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UNIQUE STRONG SOLVABILITY OF THE FIRST BOUNDARY VALUE
PROBLEM FOR PARABOLIC GILBARG-SERRIN EQUATION IN THE
PARABOLOID TYPE DOMAINS

Abstract

In the paper the first boundary value problem for parabolic Gilbarg-Serrin
equation is considered in paraboloid type domains. Unique strong solvability of this
problem in weighted Sobolev space is proved,

Let R,,, and E, be (n+1)-dimensional and »n-dimensional Euclidean spaces of
the points (x,#) =(x,,....x,,?) and x=(x,,...,x,) respectively. Let’s call the domain G,
situated in half-space r<0, P-domain, if its intersection with every hyperplane

t=—7(r >»0) has the form {x: L ¢ D}, where D is some bounded domain in E, .
24/-1

The domain D is called generating for the domain G. Let further

Gr =G {(x;):¢>-T}, where T <(0,+). Let’s consider in G, the first boundary

value problem

5oX,X, Aty Su

Lu=Au+ Ay L ——= f(x,1), 1
1-__,2=14(—t) &, 6x, Or S . )

o, =0 @

where the numerical parameter A satisfies the following condition

u

~-1—241<oo,d=sup|§|. (3)

d el
The aim of the given paper is to prove the unique strong (almost everywhere)
solvability of the first boundary value problem (1)-(2} in corresponding weighted Sobolev
spaces. The equation (1) is called the parabolic Gilbarg-Serrin equation. We know [1-2],
that the first boundary value problem for parabolic equations of the second order of non-

divergence structure is uniquely strongly solvable in the space W;" (1< p<o) in an

arbitrary boundary cylinder domain, if the coefficients of equation are uniformly
continuous, the right hand side belongs to the space L, and the domain of cylinder

foundation is the double smooth surface. In case p=2 the analogous fact holds also for

some class of equations with discontinuous coefficients in particular satisfying the
parabolic Cordes condition [3-6]. As to parabolic equations given in non-cylindrical
domains then even for equations with smooth coefficients the unique solvability of the
first boundary value problem holds only in weighted Sobolev spaces [7]. 1t is easy to see
that the equation (1) satisfy the parabolic Cordes condition not at all the values of the
parameter 4. Nevertheless as it is shown at the given paper the unique strong solvability
of the first boundary value problem (1)-(2) in weighted Sobolev spaces holds at any value
of the parameter A, satisfying the condition (3).
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Let’s agree now in some notations. By u; and u, we’ll denote the derivatives

Ou Su . TN, L2 N2 ,
— and respectively, =, i, j=lnu; =) uu,= ) u,. We'l
axa’ a'xiaxj P d ( J) ; .i,_,:z:‘] ’
suppose that the numerical parameter y satisfies the condition
[l - ;1 J +22n
Y€ g ., +o . _ Sy

Let C5(G;} be the space of all infinitely differentiable functions with compact
support in Gy, A4, (G;) is a space of all infinitely differentiable in G, functions for
which the integral _[(—t)” w’dxdt is finite.

Gy
Let’s denote by L, (0;) and W3, (Q;) the Banach spaces of the functions

u(x,t}, given on G, with the finite norms

... [I( ' u zdxdf]%

and

2
”““w“((, : [ J((_r)r W+ () 4 () R (1) )dxdt]

Gr
respectively. Let finally the Wf;,l (G;) is the subspace of sz.}] (G,) dense set in which

there is a totality of all functions from A4;(G,) vanishing on 8G;. Let’s denote by S,
and D, the set 3G {(x,t):~T <1<0} and G {(x,1): 1 =-T} respectively. We’ll use
two statements which are proved at the paper of the author [8].
Lemma 1. For any function 3 € W2 ](G ) the inequality
& j(—r)*& dxdt < ~ j(-—r)*' 94 Ydlxdt (5)

Gy

is true, where the positive consrant € dependsonlyon A, n, d.

Lemma 2. For any function v(x,1)€ AJ(G;) equal to zero on Dy and near S,
the estimation

Jey j -ty Z——-u u dxdt (6)
Gy 4 rrl
is true.

We'll denote by 4, (G,) the class of functions given in lemma 2. Let’s ingage in
obtaining the basic coercive estimations for the operator £ . To this aim let’s denote by
K, the intersection of P- domain K with the set {(x,1): >-T} such that generating
domain for K is the ball of the radius R strongly interior with respect to the D

Let’s finally K, , =K, m{(x, £):¢ >—o-}, where ¢ is sufficiently small positive

constant.
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Lemma 3. For any function u(x,t)c A4, (K,) the estimation
o2l dndt <Cy J(~1y** (L) dxdt (N
XR.d XR.O
is true,

Here and further by C we’ll denote the positive constants which depends only on
y, Aand 4.

Proof. Let’s fix an arbitrary &, 1 <& <», and, allowing for that

Lu = Au+12[4(¥) J ~ A+

t,i=1
in the estimation (5) we put the function 9 instead of the function - fu, . We’ll get

=¥, ’\ _ (8)

£ j(—:)?*zzu,,,dxdm- [0 w2ty yebxdt , 9

K N X Ra
where o is an arbitrary fixed sufficiently small positive number.
But on the other hand

L{(—Du )= A(~Du, )+ A Z (4(_ (- )“;g) A’(n*'l)il:% =By —

f,5=1
— My, U, = L)+ Uy (10)
Therefore .
Jy= = [0 M (o) Luy + Yt = = (1) Luydxdt -
XK.u K.‘La
~ [y uldxdr . (11
KR.G
On the other hand
Yy Ly, - (Lu) Jedt = [ty Ludedt -

KR.H Xk.a

- j (-t)"'”*——-qubukdxdr- [y tuched —
Xy 2(-1)ia

KRI!

Lz j( t)f”zx (u? ) . (12)

KRD‘
Allowing for (12) in (11} we get
Jy= ()" uy Ludxdt — '1" j( ~Y Vuldxdt
K.R.c KRu
that together with (9)-(11) gives
¢ | (= :)?’*2Zu,, dedt < (1) uy Ludxds + "” j( —tY " uidxdr . (13)

Kpo Kpo Kpa

From (13) for any ¢, >0 we have

£ j(—t)*+22uk,dxdr< j( t)”zu,(kdxdt+— fC=y 7 (L}’ cixeds +

Ra ]Kna
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KRO’

M {(=t) "Vuldxdr . (14)

Summing by 4 from 1 to », from the last estimation we get

g [(-y " uldedi <L 1 j( 1y *u 2dxdt+— J-07*? (u) dxdr +

Kk,a KN K-

—-—[ jty uldxdr . (15)

Kra
It is easy to see that the inequality (5} holds if we replace the exponent y by y+1.
Therefore for any £, >0 we get

My= [(—ty*'uldndt<C, (- t)””u.éudxdté j( ¢ wldxdr +
Kg.

Kﬁn Kﬂa
oy fC-ey ~H(u) ddt . (16)
2g, 5.

On the other hand according to (6)

2
—f ?’*‘]_u__
,J,f K

4_I)dx S— j(x)”‘ 2y dydt =

:114( )i}

4 fen [;2

2
Ja‘xdﬁﬁ— j( o) uldxdt .
n

KR o
Therefore
2
[y w'axdr < ]i‘f j(—r)?’*‘ u’dxdr . (17)
KR_o KR.cr

Allowing for {17} in (16) we conclude
f-oy *'uldvdr < Cys, j( —1y 2dxdz+ L[ty (u) dxdr .

K.Ra ZKRa

Now choosing &, = % from the last inequality we get
3

feoyuldede<C, (Y (2u) dxdt . (18)
Kpo Kpo
Allowing for (18) in (15) we arrive at the estimation
£ [0y ul dvdt - =L j( —) "l dvdr < <— [0 () dar +
KRa K.R & I KRu
+Cy— j( —ty*(Lu) dxdt . (19)
Now choosing &, =& and tending o to zero from (19) we get the required estimation (7).
The lemma is proved.
Lemma 4. If the conditions of previous lemma are fulfilled, then any function
u(x,t) € #4 (Kp) the estimation
< Cy|l<4

(20)

Ilu“Wf_‘; (Kp) [Lz,,,+: (Kp}
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is true.

By virtue of lemma 2 the inequality (18) and the statement of lemma 3 to prove
the estimation (20) it is sufficient to prove that

jety Putdxdr < C; f(~1y " (u) dxdr . 21)
Kn Ka

Let &, is Cronecker’s symbol. We have

2 2
" XX L} XX, ]
%’ = szﬂ [% +A 4(“;)};,}. - .é‘u} < 2[:‘2] {5,} + A 4(_‘;)]11;,) + 2('4“) =

"
<Cy Y, +2ALuy (22)
if=1

Now it is sufficient to apply lemma 3, and from (22) follows the required

inequality (21). The lemma is proved.

. . x 1 .
Now let’s make substitute of variables £ =——, n=In—. It is easy to see
4 Warkiak i
_nin+d)

that Jacobian of this transformation equals to 2"¢ 2 . At such transformation our
domain K, , will be mapped into the cylinder C° whose foundations are n -dimensional

sphere of the radius R and arranged on hypersurfaces 7 =ln—]— and n= lni {without
T , o

loss of generality we suppose T <1). Let £ be a product e” and the image of £x .
Then from lemma 4 follows that

_nn+2) " 2
Ie"""e 2 ’:i‘fz + 47+ i +(Z‘§fﬁ:; +2ifn) :\dé‘dn <

' i=]

_‘r,l(n+2)
<Cy Ie_”e 2
Gﬂ

(Za } dean, (23)

where # is an image of the function u and the constant C; doesn’t depend on o .

Let’s denote by €] a cylinder that is coaxial and equihigh to €° whose bases
are the balls of radius 2R.

Lemma 5. Let u(x,t) be infinitely differentiable function from Wf’yl(ng).
vanishing for t = -T . Then there exist the constant C\,, depending onlyon A, n, d and

R such that
_nn+2}

" 2
Jeme ? {:}‘2 + g+ 1y +[215,a'§‘_ + 2&‘,,] dtdn <
cﬂ je=

_rlr(n+2) _
<C| fe7e 2 [(.45)’+i‘:2+"u“§]d§d : (24)

o
Proof. Let’s consider the following function z(§): z(&)=1 if £ B,, z(§) out

of By, z(£)e C7(B,), 0<z(£)<1 and there exists the constant C;; depending only on
n, such that
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lzl.!é%v;lzgls% (i, j=1n). ' (25)

Here B, and B, are foundations of the cylinder C° and €] respectively.
Now we apply the inequality (23) to prove the estimation (24) to the function
=#-z in cylinder €] and take into account the estimations (25) and the equality

F=u
$=# for (,n)eC”.
Let’s denote the left hand side of the inequality (23) by "ii"im and

(€”)?
_fiin+2)
M, 2 32 7
c!e e u“dédn by "u"hzm(c,}.
By virtue of interpolation inequality we arrive at following corollary from lemma
5.
Corollary. In conditions of the lemma for any v > 0 there exist the constants C,,

and C,, such that

nﬁnw,ﬁ'(c“ = o HZEI”{;

ey VI

i) Clanalhm;(cr) :

At this the constant C,, depends on A, n.d and R, and the constamt C,; depends also

onv.
Let’s denote for p>0 the set £ :dist(£,6D) > p} by D,, and let

~ 1 1 ~ 1 1
G,,=D x{In=In— |, G, =Dx|ln—=,In— |.
o r ( T cr) [ T G]

Lemma 6. Let u(E,n) be infinitely differentiable function in closure of (3‘0
vanishing for n= ln—?-l; Then for any p >0 and v >0 there exist the constants C, and
Cys such that

“E"uﬂﬁ}' (¥ s CNHZI'T“ L3200 4) + V“ﬁ_“wg-yl(éa) +Cs "E‘d",ﬁ,,m Gy

At this the constant C,, depends only on A, n, d, domain D and p, and the

p.o}

constant C\;- alsoon v .

To prove this it is enough {o cover G by the cylinders of form €° when

P

R =§ and apply the corollary from the previous lemma.

Let’s denote by H, , the set G, \59‘6.
Lemma 7. Let #(&,n) be infinitely differentiable in closure éa Jfunction

vanishing on the parabolic domain G . Then if 8D e C? and y (y,,»), then for any

p >0 and v >0 there exist the constants Cy; and C,, such that

llﬁhw;.;m Scm\:'i‘_“ = +"’“ﬁ“w;;;(a¢)+C17“5|L,_,+z{a,)-

p“’} L2.yi2(Gc)
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At this the constant C\; depends onlyon 4, n, d, domain D and p, and the constant

1
n2 nz(l—?]-kﬂm

Cy; alsoon v . Here v, =max<—2 - .
17 Yo 16d° 8

Proof. Let’s fix an arbitrary point &° € 8D . Then there exists a neighborhood of

the point 50 and non-degenerating transformation £ — £ such that the intersection of the
images 0D and shown neighborhood is given by the equation Q;n =0, and for the points
of intersection of the image D and this neighborhood the inequality £, >0 is true. The
operator Z passes at such transformation to some uniform parabolic operator A of the
second order with continuous coefficients.

Let w{{,n) be image of the function #(£.n) at such transformation. Let’s
consider again the cylinder €°, whose foundations are »- dimensional balls of
sufficiently small radius R with the center in the point £° and situated on hyperplanes

n= in}l; and = lné . Let further €% =€° n{{¢,n):¢, >0}. Let’s continue the function

w({,1) by odd image over the hyperplane £, =0 in C°\C] and let's denote the

continued function again by w({,n). )
It is easy to see that the statement of the lemma follows from the following fact.

~ &8 ;. 3 . .
Let My=) ——-2% { ———4— be a heat operator in coordinates (£,17),

and the function w{({,n) vanishes near the lateral surface of the cylinder €° and at

n= ln—;; . Then holds the estimation

142 [_ m2)
2

_[e(-y_mﬂnwggdgdngqs et "!n(ﬂﬂw)zdc:dn (26)
[ vd c

with the constant C,;, depending only on ¥, n, A and 4 . Let’s denote the integral in
the right hand side of the inequality by 7. We have

2 n+2 2
I= J‘e[_r—f}? (i W ]dﬁd n+é | e[-?’"TJ" [ié’,w}-] '
& il ¢ =t

n+2
=

+16 je[ : ]qwédgdn 4 fe
¢’ ¢

22,
b Z vy Zlcj W:dcdﬁ' -
i=] i=
ol A T
—8 J-e[ 2 ]nZwﬁwndCdn-HG Ie(
GU

¢ =l

_y_iﬁ)f] n
2 Zgjwi qugdﬂ =
i=}
:i1+f2+f3+£4+is+i6. (27)
On the other hand
nt2

i, = je[_?_"rjnwggdgdq, (28)
KA
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iy =(~2n+4) Ie[ B ]nzwfdgdn, (29)
c? i=1
| ne2) [k,
:524(“ : ]_fe > widtdn , (30)
c® i=1
, (Y (-2
i =4 je 2 [ZgjwiJ didn -16 je 2 widgdn 31
c? i=1 o

Allowing for (28)-(31) in (27) we get

_n+2
‘.VZTI'

] widddn. (32)

L
Iz _[e( i }' wa ddn + 4y +2) j'e[
o [
From (32) follows that if y 2 -2, then the required estimation (26) is true. Let y <-2.
Then using (6) from (32) we conclude
{0 e
2 ¥
IZ(HMJ je[ = P2 dgan . (33)
n o
16d%(y +2)
?’12
(26). The lemma is proved.
Theorem 1. If yc(y,, o) and 8DeC?, then for every function

u(x,f)e Wf’;,l (G, ) the estimation

sy <Coo{ 1+ ) (34
is true. At this the constant C,, depends onlyon y, A. n,d and the domain D.
Proof. Let G, , =G, n{(x,1):t >—c}. It is evident that it is sufficient to prove

But if y >y,, then 1+ >0, Now from (33) follows the required estimation

the estimation (34) for smooth functions from Wf_;,' (G;). From lemmas 6 and 7 follows
that for any v > 0 the estimation

b 5C2°“25‘"“;.1_ ., +viEl

1/+‘J.(Gcr

is true, where the constant C,, depends only on y, 4, n, 4 and the domain D, and the

Wiy (G,) WG o) +Cy “3";.2‘_,41(53, (35)

. 1 . . .
constant C,, - on v too, Fixing v =3 turning to the variables (x,7} and tending o to

zero from (35) we arrive at the required estimation (34). The theorem is proved.

Corollary. If the conditions of the theorem are fulfilled then there exists the
positive number T,, which depends only on y, A, n, d and the domain D such that if
T<7T,, then

ooy <Carltl,, o 66)
For the proof it is sufficient to note that according to (6)
2
feo Putdnde < Ty [(-0) widnde s 228 a? oy it
Gy A Gr

O
Thus
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4T,
., .y =06, (37)

Now it is enough to choose T, = and from (37) and (34) follows the required

19
estimation (36).

Theorem 2. Let oD < C?, T<T,, yely,©). Then the first boundary value
problem (1}-(2) is uniquely strongly solvable in the space Wf; (GT) for any
fOnye Ly, ,(Gy). At this for solution u(x,t) the estimation

n”"w;_-;m,) SC:!I“f”L?IHz (Gr)

is true.
Proof. It is sufficient to prove the theorem for f(x,7)e C*(G,). Let’s fix an

arbitrary o > 0. Let for sufficiently large natural m u” (x,f) is the classical solution of
the first boundary value problem

PN CONCY I -u'"l )
w

G, 1)

m

]

where [ {GT ] is a parabolic boundary of the domain GT , + Since at every m the

m .
coefficients of the operator £ are infinitely differentiable in G | , then the solution
T—
n

u”(x,1) exists. At this ™ € C? ((7? 1 )- According to the corollary from theorem 1
u”'l

Thus the sequence {u"’ (x,r)}:=] is weakly compact in Wf_}'

there exists the sequence m; —» when k — oo and the function u(x,7)e W} (G, , )

Wi (Gr ) <Calf ”Lz.ﬁz(f?ﬂ )

(GT‘J). From here follows that

such that (.c'u’"" ,(p)—) (£4u,p) when k —> o for every function o(x,)e C* (G, ). Here
3,¢)= J.(-—t)“qu)dxdt . It is easy 10 see that

G]".a
(2u,0)=(1.¢). (38)

From (38) we conclude that Lu= f almost everywhere in G, .. Now it is

sufficient to take into account the arbitrariness of o and the existence of strong solution
of the problem (1)-(2) is proved.

The uniqueness of solution and the inequality (37) follows from the coercive
estimation (36). The theorem is proved.

Remark. We can show that unique strong solvability of the problem (1)-(2) in

the space W, (G, ) holds at any 7 & (0,).

The author expresses his deep gratitude to his supervisor corresponding member
of NASA LT. Mamedov for his constant attention to the work.
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POINCARE TYPE WEIGHT INEQUALITIES IN DOMAINS WITH AN
ISOPERIMETRIC TYPE CONDITION

Abstract

For the some bounded domains Q in R", n22with isoperimetrical type
conditions I,, in partial for the domains Qz{x=(x’,xﬂ):|x'{cxf O<x, <a},
a>0, 821 was proved the sufficient conditions on the weights, under which the
Poincare s type two weighted inequality holds,

The paper is devoted to investigation the inequality

1 1
[_ﬂu—ﬁ‘qux]q S;C[J]Du]paxix)ﬁ, I<psg<owo (1)
o a

of the differentiable functions u(x) for some classes of the bounded domains (0 and the
weights v, . The sufficient conditions of type 4, are established for pair (v.w) and

isoperimetrical type inequalities between the Lebesque measure of any subsets of domain
and (7 —1)-dimensional of Housdorf measure of the part of boundary for the domains

which provide the truthness of the inequality (1). _

Here v,0"" are assumed locally integrable functions, with almost everywhere
finite positive values at 1< p<w,0” € L** when p=1. Q-is an open bounded
domain in R”,n22, 9Q-is its boundary, d(Q)-is a diameter of Q, meisZ(n—l) -is
dimensional Housdorf measure of the set z and IZ | is its Lebesque measure .

C'(Q) -are continuously differentiable in  functions. By Q denote arbitrary bolls in

R", Q§={})ER”:{y~x[£R}- p’=*—p—1when l<p<ewc, p'=co-when p=1.
P

V(Q) Q i=1
It is known that the inequality

I

2
u= ! Ivudx, W)= Ivafx, ’DuF:Z[—g‘-J )
0

1
_ﬂ —7 5. |7 1 :
u—uldx| <C, | [iDuldx |, ueC'(Q), 03
Q [#3
which is got from (1) in the unweighted case when p=1,1<¢g< " and the connected
n—p
domain €, is equivalent to the isoperimetrical condition I, on
mes ogNQ =6 min{]g\, 10\ g\}l 3)

when 2 =—1~, where 0<8 <o, g < Q, see the lemma 3.2.4 from [1].
q

Unlike the regular domains the inequality of type (1) in domains 7, have been
respectively little studied (see {2] for the regular domains).

‘ Al m M




