishing on the parabolic domain \widetilde{G}_{σ} . Then if $\partial D \in C^2$ and $\gamma \in (\gamma_0,\infty)$, then for any $\rho > 0$ and $\nu > 0$ there exist the constants C_{16} and C_{17} such that

$$\|\widetilde{u}\|_{W^{2,1}_{2,\gamma}(H_{\rho,\sigma})} \leq C_{16} \|\widetilde{\mathcal{Z}}\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})} + v \|\widetilde{u}\|_{W^{2,1}_{2,\gamma}(\widetilde{G}_{\sigma})} + C_{17} \|\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})}.$$

At this the constant C_{16} depends only on λ , n, d, domain D and ρ , and the constant

$$C_{17} \text{ also on } v \text{ . Here } \gamma_0 = \max \left\{ -2 - \frac{n^2}{16d^2}, \frac{n^2 \left(\lambda - \frac{1}{d^2}\right) + 2\lambda n}{8} \right\}.$$

Proof. Let's fix an arbitrary point $\xi^0 \in \partial D$. Then there exists a neighborhood of the point ξ^0 and non-degenerating transformation $\xi \to \zeta$ such that the intersection of the images ∂D and shown neighborhood is given by the equation $\zeta_n = 0$, and for the points of intersection of the image D and this neighborhood the inequality $\zeta_n > 0$ is true. The operator $\widetilde{\mathcal{L}}$ passes at such transformation to some uniform parabolic operator \widetilde{M} of the second order with continuous coefficients.

Let $w(\zeta,\eta)$ be image of the function $\widetilde{u}(\xi,\eta)$ at such transformation. Let's consider again the cylinder \mathbb{C}^{σ} , whose foundations are n-dimensional balls of sufficiently small radius R with the center in the point ξ^0 and situated on hyperplanes $\eta = \ln \frac{1}{T}$ and $\eta = \ln \frac{1}{\sigma}$. Let further $\mathbb{C}^{\sigma}_+ = \mathbb{C}^{\sigma} \cap \{(\zeta,\eta): \zeta_n > 0\}$. Let's continue the function $w(\zeta,\eta)$ by odd image over the hyperplane $\zeta_n = 0$ in $\mathbb{C}^{\sigma} \setminus \mathbb{C}^{\sigma}_+$ and let's denote the continued function again by $w(\zeta,\eta)$.

It is easy to see that the statement of the lemma follows from the following fact.

Let
$$\widetilde{M}_0 = \sum_{i=1}^n \frac{\partial^2}{\partial \zeta^2} - 2\sum_{i=1}^n \zeta_i \frac{\partial}{\partial \zeta_i} - 4\frac{\partial}{\partial \eta}$$
 be a heat operator in coordinates (ζ, η) ,

and the function $w(\zeta, \eta)$ vanishes near the lateral surface of the cylinder \mathbf{C}^{σ} and at $\eta = \ln \frac{1}{T}$. Then holds the estimation

$$\int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta\zeta}^2 d\zeta d\eta \le C_{18} \int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \left(\widetilde{M}_0 w\right)^2 d\zeta d\eta \tag{26}$$

with the constant C_{18} , depending only on γ , n, λ and d. Let's denote the integral in the right hand side of the inequality by I. We have

$$I = \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \left(\sum_{i=1}^{n} w_{ii}\right) d\zeta d\eta + 4 \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \left(\sum_{i=1}^{n} \zeta_{i} w_{i}\right)^{2} + 16 \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta}^{2} d\zeta d\eta - 4 \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \sum_{i=1}^{n} w_{ii} \sum_{i=1}^{n} \zeta_{i} w_{i} d\zeta d\eta - 8 \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \sum_{i=1}^{n} w_{ii} w_{\eta} d\zeta d\eta + 16 \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \sum_{i=1}^{n} \zeta_{i} w_{i} w_{\eta} d\zeta d\eta = i_{1} + i_{2} + i_{3} + i_{4} + i_{5} + i_{6}.$$

$$(27)$$

On the other hand

$$i_1 = \int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta\zeta}^2 d\zeta d\eta, \qquad (28)$$

$$i_4 = \left(-2n + 4\right) \int_{C^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \sum_{i=1}^{n} w_i^2 d\zeta d\eta , \qquad (29)$$

$$i_5 \ge 4\left(\gamma + \frac{n+2}{2}\right) \int_{C^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \sum_{i=1}^{n} w_i^2 d\zeta d\eta , \qquad (30)$$

$$i_6 \ge -4 \int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} \left(\sum_{i=1}^{n} \zeta_i w_i\right)^2 d\zeta d\eta - 16 \int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta}^2 d\zeta d\eta. \tag{31}$$

Allowing for (28)-(31) in (27) we get

$$I \ge \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma \frac{n+2}{2}\right)\eta} w_{\zeta\zeta}^2 d\zeta d\eta + 4(\gamma + 2) \int_{\mathbf{c}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta}^2 d\zeta d\eta. \tag{32}$$

From (32) follows that if $\gamma \ge -2$, then the required estimation (26) is true. Let $\gamma < -2$. Then using (6) from (32) we conclude

$$I \ge \left(1 + \frac{16d^2(\gamma + 2)}{n^2}\right) \int_{\mathbf{C}^{\sigma}} e^{\left(-\gamma - \frac{n+2}{2}\right)\eta} w_{\zeta\zeta}^2 d\zeta d\eta. \tag{33}$$

But if $\gamma > \gamma_0$, then $1 + \frac{16d^2(\gamma + 2)}{n^2} > 0$. Now from (33) follows the required estimation (26). The lemma is proved.

Theorem 1. If $\gamma \in (\gamma_0, \infty)$ and $\partial D \in C^2$, then for every function $u(x,t) \in \dot{W}_{2,1}^{2,1}(G_T)$ the estimation

$$||u||_{W_{1,r}^{2,1}(G_T)} \le C_{19} (||\mathcal{L}u||_{L_{2,r+2}(G_T)} + ||u||_{L_{2,r+2}(G_T)})$$
(34)

is true. At this the constant C_{19} depends only on γ , λ , n, d and the domain D.

Proof. Let $G_{T,\sigma} = G_T \cap \{(x,t): t > -\sigma\}$. It is evident that it is sufficient to prove the estimation (34) for smooth functions from $\dot{W}_{2,\gamma}^{2,1}(G_T)$. From lemmas 6 and 7 follows that for any v > 0 the estimation

$$\|\widetilde{u}\|_{W_{2,\gamma}^{2,1}(\widetilde{G}_{\sigma})} \le C_{20} \|\widetilde{\mathcal{Z}}\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})} + \nu \|\widetilde{u}\|_{W_{2,\gamma}^{2,1}(\widetilde{G}_{\sigma})} + C_{21} \|\widetilde{u}\|_{L_{2,\gamma+2}(\widetilde{G}_{\sigma})}$$
(35)

is true, where the constant C_{20} depends only on γ , λ , n, d and the domain D, and the constant C_{21} - on ν too. Fixing $\nu = \frac{1}{2}$ turning to the variables (x,t) and tending σ to zero from (35) we arrive at the required estimation (34). The theorem is proved.

Corollary. If the conditions of the theorem are fulfilled then there exists the positive number T_0 , which depends only on γ , λ , n, d and the domain D such that if $T \leq T_0$, then

$$\|u\|_{W_{2,\gamma}^{2,1}(G_T)} \le C_{21} \|\mathcal{L}u\|_{L_{2,\gamma,2}(G_T)}.$$
 (36)

Here $C_{21} = 2C_{19}$.

For the proof it is sufficient to note that according to (6)

$$\int_{G_T} (-t)^{\gamma+2} u^2 dx dt \le T_0 \int_{Q_T} (-t)^{\gamma} u^2 dx dt \le \frac{16T_0^2}{n^2} d^2 \int_{G_T} (-t)^{\gamma+1} u_x^2 dx dt.$$

Thus

$$||u||_{L_{2,y+2}(G_T)} \le \frac{4T_0}{n} d||u||_{W_{2,y}^{2,1}(G_T)}. \tag{37}$$

Now it is enough to choose $T_0 = \frac{n}{C_{19}d}$ and from (37) and (34) follows the required estimation (36).

Theorem 2. Let $\partial D \in C^2$, $T \leq T_0$, $\gamma \in (\gamma, \infty)$. Then the first boundary value problem (1)-(2) is uniquely strongly solvable in the space $W_{2,\gamma}^{2,1}(G_T)$ for any $f(x,t) \in L_{2,\gamma+2}(G_T)$. At this for solution u(x,t) the estimation

$$\|u\|_{W_{2,r}^{2,1}(G_T)} \le C_{21} \|f\|_{L_{2,r+2}(G_T)}$$

is true.

Proof. It is sufficient to prove the theorem for $f(x,t) \in C^{\infty}(\overline{G}_T)$. Let's fix an arbitrary $\sigma > 0$. Let for sufficiently large natural m $u^m(x,t)$ is the classical solution of the first boundary value problem

$$\mathcal{L}u^{m} = f(x,t), (x,t) \in G_{T,\frac{1}{m}}; u^{m}\Big|_{\Gamma(G_{T,\frac{1}{n}})},$$

where $\Gamma\left(G_{T,\frac{1}{m}}\right)$ is a parabolic boundary of the domain $G_{T,\frac{1}{m}}$. Since at every m the coefficients of the operator $\mathcal L$ are infinitely differentiable in $G_{T,\frac{1}{m}}$, then the solution

 $u^m(x,t)$ exists. At this $u^m \in C^2(\overline{G}_{T,\frac{1}{m}})$. According to the corollary from theorem 1

$$\|u^m\|_{W^{2,1}_{2,\gamma}(G_{T,\sigma})} \le C_{21} \|f\|_{L_{2,\gamma+2}(G_T)}.$$

Thus the sequence $\{u^m(x,t)\}_{m=1}^{\infty}$ is weakly compact in $\dot{W}_{2,\gamma}^{2,1}(G_{T,\sigma})$. From here follows that there exists the sequence $m_k \to \infty$ when $k \to \infty$ and the function $u(x,t) \in \dot{W}_{2,\gamma}^{2,1}(G_{T,\sigma})$ such that $(\mathcal{L}u^{m_k}, \varphi) \to (\mathcal{L}u, \varphi)$ when $k \to \infty$ for every function $\varphi(x,t) \in C^{\infty}(\overline{G}_{T,\sigma})$. Here $(9,\varphi) = \int_{G_{T,\sigma}} (-t)^{\gamma+2} 9\varphi dx dt$. It is easy to see that

$$(\mathcal{L}u,\varphi) = (f,\varphi). \tag{38}$$

From (38) we conclude that $\mathcal{L}u = f$ almost everywhere in $G_{T,\sigma}$. Now it is sufficient to take into account the arbitrariness of σ and the existence of strong solution of the problem (1)-(2) is proved.

The uniqueness of solution and the inequality (37) follows from the coercive estimation (36). The theorem is proved.

Remark. We can show that unique strong solvability of the problem (1)-(2) in the space $\dot{W}_{2,\gamma}^{2,1}(G_T)$ holds at any $T \in (0,\infty)$.

The author expresses his deep gratitude to his supervisor corresponding member of NASA I.T. Mamedov for his constant attention to the work.

References

- [1]. Ladyzhenskaya O.A. On solvability of main boundary value problems for the equations of parabolic and hyperbolic type. DAN SSSR, 1954, v.97, p.395-398. (in Russian)
- [2]. Cagliardo E. Problema al contorno per equazioni differentiali lineari di tipo parabolico in n variabli.// Ricerche mat., 1956, №5, p.169-205.
- [3]. Idone G. Sul problema di Cauchy-Dirichlet per una classe di operatori parabolici a coefficienti discontinui.// Rendiconti Padova, 1977, v.57, p.286-297.
- [4]. Fiorito G. Un contributo alla risoluzione del problema di Cauchy-Dirichlet.// le Matematiche, 1980, v.35, p.53-70.
- [5]. Alkhutov Yu.A., Mamedov I.T. The first boundary value problem for non-divergent parabolic equations of the second order with discontinuous coefficients. // Matem.sb., 1986, v.131(173), №4(12), p.477-500. (in Russian)
- [6]. Wen G.C. Initial-mixed boundary value problems for parabolic equations of second order with measurable coefficients in a higher dimensional domain. // Proc. of the second ISAAC Congress, 2000, v.l, p.185-192.
- [7]. Alkhutov Yu.A. Behavior of solutions of parabolic equations of the second order in non-cylindric domain. // Doklady RAN, 1995, v.345, №5, p.583-585. (in Russian).
- [8]. Jafarov N.J. Unique weak solvability of the first boundary value problem for a Gilbarg-Serrin parabolic equation in non-cylindrical domains.// Proc. of Inst. Math. Mech. of Azerb. Acad. Sci., 2000, v. XIII(XXI), p.82-91.

Nazim J. Jafarov

Institute of Mathematics & Mechanics of NAS Azerbaijan. 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.:39-47-20.

Received February 20, 2001; Revised July 23, 2001. Translated by Mamedova V.I.

MAMEDOV F.I.

POINCARE TYPE WEIGHT INEQUALITIES IN DOMAINS WITH AN ISOPERIMETRIC TYPE CONDITION

Abstract

For the some bounded domains Ω in \mathbb{R}^n , $n \ge 2$ with isoperimetrical type conditions \widetilde{I}_{λ} , in partial for the domains $\Omega = \left\{x = (x', x_n) : |x'| < x_n^{\beta}, 0 < x_n < a\right\}$, a > 0, $\beta \ge 1$ was proved the sufficient conditions on the weights, under which the Poincare's type two weighted inequality holds.

The paper is devoted to investigation the inequality

$$\left(\int_{\Omega} |u - \overline{u}|^q v dx\right)^{\frac{1}{q}} \le C \left(\int_{\Omega} |Du|^p \omega dx\right)^{\frac{1}{p}}, \ 1 \le p \le q < \infty \tag{1}$$

of the differentiable functions u(x) for some classes of the bounded domains Ω and the weights v,ω . The sufficient conditions of type A_{pq} are established for pair (v,ω) and isoperimetrical type inequalities between the Lebesque measure of any subsets of domain and (n-1)-dimensional of Housdorf measure of the part of boundary for the domains which provide the truthness of the inequality (1).

Here $v, \omega^{1-p'}$ are assumed locally integrable functions, with almost everywhere finite positive values at 1 when <math>p=1. Ω -is an open bounded domain in R^n , $n \ge 2$, $\partial \Omega$ -is its boundary, $d(\Omega)$ -is a diameter of Ω , $\underset{n-1}{mes} \sum (n-1)$ -is dimensional Housdorf measure of the set \sum and $|\sum|$ is its Lebesque measure. $C^1(\Omega)$ -are continuously differentiable in Ω functions. By Q denote arbitrary bolls in R^n , $Q_R^x = \{y \in R^n : |y-x| \le R\}$. $p' = \frac{p}{p-1}$ when $1 , <math>p' = \infty$ -when p=1.

$$\overline{u} = \frac{1}{v(\Omega)} \int_{\Omega} vu dx, \ v(\Omega) = \int_{\Omega} v dx, \ \left| Du \right|^2 = \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2.$$

It is known that the inequality

$$\left(\int_{\Omega} |u-\overline{u}|^q dx\right)^{\frac{1}{q}} \le C_{n,q} \left(\int_{\Omega} |Du| dx\right), \ u \in C^1(\Omega),$$
 (2)

which is got from (1) in the unweighted case when p = 1, $1 \le q \le \frac{n}{n-p}$ and the connected domain Ω , is equivalent to the isoperimetrical condition I_{λ} on Ω

$$\underset{n-1}{\text{mes }} \partial g \cap \Omega \ge \theta \min \{ |g|, |\Omega \setminus g| \}^{\lambda}$$
 (3)

when $\lambda = \frac{1}{q}$, where $0 < \theta < \infty$, $g \subseteq \Omega$, see the lemma 3.2.4 from [1].

Unlike the regular domains the inequality of type (1) in domains I_{λ} have been respectively little studied (see [2] for the regular domains).