MUSAYEV K.M., GASANOVA T.Kh.

ON SOME BOUNDARY PROPERTIES OF GENERALIZED ANALYTIC FUNCTIONS

Abstract

At the paper some classes of generalized analytic functions in multi-connected domains, bounded with mean modules are introduced and their boundary properties are studied.

Let's consider a class of generalized analytic functions $U_{p,2}(A,B,G)$ in the sense of H.H. Vekua, i.e. a class of regular solutions of equation

$$\partial_{\overline{z}}W(z) + A(z)W(z) + B(z)\overline{W}(z) = 0, \qquad (1)$$

where
$$A(z), B(z) \in L_{p,2}(G)$$
, $p > 2$, $\partial_{\overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ (see [1], p.143).

Let's consider also conjugate class $U_{p,2}(-A,-\overline{B},G)$ to the class $U_{p,2}(A,B,G)$ (see [1], p.179).

Let G be a bounded n-connected domain. By $C(A,B,\overline{G})$ we denote a class of continuous generalized analytic functions in \overline{G} , by M(A,B,G) a class of bounded generalized analytic functions in G.

Assume that finite *n*-connected domain G is bounded by n closed rectifiable Jordan curves $\gamma_1, \gamma_2, ..., \gamma_n$ from which not a curve is degenerated to a point. The contour γ_1 will be external, and $\gamma_2, ..., \gamma_n$ will be interval. The complete boundary of domain G we denote by $\Gamma: \Gamma = \bigcup_{i=1}^n \gamma_i$.

Definition. We say that the generalized analytic—function W(z) from the class $U_{p,2}(A,B,G)$ $\left(U_{p,2}(_A,_\overline{B},G)\right)$ belongs to the class $E_{\delta}(A,B,G)\left(E_{\delta}(_A,_\overline{B},G)\right)$, $\delta>0$ if there exists a sequence of rectifiable curves $\Gamma^{\nu}=\bigcup_{i=1}^{n}\gamma_{i}^{\nu}$ such that

- 1) γ_1^{ν} lies inside of γ_1 , but γ_i^{ν} (i=2,3,...,n) for any n contains γ_i inside itself
- 2) $\gamma_i^v \rightarrow \gamma_i$ when $v \rightarrow \infty$ (i = 1, 2, ..., n)
- 3) There exists such m, that $\sup[long. \Gamma^{v}] \leq m$
- 4) $\sup_{v} \int_{z^{w}} |W(z)|^{\delta} |dz| < \infty$.

We note that the class $E_{\delta}(A,B,G)$ is an analogue of a class of analytic functions E_{δ} introduced and studied by M.V.Keldysh, M.A.Lavrentev, V.I.Smirnov in the case of singleconnected domains (see [2], [3]) and by S.Ja.Havinson in the case of n-connected domains (see [4]).

We also note that the class $E_{\delta}(A,B,G)$ for single-connected domains is introduced and studied in works [6], [7].

[Musayev K.M., Gasanova T.Kh.]

As known, all generalized analytic functions $W(z) \in U_{\rho,2}(A,B,G)$ are represented in the form (see [1], p.156)

$$W(z) = \Phi(z)e^{\omega(z)}, \qquad (2)$$

where $\Phi(z)$ is an analytic function in G

$$\omega(z) = \frac{1}{\pi} \iint_{G} \frac{A(\tau) + B(\tau) \frac{\overline{W}(\tau)}{\overline{W}(\tau)}}{\tau - z} d\xi d\eta, \quad \tau = \xi + i\eta.$$
 (3)

Theorem 1. Generalized analytic functions $W(z) \in U_{p,2}(A,B,G)$ belongs to the class $E_{\delta}(A,B,G)$, $\delta > 0$ if the function Φ in the representation (2) belongs to the class E_{δ} .

Proof. First when $A, B \in L_p(G)$, p > 2 we study the behavior of function $\omega(z)$.

From $A, B \in L_p(G)$ follows that $A(z) + B(z) \frac{\overline{W}(\tau)}{W(z)} \in L_p(G)$, p > 2

since
$$\left| A(z) + B(z) \frac{\overline{W}(z)}{W(z)} \right| \le \left| A(z) \right| + \left| B(z) \right|$$

that is $\int_{1}^{\infty} \left| A(z) + B(z) \frac{\overline{W}(z)}{W(z)} \right|^{p} \left| dz \right| \le C_{1} < \infty$. (4)

Let's consider the function $\omega(z) = \frac{1}{\pi} \iint_{G} \frac{A(\tau) + B(\tau) \frac{\overline{W}(\tau)}{W(\tau)}}{\tau - z} d\xi d\eta$. We have

$$\left|\omega(z)\right| = \frac{1}{\pi} \iint_{G} \frac{A + B\frac{\overline{W}}{W}}{\tau - z} d\xi d\eta \le$$
(5)

$$\leq \frac{1}{\pi} \left[\iint_{G} \left| A + B \frac{\overline{W}}{W} \right|^{p} \left| d\xi \right| \left| d\eta \right| \right]^{\frac{1}{p}} \left| \iint_{G} \frac{1}{\left| \tau - z \right|^{q}} \left| d\xi \right| \left| d\eta \right| \right]^{\frac{1}{q}}, \frac{1}{p} + \frac{1}{q} = 1.$$

The first factor in (5) is bounded by virtue of (4), but the second factor is bounded by virtue of that q < 2 (since p > 2).

That is

$$|\omega(z)| < C_2 < \infty , (6)$$

where C_R depends only on domain G.

Also estimating the difference $|\omega(z_1) - \omega(z_2)|$ for $z_1, z_2 \in \overline{G}$ we are convinced that $\omega(z) \in C_\alpha(\overline{G})$, $\alpha = \frac{p-2}{p}$ (C_α is a Hölder class with the index $\alpha = \frac{p-2}{p} < 1$).

We obtain that when $A_1B \in L_p(G)$, p > 2, $|\omega(z)| < C_2 < \infty$ and $\omega(z) \in C_\alpha(\overline{G})$. It means that

[On some boundary properties of generalized analytic functions]

$$\begin{cases}
\left|e^{\omega(z)}\right| \le C_4 < \infty, & e^{\omega(z)} \in C(\overline{G}); \\
\left|e^{-\omega(z)}\right| \le C_5 < \infty, & e^{-\omega(z)} \in C(\overline{G}).
\end{cases}$$
(7)

From (2) we have

$$\Phi(z) = e^{-\omega(z)}W(z). \tag{8}$$

Let now $\Phi(z) = E_{\delta}(G)$. Then according to the work [4]

$$\sup_{y} \iint_{\Gamma^{y}} \Phi(z) |^{\delta} |dz| \le C_{6} < \infty.$$
 (9)

We have:

$$\sup_{v} \int_{\Gamma^{v}} |W(z)|^{\delta} |dz| = \sup_{v} \int_{\Gamma^{v}} |\Phi(z)e^{\omega(z)}|^{\delta} |dz| =$$

$$= \sup_{v} \int_{\Gamma^{v}} |\Phi(z)|^{\delta} |e^{\omega(z)}|^{\delta} |dz| = C_{4}^{\delta} \sup_{v} \int_{\Gamma^{v}} |\Phi(z)|^{\delta} |dz| < \infty.$$

(we used [7] and [9]).

According to the definition $E_{\delta}(A,B,G)$ means that $W(z) \in E_{\delta}(A,B,G)$.

Conversely, if $W(z) \in E_{\delta}(A, B, G)$ then

$$\sup_{v} \int_{z^{-v}} |W(z)|^{\delta} |dz| \le C_{\gamma} < \infty.$$
 (10)

Using the correlation (8) and inequality (10) we get that $\Phi(z) \in E_{\delta}(G)$.

Theorem is proved.

Property 1. If $W(z) \in E_s(A, B, G)$, then W(z) has angular boundary values W(t) and $W(t) \in L_s(\Gamma)$ almost everywhere on Γ .

Indeed, since $W(z) \in E_{\delta}(A, B, G)$, then in the representation (2) analytic in G function $\Phi(z)$ belongs to the class $E_{\delta}(G)$ (according to the theorem 1) and has angular boundary values almost everywhere on Γ (see [4]) and $\Phi(z) \in L_{\delta}(\Gamma)$.

Taking into account (7) that the function $l^{\omega(z)}$ is continuous on \overline{G} we get that W(z) has angular boundary values almost everywhere on Γ . Therefore,

$$\iint_{\Gamma} |W(t)|^{\delta} |dt| = \iint_{\Gamma} |\Phi(t)|^{\delta} |e^{\omega(t)}|^{\delta} |dt| \le C_8 \iint_{\Gamma} |\Phi(t)|^{\delta} |dt| < \infty,$$

i.e.

$$W(t) \in L_{\delta}(\Gamma)$$
.

It is clear that the interior of γ_1 is single-connected domain (if disregard the curves $\gamma_2,...,\gamma_n$), but the exterior of every γ_i ($i \ge 2$) disregarding the other γ_i ($i \ne j$) is single-connected domain containing infinity. We denote them by $G_1, G_2,...,G_n$ correspondingly.

Theorem 2. If
$$W(z) \in E_{\delta}(A, B, G)$$
, $\delta > 0$ then $W(z)$ is presented in the form
$$W(z) = W_1(z) + W_2(z) + ... + W_n(z)$$
 (11)

moreover, $W_i(z) \in E_{\delta}(A, B, G_i)$.

Proof. Since

$$W(z) = \Phi(z)e^{\omega(z)}$$
 and $W(z) = E_{\delta}(A, B, G)$

then according to the theorem 1 $\Phi(z) \in E_{\delta}(G)$, then according to the paper [4].

[Musayev K.M., Gasanova T.Kh.]

$$\Phi(z) = \Phi_1(z) + \Phi_2(z) + \dots + \Phi_n(z), \tag{12}$$

where

$$\Phi_i(z) \in E_{\mathcal{S}}(G_i). \tag{13}$$

We have

$$W(z) = (\Phi_1(z) + \Phi_2(z) + \dots + \Phi_n(z))e^{\omega(z)}.$$
 (14)

Taking into account that $e^{\omega(z)}$ is bounded in \overline{G} and

$$\iint_{\mathbb{T}^n} \Phi_i(z) |^{\delta} |dz| < \infty$$
 (15)

also

$$\begin{aligned} & |W(z)|^{\delta} = |\Phi_{1}(z) + \Phi_{2}(z) + \dots + \Phi_{n}(z)| |e^{\delta\omega(z)}| \leq & \leq C_{8} \left[|\Phi_{1}(z)|^{\delta} + |\Phi_{2}(z)|^{\delta} + \dots + |\Phi_{n}(z)|^{\delta} \right] \end{aligned}$$

we have

$$\iint_{\Gamma} W(z) |^{\delta} |dz| \leq C_9 \iint_{\Gamma} \sum_{i=1}^{n} |\Phi_i(z)|^{\delta} |dz| = C_9 \sum_{i=1}^{n} \iint_{\Gamma} \Phi_i(z) |^{\delta} |dz| < \infty.$$

Therefore

$$W(z) \in E_{\delta}(A, B, G).$$

By virtue of (13)

$$\iint_{z^{\omega}} \Phi_{i}(z)^{\delta} \left| e^{\omega(z)} \right|^{\delta} \left| dz \right| < +\infty, \ i.e. \quad \Phi_{i}(z) e^{\omega(z)} \in E_{\delta}(A, B, G_{i}).$$

In other words

$$W_{\iota}(z) \in E_{\delta}(A, B, G_{\iota})$$

Theorem 3. Let the generalized analytic function $F_1(z) \in U_{\rho,2}(A,B,G)$ belongs to the class $E_1(A,B,G)$ and $F_2(z) \in U_{\rho,2}(A,B,G)$ be bounded in G.

Then

$$\operatorname{Re}\left(\frac{1}{2i}\int_{\Gamma}F_{1}(z)F_{2}(z)dz\right)=0.$$

Proof. Under the conditions of the theorem in the case when G is a single-connected domain in work [7] it is proved that

$$\operatorname{Re}\left(\frac{1}{2i}\int_{z}F_{1}(z)F_{2}(z)dz\right)=0. \tag{16}$$

By virtue of theorem 2

$$F_1(z) = W_1(z) + W_2(z) + ... + W_n(z)$$
, where $W_i(z) \in E_1(A, B, G_i)$ $(i = \overline{1, n})$.

Then taking into account that the function $F_2(z)$ is bounded in G (and in G_i), applying (16) we have:

$$\operatorname{Re}\left(\frac{1}{2i}\int_{\Gamma}F_{1}(z)F_{2}(z)dz\right) = \operatorname{Re}\left(\frac{1}{2i}\int_{\bigcup_{i=1}^{n}F_{i}}F_{1}(z)F_{2}(z)dz\right) =$$

[On some boundary properties of generalized analytic functions]

$$= \operatorname{Re} \left(\frac{1}{2i} \sum_{i=1}^{n} \int_{\gamma_{i}} F_{1}(z) F_{2}(z) dz \right) = \sum_{i=1}^{n} \left(\operatorname{Re} \frac{1}{2i} \int_{\gamma_{i}} [W_{1}(z) + ... + W_{n}(z)] F_{2}(z) dz \right) = 0$$

since with the opening of brackets we obtain the integrals of the form

$$\operatorname{Re}\left(\frac{1}{2i}\int_{r_{1}}W_{k}(z)F_{2}(z)dz\right), k=1,2,...,n,$$

where $W_k(z)$ are functions from the class $E_1(A, B, G_k)$, and $F_2(z)$ is bounded in G and $F_2(z) \in U_{p,2}(A, \overline{B}, G_k)$.

Theorem is proved.

Let's note that this theorem is a spreading to the more general case (with respect to the functions $F_1(z)$ and $F_2(z)$) so called «Green's identity» proved by U.H.Vekua (1, [1], p. 179) about that if $W_1(z) \in C(A, B, \overline{G})$, $W_2(z) \in M(A, \overline{B}, G)$ then

$$\operatorname{Re}\left(\frac{1}{2i}\int_{\Gamma}W_{1}(z)W_{2}(z)dz\right)=0$$

since $E_1(A,B,G) \supset C(A,B,G)$

In the conclusion let's note that the considered case of n-connected domains prepares the ground for the investigation of external problems in a class of generalized analytic functions (as considered in the class of analytic functions [4]).

References

- [1]. Векуа И.Н. Обобщенные аналитические функции. М., 1959, 628 с.
- [2]. Привалов И.И. Граничные свойства аналитических функций. М.Н., 1950, 336 с.
- [3]. Келдыш М.В., Лаврентьев Sur la representation conforme des domaines limites par des courbes rectficables. Ann. J'Ecole Norm. Sup., 59, №1, 1957, p.1-38.
- [4]. Хавинсон С.Я. Экстремальные задачи для некоторых классов аналитических функций в конечносвязных областях. Матем. сборник, т.36(78), №3, 1955, с.444-478.
- [5]. Хавинсон С.Я. Теория экстремальных задач для ограниченных аналитических функций. Успехи мат. наук, 1963, т. VVIII, вып. 2(110), 25-98.
- [6]. Мусаев К.М. О некоторых экстремальных свойствах объощенных аналитических функций. ДАН СССР, т.203, №2, 1972, с.289-292.
- [7]. Мусаев К.М. Некоторые замечания к тождеству Грина. Известия АН Азерб., 1971, №5,6, с.74-79.

Musayev K.M., Gasanova T.Kh.

Institute of Mathematics and Mechanics of AS Azerbaijan.

9, F.Agayev str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20.

Received November 8, 2000; Revised February 2, 2001. Translated by Mamedova V.A.