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DESCRIPTION OF DOMAIN OF DEFINITION OF A DIFFERENTIAL
OPERATOR WITH COEFFICIENTS IN HIGHER ORDER SINGULARITY
GENERALIZED FUNCTIONS

Abstract

The domain of definition of the operator generated by the two-ferm differential
expression with coefficients in « higher order singularity generalized functions and
Dirichlet’s boundary conditions is described.

A lot of problems of mathematical physies lead to the investigation of spectral
properties of singular differential operators. For example, of operators with generalized
potentials. Here first of all the question about correct definition of operators in Hilbert
space generated by differential expressions with generalized potentials, arises. Most
complete statement of results and also examples lcading to the study of second order
differential operators with gencralized potentials and detailed bibliograpby are contained
in [1,2], and higher order operators with coefficients in zero order singularity generalized
functions are investigated in papers [3,4].

The present work is devoted to the description of domain of definition of the
operator L generated by the differential expression

L=y o), 0<x<s,

dx2n
= p-t (
where glx)= 3" > a8 '"J(x — X ), « ,, are real numbers.
p=0m=0

Note that qm(x)=Zapﬂ,6(x—x ) is a zcro order real-valued generalized

p-0

Fiod

function, which is generated by the continuous from the right function £, (x) with
bounded variation. For simplicity we assume that £, (x)= F, (x + 0).
The description of the domain of definition D(L} of the operator Z is connected

with the solution of the following Volterra integro-differential equation with Stielijes
integral
2n-]

l 1 2l - J;(JJ, X el I(U "t g iw A ™ L3
W pY= = Yy Yo, e zz—m( f}. Je ot e plar, () (1)
2n i (Jp) p=0 p=lii=0 2Znp 0

the associated with differential equation I[y]: oy, where ¢, k=012,..2r-1 are
arbitrary constants, @,, p=012,.2n-1 are roots of the 25 -th order from 1.

Now we study the integral equation (1). Such “integral generalization™ of Sturm-
Liouville type problems is considered in {1, ch.11, 12].

Let’s formulate a theorem on the existence and uniqueness of the solution of the
equation {1).

Theorem 1. If F,, (x) (m =0,1,2,..,n—1) is a continuous from the right function of
bounded variation in the interval [O,b], then for given ¢, , k =0,1,2,....2n ~ 1, the equation

(1) has a unigue solution in the class 6" [0,3].
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Let’s divide a complex A-plane into 2n equal sectrums S,,k=12..2n,
determined by the inequality

h
wEargp <—~mw.
n

Then in every sector S, we can numerate the numbers ©,,j= 0,1.2,....2n -1, such that
Re(z‘coﬂp) <..< Rc(icon_] p)o< Re(z'a)np) .= Re(z‘wz,?_] p).
Let |p| < N . Assume

yx, p)= AV (x)exp[Relie,, pkx]. j= 01, n—1. 2)
Then differentiating the equality (1) ; (j:0,1,2,...,n—l)- times from (1) we

obtain
1 n- i

PEIORES

2n oo :p)

2o-ln-1 (;w )m+"r+]

- z Z——ﬁ——*——-—.‘[e[rmpre(xwz,...JP]](H)A("’}(I)d}"’” (I)

p=0m=0 2”,0 dnmme |
Now we pass to the proof of the thecrem. At {irst we prove the uniqueness of the
solution of the equation (1). Let’s assume the inverse, i.e. let the equation (1) has two
different solutions y,{x, p} and y,(x, p).
Then

Z r;( Hr.’lmt} ~Refim,, lpJ]x
k=7 C
(3)

2%, 0)= W x, p) - ¥4 (x, ), G=02,00m -
satisfics the equation

x

-1 i+ j+1
2 x.p)=~ ZZ( JMJ’”‘”{‘ 2, pYF, (7). )

p=0m= (}2
Taking into account (2) in the equation (4) we obtam
- el lio, 7 % L ke, ol 1) i
BU)=- 3 o e e e B g a0, )
p—lhmn=i

where

BIO(x)= 2, ple Rebomok [y (x, p)— 4 ){x, p )l Relemmwhe.

Let’s prove that B "’}(x)s 0, m=012,..,17-1 in some right hand neighborhood
of the point 0. As far as F,, (x) is a function of bounded variation, we can choose x, >0,
such that

n—| 2h—mi- {1

P ])!ﬂd (z]< . J=0120 -1, (6)

= U(zn -

._

here ﬂd}i"(t] = var £, (¢) is a complete variation of the function F,(r} in the interval
O=rzx
a

[O,x] and tends to zero when x — +0. Denote by B = sup max
Oz

B(’”}(IH . Then by virtue of

m

(6) and
2n-1 (fm;y+l [aro p-Reliw p]]r x2n.k.l
T g 218 1) L o - :051,2,.,.,2 — l‘ 2 20, | ,
=10 2np.-n—k—| e (2”—}{—])3 k _ 2n . (\? pe 5},) (7)

for x = x;, from (5) we have
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—1p- +J+1 x
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2a-m—f-1
p:{]m:az

an_,rl X

. 1
_ﬂdfm(t] < «2-3 ,

cBZ

wol2n—m—j-1};
ie Bﬁ%B. From here B=0. We have B (x)=-_' 0, m=012,.,n—-1 in [O,x,]. Let

further & be an upper bound of that x form [0,6] for which
B('"}(x)s 0, m=012,..n-1. Then the equation (5) adopts the following form

Za-lw-1 13} AL io, - Re"rw o¥x—t] m
B(s) ZZ(; 2)” j[’ T AV A

S n—ne j—|

Now for xelb ,b] learning those reasonings we obtain that B(”')(x),_

m=012,..n-1 is equal to zero in right hand vicinity of the point . So the function
B(’”)(x), m=0,,2,...,n-1 is identically equal to zero in [O,b].

Now we prove the existence of the solution of the integral equation (1). At first
we assume that F, (x) is a step-function with finite number jumps at the point x,, , where

0=x,, <x, <X, <..<X, =b. In this case we can solve the equation (1) or (3)

recurrently. For this we write the equation (3) subbtituting the Stieltjes integral by the sum
Zn-l
Ax)= -

2n n(Ip)k /

= fﬁupﬂl‘ ~Relimy, ,p]}x
T Sk Z“’

T (!O).U )’"HH g ["‘5" ,p—Ret"wz".mJ](-*—-‘f ) (m] M (8)
- Z(]ZCI Z 2np2n_m_ il IE’ ’ ” A (xrm I}rm (xrm)_Fm (xrm _0)]
p=lm=0x, <x
Int particular
¥ 1 R - Jw elierg, 2 )5
Al.x}(xm’q) LU QU —c Z rspRel Py
2” —U( ) p=0

(9)

2n-ln-1 io +j~i o oRelres R "
- Z@ZOZ Z(HPZZM-- i1 )[ % ( 2n—l-'°)h e UMA{’ )(xrm XFM (xrm)‘ Fm (xrm - 0)]’
p=Um=0r=y

and
l 20 1 2n-1

A[-”(O):A["'}(xo’m):cj, A[-”.}(xl‘m) - Z( )k ;ﬂ;r Z -k Nlpp -Refin,, 1P]" . (10)
k=0

With the help of the equalities (9), (10) we can find all A{'”}(xm) and from here on the

basis of (8) and A(-”)(x) - for all x.
Using the inequalily (7) and cstimating {9) by module we obtain

\A“’(xm.f,]s Mb‘iZb’” A WE () - Bl 0] QD)

r=) m=0
Denote
In-j-1 Rl qu--] Cif b1
5=y ]—%, olx)= 3, YR ) = F,(x, ~ 0}, b, ={ 0 )
k=0 m:=0X,, <x i H] If b=l

and we show that
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]A(’}( ]*5 Fo- exp[b m( \_lq)], §=23,... (13)
Since
'A(_}-)(xm}_gf{ < fos
then by virtue ot (11) for 5 =1

) I (!)(_t‘_q}
,A{"}(xz‘qlg fot bty -w(xlﬁ)s j}}t] + jexp(b,u)d(b]u)j‘ < £, exp[b,a)(xm )]
0

and that is the inequality (13) for s =2 . We prove the inequality (13) by the method of
mathematical induction asswme that (13) is valid for all Am( w), r=12..,8. Then
from (11} we obtain

v om-l

L‘Im( \+141<fo + foby ZZCXP["’ a)( r—lff)hf"f(x"”) F,,,( Koo —01’

r=l =l
where {0} = w(xn‘q): 0 . Consequently
A

IA(”(xHLq l < f, {] + by 5:c);p[b,;:u(,\,rr_]'qr )] [(ﬂ(x,_q) - OJ(x,-r_t; )]f <

. m{x,

< foi + Z _fexp b u}d(blu)lf fu cxp[b‘m(.r,,.‘,, )]’

"= lm(xe g

that proves the validity of the estimation {(13) fm any s. Taking mto accouni the right
hand side of the equality (8) this estimation in the form

4, , }< £y explbod)
we obtain
’4{”){):1  fo + foexplbo®)bod)< £ expl2bob)]. (14)
Repeating the reasonings mentioned above, for A(x) we get the following
estimation ’
l4(x) < £, + £, explbyo(B)po(b) < /1, expP3hw(b)], (15)
or taking into account the replacement (2)
vlx.p) < £y explRelio,,  p)x +3b,0{b)| < £, explRelia,, ,0)o + 35,0(0)].  (16)
We'll use the estimation (16) for passage to the limit, i.e. for increasing the

number of points of potential®s jumps in the equation (1).
Let F,(x} be functions of bounded variations and continuous from the right. In
this case we approximate the function &, {x) with the help of a sequence of the step
functions F,,, [ =1.2,..., chosen such that the number of their jumps are at most / and
they coincide with F, (x) at the points obtained as a result of division of the interval
[0, bl by I ecqual parts, and between these points they are constants. Thus, for
n=012,..7/ -1 we have

FuW=Fl ) Snex<t ey

and we construct the corresponding solutions y,{x, p) in the form of
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i a—ln-1
AL R i 5 L,J"” 00, i ). (17

L) !p) =0 p= 0,,;_02??
Substituting in the inequality (16) co(b) by o, (b), from (}6) we get

l)”: (x-, P] < fo exp[Re(iw2n—-ip)b +3bw, (b)] (18)
As F,,(x) is a family of step functions having uniformly bounded variations, then the
complete variation of each of them doesn’t exceed variation of the function F,{x). In
other words

o, ( J]df,,,,(:)[ Z.ﬂd}f,,,(r] w(b)

m=fp m=00
then from (18) we have
l}’f (¥, P} < fyexp[Reliw,,, p)b + 3b,0(b)].
Thus the family of the functions y,(x,p). /=1,2,... is uniformly bounded.

From the equality (17) it is easy to conclude that this family of functions is also
equicontinuous. From the equality (17) we have

_ n—t h
’J’f (.rz, P)_ Y (xls P] Slx2 - xll{eRuwz" 'pb[.ﬂl +b Z{:}m?xl}}"{m](x’ Pj' .ﬂdF'"*’ (t)ﬂ '
i =l ' {1

Here the coefficient forix2 - xi| in the right hand side of the inequality is uniformly

bounded by /, so that all y,(x,p) satisfy the uniform Lipschitz condition and are
equicontinuous.

Now applying Artcela’s compactness principle we conclude that y, (x,p)
uniformly converges to the limit function y(x, p). Thus, theorem 1 is completely proved.

The following theorem establishes the smoothness property of solutions of the
integro-differential equation (1) in the class €"' [O,b].

Theorem 2. The solution of the equation (1} has the wn-th right hand derivative,
where the n-th derivative is two-sided at points, wheve F, (x) is continuous or

y(”"”(x)z(), (n+k)-th derivative is the (k- 1)-th order singularity generalized
function, for which

w -l
y{n+k}(x)_ Z Z (l)”raﬁ.n—rrr—za{m}(x - xﬂw- Hir—2 ));{mﬂ}[x)’ k = ]72""’” - ]

p=0m=l
is a function of jumps, which is continuous from right.
We plan the scheme of the proof of the theorem.
Consider the following difference:
- "= i ) 1 il ~ LT L) £, oy
J"{” l)(xzsp)_y( l)(xlep)"’_ Z )»’rr]—n Zm; - ][e o —e " ] '
L
21 p-1 (fmk )”*"‘ X (e 7] ]
o em)kﬂ o 1) erm&p(_ri—r] (m} ‘. () - 19
I b o, ) (19)

2n=1n-\ (m)k ))H—m X - p(\ ;) (n ]
——— k 7 l 1;
b=0mei} 2np" m rle ( p}f m(t)
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Using the estimation {7) for &k =+ m 1, dividing (19) by x, — x, and tending x, from
the right {o x, for the fixed x, we obtain
Ripinl I(’o Sl Ml i w
(x; - xu) (ZZ_—‘“( k)ﬂm Je a0y o), ()] 0.
kD om0 2”,0
It is valid for x, > x, + 0, since the function F, (x) is continuous from right,
and it is also valid, when x, tends to x, from any side, if £, (x) is continuous at the
point x, or y{”“')(x,):{).
The other statements of the theorem are analogously proved.
From theorem 1 and 2 follows that y(x) is the solution of the equation (1), then
¢, = y¥0) for k=01,2,...n,
o k-t : 1
H+ b } H
Chrk "{ { k}(x} Z ( ) p,u-—m ]5( ]( nn -Hi— ])Vlm'(x)J}

pe=lm =0

x-0
for k=12...n—1.
With the help of theorem 2 describing the smoothness of solutions of the integro-
differential equation (1) we introduce the next operator.
Denote by D the set of all functions v(x)}e L,[0,5] such that
a) y{"}(x), v=012...n exists, are continuous for v =012 ..n2-1, y“”(x
continuous from right, and (n+k}-th derivatives are (% —1)-th order singularity
generalized functions;

b) J"lmk)(x)'_ i i(h ])ma,h_n-—m-—z‘};{m}(x =X m -2).1’(”””()() s k=121 ~1 is 4

p=m=0
function of jumps which is continuous from right, where

i( o p—| ’
4 y{""*"”(x) - Z Z(_' {)ma;},n—m---ES (’”}(x - x;r,n--m -2 )},(””l)(x)}
L

p=lim=0

Hpm k]

x -4

:aﬂ,n—k--Iy(n—k_”(sp,n-—k--i )9 k = 1’25“ - ] P= 0>]92"""
y(n)(xp,n-])_y{n)(xp,n—l _0)‘ pH IJ‘[}‘J ])( pn-l) )
) U+ gl 2,[0.8).
Further denote by D, a set of all functions y(x)c; D satisfying the boundary
conditions
y[”’}((])z{} . y(’"}(b)zﬂ._ m=012,, . n-1. (20)
Let’s determine the operator L in the space LE[O,b} in the following form:
DL)= D, and Ly =(~1}'y*"(x), y(x)e D, .
Thus we obtained description of the operator I generated by the differential

expression (1) and the boundary conditions (20).
Remark. We can consider an analogous problem for more general boundary

conditions.
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