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ON THE SOLVABILITY CONDITIONS OF THE BOUNDARY VALUE
PROBLEMS FOR ONE CLASS OPERATOR-DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

Abstract

Sufficient conditions in termy of the coefficients of elliptic type operator-
differential equation of the second order are obtained in the paper. These conditions
provide solvability of some boundary value problems for this equation.

Let H be a separable Hilbert space, A is positively-defined self-adjoint operator
in i . Denote by H, (y > 0) the scale of Hilbert spaces, generated by the operator A4,

ie. H,=Dl4"), (x.y), =(47x,4"y).
Denote by L,(R,;H) the set of measurable vector-functions f{r) with values
from H , for which

”fnf.z(fe, HY T (Sﬂ‘f(f]‘z dt <o .

Introduce the following Hilbert spaces [1]:
Wi (R,:H)= {u A'ue (R, :H),u"c L,(R,,H)|,

Hi/' %(R\,_;H:{)): {u:uve(R} H), u(()):(}}.

WARH )= ue W2 (R, H), u'(0)- 0],

WUR :H0:0) =l ue WAR,  H), ul0)=0, «(0)=0}

with the norm
2 2 il
"“”w;(ﬁ. gy [“u Lt i) ¥ ”Azzrf x_,zug;mJ

Here and further the derivatives are considered in scnse of disiributions theory [1].
Consider the operator-differential equation

Pldjdtu)=—(d}dr —w,AXd]dt — 0, Alt) + 4 -3-‘,‘- = f{t), 1R, =(0.0) (1)

SN

with one of the initial boundary conditions

u{0)=0 (2)
or

w'(0)=0. (3)
Here A4 1s positively-detined self-adjoint operator, A4, is linear, generally speaking,
unbounded operator in 1/, the numbers o, <0, w, > 0.

Definition 1. The problem (1), (2}((1), (3)} is called regularly solvable, if for

each vector-function f(!)e L,(R.;H) there is unique vector-function u(t)ve (R H),
which satisfies the equation (1) aimost everywhere in R, and the boundary conditions
(2) ({3)) are fulfilled in sense of convergence of the norm of the space H 32 (H ] ,2), and the
ineguality
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”uuwf £C°”S“|f“;.l

takes place.
Sufficient solvability conditions of the problems (1), {2} and (1), (3) are shown in
given paper. Note, that analogous problems for o, = -1, @, =1 are studied, for example,

in the works {2-4].
In proof of the main theorem on the regular solvability of the boundary value
problems (1), (2) ((1), (3)) there are obtained the exact estimations of the norms of

intermediate derivative A% through the main part of the equation (1) in the spaces

Wﬁ R, H:0,1), W AR, H:0) and W 2R, :H:1). These estimations also have
independent mathematical interest. First of all consider the equation

P(d/de, A =—-{d}dt ~0,ANd]dt —w,Ault)= F(t), teRr,, (4)
with boundary condition (2) (co1 <0, @, >0).

Denote by P, the operator, acting from the space W 3(R,; /7 0) to L,(R,;H) by
the following way:
Pu=B(d/di, Ap, uweW YR, H.0).
It takes place
Thearem 1. Operator P, carries out the isomorphism from the space

°

W %(R+;H) on the space LE(R* ;H).

Proof. Obviously, the equation 7u =0 has only zero solution. From the other
side, applying Planchetel theorem, it is easy to obtain that any f(t)E L,(R.:H) vector-
function

)= [ i) o

J
belongs to the space W, (R; M} and satisfies the equation (4) almost everywhere. Denote
by w(f) namowing u,{f) on [0,00) and we search the regular solution of the equation (4)
in the form:
ult) =olt)+ e, ¢c Hy,.
From the condition (2) we obtain that u(t):w(i)-—e“"’fm(()). As
w(;f)eﬂr’f(ﬂ+ :H), then according to the theorem on tracks [1, p.36] (0(0)6 Hyy .

Consequently, ¢”“w(0)< I} (R+;H) and because of it u(t)e W AR, H :0).

From the other side according 10 the theorem on intermediate derivatives [1,
».29]
4du

Il <4, =P oo

2
J < crmst"u"iz .
I

Consequently, according to Banach theorem on the inverse operator 7, is the

isomorphism between the spaces W 2(R,; H:0) and L,(R, : H}. Theorem is proved.
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Thus, the norms Hu”wz{k 4y and “%u[h( are cquivalent in the space
JRESELY i

(R,

w g(R+;H :0). That is why, according to the theorem on intermediate derivatives the
number
v ' -1
MR )= s (adt, - Jred) ©)
Duah i, H0)
is finite.
It takes place
Theorem 2. Let A be positively-defined self-adjoint operator, the operator

A A7 is bounded in H and
<, .00

Then the problem (1)-(2) is regularly solvable.
Proof. We write the problem (1), (2) in the form of operator equation

(Pt Plu=f, where Pu=Au', fel,(R:H), weW 2(R.:H:0). According to
theorem 1 operator P;' is bounded from L,(R,.H) to w 2(R,; H :0). After substitution
u= '3 we obtain the equation (f + Py )9 =f in L,(R;H). As

\iap(;‘guh =|Buf,. < |47 Jau]| < 3y (R, 044 47 || . =N(R, ;OX]A]A“”-HSHL_‘_,

then if the inequality N, (R+ ;01|A,A"'u <1 is fulfilled, the operator £ + AP, is invertible

and we can find «(;):

u(t)=p"(E+PP) F0).

From here it foliows that "u“w} < crmsr” ! ” L) Theorem is proved.

Thus, for finding solvability conditions of the problem (1), (2) we must {ind the
exact value of A,(R, 0} or estimate it from above,
First of all we calculate the number
N(R00)=  sup [”Au’“!__} : ﬂf’uuﬂ: ) (6)
Ozuch 32, H D)
Preliminarily we'll prove auxiliary statement,

Lemma 1. For any ueW; (R H) and B eLO,(wz -, )2} it takes place the

identity
B atpete: apd - Blaw], = 0B, 00,0 )+ (/i : B, AN , (7)
where 0, = A ul0) o, = A“Qu’(ﬂ),
bR B A< VE+ J(w, -0 — fAd—wmd, ®)

Q(ﬁ;mm%):‘i‘ﬂ’lwz RC(Q._,(PU)*' [\/Ewl )2 - p +(w] +‘92)]”(P1 "2 +
+ lwth‘[\/g_ o )2 -p- (wl 1y )J”(Pn”) (9)

Proof. Obviously, for all u = #,’{(R_; H), the equality
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|7t/ )”“i = ”“""i, + iwnwzf'

+ 20,0, Re(u", Azu),q - 20, + o, )Re(u",Azu’)fq ~ 20,0, (0, + @, )Re(Au', Azm)L1 (10)

is true.
From the other side with integrating by part it is casy to verify the correctness of
the following equalities

Relu’, 4%), = Jjav]

1A2u“1 1 (o, + @, ) !Au'uiz +

iz - Re(qjl Py )s

1 : an
2Re(u",Au')‘,q = -ﬂ(p,"', ZRE(AU*,AEM)LZ = —“(poﬂ )
Taking into account the equalities (11} in (10) we obtain:
s tfed; =[] + ‘a)lw2|2[A2u"1 o? + ol Jaul} +lor+ o, ol -
— W)k Re((pl Py ) + @i, (‘Ul + iy m(Pﬂ “2 . (12)

2

g /e : B A)uuf2 = " + \/(;2 —m, ) ~ BAu +|ww, |4

]
2

A+l o) - ]+ doon|Relur, 4u),, +

+ 2wy, ]\f(mz o )‘é“:ERe(Au',Azu)Lz ,

taking into consideration the equalities (11) and (12) in last identity we finish the lemma
proof.

From this lemma we cbtain the following

Corollary 1. The following identities take place:

a) for ue W AR, H,0;1) and B e (0,(&}2 -, }2)
[Py, — Bl =loulasar: g Apl, (13)
b) for ue W (R, :H:0) and B e (0,(&)2 — o, )2)

[p, - Bllaw, =Yy g, +( Vo~ ¥ =8+, + @) ol (19
¢} forue w 2R, H;l) and B < [0,(&)2 —w,)z)

“R}u“i - ﬁuAu'ui = “¢1 (d/df B A)""i + |‘91w2 ((\J’ (wz i )2 - E + (o + o, )J"(%“z (15)
Now we’ll find the exact value for N,(R,;0:1).
Theorem 3. The number N (R, :0:)=(0, —w,)". (0, <0, 0, >0).

Proof. In the equality (13) passing to the limit for 8 - {w, - e, )2, we obtain

2

uﬁ'

2
Lt leoye0,

that “Pou”;‘z 2 (@, — o, H‘Au'"h for all 1eW HR;H:0;), ie. Ni(R,:0) (o0, —0,)".
we'll prove that N,(R,:0,)={w, —o,)".
To do it for any £>0 it is sufficientiy to construct the vector-function
u, (l) = W i(& ;H;O;l) such that
E(uE)E”POuﬂiz - ((w2 — )2 + g)[Au; "fz <0. {16)
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We'll scarch #, (t)-: 2. (., where w, e H,,and g, () is scalar function from

the class W/ (R) For this function the inequality (16), according to Plancherel theorem,
has the form

gl )= jdé:%ﬂ){és(élzdé (v.l=1), a7

where
aCv. )=(rGisarnCicd-fo,-of e v, ). a®)
Obviously, if the operator A4 has eigen value p and Ay, =gy, qu*__ :]), then

minimum of the function on &

Q(‘sts):ﬂ](_ fénu)Pﬂ(“ "’G-,Pj_((wz ""&”1)2 + 5)52#2

is negative for £ > 0.
If 4 has not eigen vector, then >0 is its continuous spectrum and there is

~almost eigen vector” , (“q/a ||-]) such that 4w, = uw, +&, where § Iis the vector
with sufficiently small norm. In this case minimum of the function q((f,l{lﬁ) is also
negative. As the function q(é,wg) is continuous on & . then there is an intetrval
(r;ro(s),m(s)) in which q(@,w£)<0. Now let g‘rs(&j) is an arbitrary twice continuous
function in R with support in the interval (i, (c)n,(g)). If g,({t) is the inverse Fourier
transformation of the tunction g_(£ ), then from the equality (17) it follows that
miz)
i ~ 2
Elg. U, )= [qlt.w e (&) at <0,
’?u(-‘-'}

As &(-) is continuous functional in the space W2(R;H ), then from the theorem on
density of the finite vector-functions in this space [1, p.23] it follows that there is finite
function u, (r)e W, (R;H) with support in (- N ,N}c R, such that S(u,\,-(t) <E.
Supposing u,{t})=u,{t + 2N) we obtain that (!)CW i(&:H:O,I) and &{u (1))<c.
Theorem is proved.

As W E(R+ (H:00)c W (R, 1 H:0), then i takes place

Corollary 2. The number N,(R,;0)2{(w, —o,)".

The case when N,{R,;0)={w, —, )} is interesting.

It takes place

Theorem 4. The number N(R, :0)=(w, ~w, )" if and only if |cuzf > [w,l_

Proof. Let N\ (R, :0)=(w, — 0, ). then from the identity (14) it follows that for
fe (0,((:)3 — )2J and uc W 5’(& L H :0) the inequality
N - gl e i - N7 (k)= (9)

=l (1~ los ~ @) *J>0.
As both roots of characteristical equation ¢,(A:8:u)=0
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ll,z(ﬁ?#)zl(\[(ﬂ’z "'5*’1)2 -B i\{(wz +“’1)2 _ﬁ]#

2

(w2 >0,0,<0, e ({),(w2 - w, )2 ))
lie in the left semi-plane, then Cauchy problem

o ldjd:g; u=0, u{0)=0, #(0)=4"0,, ¢ eH (20)
has solution u(t;ﬁ 0, )e W i(& ;H;U).
Writing this solution in the inequality (19) we obtain that for any

ﬁe(O:(wZ —w,)l)the number \f(wz —m,)z —E+(wl +m2)>0.

Passing to the limit for 8 — {w, - w, ¥ we obtain ‘a)2| 2 |w]| .

Now let ia)2| = ‘a)||. Then the left part of the identity (14) is always positive and
because of it for all B¢ (0,(&)2 —ay )2) the inequality ||}"0ar”f2 = ﬁ”Au'"i is true. Passing
to the limit for 8 — {w, —@,) we obtain that A, (&, ;O)s‘(wz -, )_}. Consequently,

with taking into account the corollary 2 N, (JR+ 0)=(w, - o, )_1 . Theorem is proved.

"
<.

Theorem 5. If ‘a)2| < Em]{, then N,{(R, ;0)=2" [w,m2
Proof. Obviously, for

~<|a)1| the number 4‘&}1(0?1e((),(m2 —(0,)2). From

(0

theorem 4 it follows that N](R4_;0)>(a}2—(u,)_1(sec corollary 1), i.e.

N3(R,:0)e (0, (@, ~ o, )2) If fe (0, N (R+;O)) for the solution of Cauchy problem (13)
from the identity (14) it follows that
)

(Voo 8 o vou Yool =haalf - plawf,

> [Pl (L - BNF(R,:0))> 0.
Consequently for ¢ (0, N7(R, ;0)) the function
S(ﬁ)wﬂ W, — )y )2 —_)(;ﬁt(w1 +w2)>0.
From the other side for B¢ (N{Z(& 0), (@, -~ o,) ) according to definition of N,(R,;0)
there is the vector-function .9(!; ﬁ)ve (R+ ;0) such that J]PDS(I, ﬁjji < ﬂ}JA 9’(t_, ﬂ)}j .

Because of it for & (V;*(R,:0) (e, —, ') from the equality (14) it follows that
“@lh (d/dr P A)S(t,ﬁ]‘i +( “(mz — )2 -8B+ (&’1 +w, ))‘q’l.ﬁ ”2 <0,
he. the function G(ﬁ): W + (GJ| + 0, ) <0 for Be (N]—Z (R+ ;0)»('502 — )2 )

As 9([3) is continuous function of the argument J . then B(N,"z(R+ ;0)): 0, ie.
NT(R, ;0):4[(0@2‘. Consequently, N, (R, :0)= 2"]|w]w2["]’f2 . Theorem is proved.
Corollary 3. The number N\{R,;0) is defined by the following way

. (&;o):{(% o o b2 o

2"1@,&)2 ‘_”2 Jor o, | < |w,| .
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From the theorem 2 and corollary 3 it follows the following theorem on the
solvability conditions of the problem (1), (2).
Theorem 6. Let A be self-adjoint positively-defined operator, the operator

A A7 is bounded in H and the conditions
(.so2 -—r:ol) Jor [a)2|2|w,|

a9
“AlA n< 2|a)iwz[m Jor !wz‘{\w,\

(w, <0, w, >0)

are satisfies. Then the problem (1), (2) is regularly solvable.

From this theorem it follows that the class of operators A4, satisfying the
solvability conditions of the problem (1), (2} is wide, if |o,|>|o|.

Using the equality (15} we can analogously prove the following

Theorem 7. The number

. -
MR s {ad, - pal;)
Danel W R, i) )

is defined by the following way

v

N, (R+;l):{

Theorem 8. Let A be self-adjoint positively defined operator, the operator
44" is bounded in H and the conditions

{0, —,)" for |wy| <|o],

o for o> o

(w, -} for ‘mﬂé}w,‘
Jaatl<s
’ T for Joy| > e,

'L2|.:u,.su2
are satisfied. Then the problem (1), (3} is regrdarly solvable.
From this theorem it follows that the class of the operators 4, satisfying

solvability conditions of the problem (1), (3) is wide, if |, | < |w,|.
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