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SOLUTION OF A CLASS OF INVERSE PROBLEMS
FOR THE DIRAC OPERATOR

Abstract

A complete solution of a class of inverse problems in spectral analysis for
the Divac operator is presented. That is,

~ Necessary and sufficient conditions are found for two sequences of real
numbers 1o be spectra of boundary-value problems generated on a finite
interval by a Dirac equation and certain non-separated self-conjugate
boundary conditions. A procedure for recovery of all such problems is given.
— Additional spectral characteristics are found which together with the
spectra uniquely define the Dirac operator.

Introduction.

We denote by (Q(x),w.ct) the self-conjugate boundary-value problem generated
on the interval [0,7] by canonical Dirac equation
BY'(x) + G(x)y(x) = Ay(x) (n
and boundary conditions
A 3() + A y(m) =0,

(o 1 (P g0 {10 _[e 0
where B_[--l 0], Q(x)_[q(x) -—p(x)} AO_LO 5} Al—{a J,

el (X)
Y= ()’2(35)}

p(x), g(x) are real functions in L,[0,7], @ and o are arbitrary parameters, complex
and real respectively.

Direct and inverse problems for the Dirac operator with separated boundary
conditions (@ =0} are studied enough (see [1]). The case of non-separated boundary
conditions (o = 0) makes essential alterations in the analysis of inverse problems. Such
inverse problems have not been studied before excluding the case of periodic
(@ =1, =0) and antiperiodic {@ =1,a =0) boundary conditions [2].

The following inverse spectral problem is solved in the present paper: to find
necessary and sufficient conditions which should be satisfied by two sequences of real
munbers in order to the sequences be the spectrums of boundary-value problems
(Owa). (Quwa,) when o]=1, a, #a,, as well as a procedure for recovery of all such

problems (the case la)l # 1 has its own peculiarities and will be studied in the other paper).

Besides in the present paper the uniqueness theorem is proved for the solution of inverse
problem. Similar problem for the Sturm-Liouville operator was studied in [3].
On a structure of the paper. In § 1 multiplicity criterion for the eigenvalues of the

problem (Q,m,oc) is given, asymptotic formulae for the spectrum of problems (Q,- l,a),
{0)a), (Owa) at |m] =1, w+#*| are derived and the theorem on mutual arrangement
of eigenvalues for problems (Quw, ), (Qw.a,) at a, <a, is proved. The statement on
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representation of a class of entire functions with given zeroes is proved in § 2. Lastly in §
3 above-stated inverse problem is soived (where cases ® =+1 and 1m| =1 (w=tl) are

considered apait).
Everywhere further we will assume that & takes integer values and ; - the values |

and 2.
§ 1. Some properties of the eigenvalues
of the boundary-value problem (Q,a),a )
General solution of the equation (1) has a form y(A,x)=e(A,x)}M , where
(A, x A, M) )
e(A, x) = atha) (4.0 , M= ‘ , M, and M,; are arbitrary constants,
(4. x) 5,(A,x) M,
A, h (4, : . o
oA, x)= 64 x) and s(A,x)= §i(%,0) are solations of the equation (1) satisfying
€A, x) (A, x)

N 0
initial conditions ¢(1,0) = [OJ, $(2.,0) = ( ]] - That’s why A(}) = det(4, + Ae(A, 7))} will
V1

be characteristic function of a problem (Q,w,a). Expanding this determinant and taking
into consideration the following identify
dete(A,x) = o, (A, x}5, (A, x) — 5 (A, x)5,{A, x) =1, (2)
we find
A(L) = 2Rew +lof ¢ (A,7) + 5,(A, 1) + a5, (A, 7). (3)
Boundary-value problem (Q,a},a) is self-conjugate, consequently its eigenvalues are real,
i.e. zeroes of function A(A) are real. Eigenvalues of this problem can be double.
Theorem 1. The number A, is double eigenvalue of boundury-value problem
(O @) ifand only if the number @ is real, nonzero and the following equalities hold:
si{Ag,m) = ac; (A, )+ (A,.m) = 0.
We prove the theorem in similar fashion as multiplicity criterion for eigenvalues
of periodic problem ([4, p. 256]).

Theorem 2.  The  cigenvalues wSa, Sap La S0, S,
LShI Sk Sh L Shl <. LSe <ef S, ¢, S .. of boundary-value problems

(U-la), (D)), (Q,w,a) _(|w‘=], w# x| ) respectively satisfy at ‘kl—)oo the
Jollowing asymptotic formulae

af =2k —a* v g, (4)
B =2k+1-a*+f;, (5)
e =2k -t tyr, {6}
L ¢ . 2 aFJa’di-c)
where a —-~(]+sgna)arctan~2—, ¢’ =—arctan . ¢=Rew

n 2(1-¢)

and kij[&:ff 4 (}’3;)2 +(7:)2}<oo_
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Proof. By formula (3) the characteristic equation of a problem (@,—1,) has a

form:
oA )+ as (A )+ 5,(A,m)-2=0. (D
It s known [2] that ¢(A.m)=cosAn+ {4}, s{A,m)=-sinAx+ (1),

(A, my=cosAn + fi(), where f,(A)= [7,(De™dt, f,(0)€ Lyl-m,m), m=123. So

the equation (7) can be reduced to
2(cosAr — D) —asinAx+ f(A)=0, (8)

where f(A) = fi(A)+af3 (1) + fi(4).
Using the estimate f(A) :o(e['“”"”') (at |A| o0} and Roushet theorem we get

that the roots of the equation (8} (taking into account that they are nondecreasing) form a
sequence

a; =2k-a" +¢;, (%)
where ¢ =o(1) at ‘k|—>oo. Substituting the right-hand side of the equality (9) into the

equation (8} and using the relationship f(a;f) velgr, Z Hf )2 (gk )2} < ([5,

p- 67]), we say more precisely that Z(sf)z <. So formula (4) has been proved.
k=t :

Asymptotic formula (5) and (6) can be proved in similar fashion. Theorem has been
proved.

Denote the eigenvalues of the boundary-value problem ( _,a),a}.) by u®, (here

1k
@ =0 are arbitrary complex numbers).
Theorem 3. The eigenvalues u),. uy, of the boundary-value problems
(Q,m,a,), (Q,co,az) (where o, <o, ) are intermitted af Imw #0, ie.
e Sy <UL S Uy, <UL <y <UL <, {10)
and satisfy the following inequalities at Imw =0
Sy, Suy Sy, Suy Suy . S S (1D

and the double eigenvalue of one of these problems is simple eigenvalue of the other one.
Proof. It’s clear that

A,
2(A, X) E[zg( x)
_22 ()Ls x)
is a solution of the equation (1) satisfying conditions
z(A,0) = ~ws (4. 7),z,(1,0) = | + we, (A, 1),

]=[l+axrl(l,n)}v(l,x)maxs’l(l,?r)c(l,x) (12)

13
A my=s (A, x)z (A, ) =@+ 5,(A, 7). (13)

Multiplying from the left the following equalities
Bz'(A,x)+ O(x)z(A, x) = Az{A,x), (14)

BZ'(A,x)+ Q(x)2(A,x) = X 2(A, x)
by (zl(l,x),zl(/l, x)) and (zl (l,x),zz(/l,x)) respectively, subtracting and integrating with
respect to x within [0, 7] we get by (13):
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2iIm /’LWZI(A, x)[2 +|z, (/l,x)]z]ix = }][zz (A.x)z (A, %) - 2,(A, X)z, (A, x)]dx =
¢ il

= 5 (Ao W (A) = 8, (L, )r(A), where r(A) = 2Rew + | ¢, (A, ) + 5,(A,70) .
It is easy to see that
A, (M) -A(A)

5i(27) = (13)
Q; — 0
a, —ay
where
A (A)=2Rew +|of ¢ (1,7} + 55 (A m) + a8, (A, 7) (16)

is characteristic function of a problem (Q_,m,a_;J (see (3)). So

O st f o = DM,

2ilm A jﬁz, (A
0

o, — &
Consequently,
wlz () ey (A, )
mAf LG T 2, B B O
b '/_\z(l)! a, —a; Ay (A)
ALY . . : e
So ——= is meromorphic function, mapping an upper half-plane into itself, Then by the

A, (4)
known theorem [6, p. 398} nonceincident zeroes of functions A,(1) and A () are
intermitted.
Reasoning in similar fashion for the equalities (14) and
B4, x)+ O(x)2(A, x) = X 2(A, x) + z(A, x)
(where we denote differentiation with respect to the parameter A by the dot over the
function) we getat tmA =0

T

2 h - i A ‘Aj )v
jﬁz,(l,x)‘z +‘22(?,,x) 115\'; A A (A) = 4 (A)A ).
0 Gy 0y
Let Ime # 0. Then it’s easy to see that the left-hand side of the last cquality is
not equal to zero. Hence it follows that the functions A;{4) and A,(4) have only simple

roots and haven’t common zeroes. So at Imam = 0 the eigenvalues of problems {Q.«.0, )
and (Q.{0,0ﬁz) satisfy the system of inequalities (10).

Now let @ be a real number. Then by (12) and (15} problems (Q,w,a]) and
(Qw.a,) can have finite number of coincident as wetl as double eigenvalues (as at
Ima=0 1+ eoc (uf‘k,:r) =3 (uj‘k,n) =0 can take place, and, consequently,
z(u_ik,x) =() for some values k). As we indicated above the noncoincident eigenvalues
of said boundary-value problems are intermitted. Due to the theorem | double zere u, of
the function A (A} is a root of the equation s (A.7)=0, i.c. it’s an cigenvalue of a

problem generated by the equation (1) and separated boundary conditions
W(0)=y(r)=0. (17
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Then according to the formula (15) we have A, (1) =0. But %, is a simple root of the
function A, (A), because if it isn’t so u, would be a double zero of the function
8 (A, )y (by (15)) which is impossible (the eigenvalues of the problem (1), (17) are
simple [4, p. 241]). So at Ime =0 the inequalities (11) take place and the double
eigenvalues of one of the problems (o, ), (Qr.a,) is the simple eigenvalue of the
other one. Theorem has been proved.

§ 2. On the representation of a class entire functions

The present paragraph is devoted to proving of a lemma on the representation of
a class of entire functions of exponential type with the known zeroes. It plays an
important role when solving inverse problems for systems of differential equations of the
first order.

Lemma. In order to the functions d o (z). p=1273 accept representations

dy(z) = 2{cos iz ~ 1)~ e sin 1z + v, ()., (18)
d,(z) = 2{cos 7z + 1)~ @ sin @z + v, {2}, (19)

dy(z) = 2(cosm+c)—o: Sin 7z + v4(z), M«:] ,

T
where v (z) = J‘“v"P (e dt,v (1) e L[—n,n), it’s necessary and sufficient that
x

(20

_ . R (a;y —zXa, —2)
d| (z)= S (a, Z.)(au Z)kl:[m 4k(k — a)

k£

S b -z - 2)
d =
=411 k- 2a)’

= ey —2)el —2)
d =2(c+1 ,
L(z2)=2(c+ )klz—_l,o4(k-c")(k—c+)

+ . , - . 1
where a;, b, ¢; satisfy asymptotic formulae of the form (4)6), a = -arctan% .
7T

Proof. Let’s limit ourselves with giving the proof for the function d,(z). The

proof of the lemma for the functions d,(z), &.(z) is constructed {n similar fashion.
Necessity. In § 1 we found that zeroes of the function d,(z) representable in the
form (18) are subjected to asymptotic (4). Besides d,(z) is an entire function of
exponential type that’s why it can be expanded into infinite product
() = e -2~ [] %KD

k=0

k]

where 4 is some constant. To define it one can usc the equality lim M: 1, where

y= dy (iy)

dy(z) = 2cosmz — 1} — e sinmz . From here it tollows that 4 = —%g— .
[
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Sufficiency. Let the function d,(z) be representable as (20). Assume that a > ¢

(the case a <0 is considered analogously). Then a; =2k —2a+¢g,, a; =2k+¢&; . I’s
evident that

di(z) = nog (2)p' (2), (20')
o O, -2 FeN (T a; ~z
where ¢ (z)—i:[m Sk —a)’ o' (2)=(a, z)kl:_[:‘c 57
Wt

By lemma 4 of the paper [2] the function g(z) accept represeniation

g(z)=sinmz + g,(z), where g, (z)= I§1 Oe“d,g(ye L] -m,x] if and only if

g(z)y=nm(Ay —2) n A*sz, A, =k+g, ZE: < oo,
fr=—w k=-
k2

Using this fact and the known formula sinnz =7z [ | (1 —EJ we have

h=—
Fal
. dy -z = 2 2 1 1 . 7+ 32u (z+2aj
Z)y=- . e -1 sin T+ ,
¢ (@) 20 kl:_[w k kI_!;cl__.E sin 7 | 2 § 2
ket ka0

ko _Z 2 7N

"(z)={ay -z 22 ZinE +L£)!'.
' (z)=( 0 );[10 % 7 [ 7 £ 3 j.

kol

where g*(z)= [g*()e”dt, §* () € L,[-n.7).

Substituting these values of the functions @*(z) into (20) we get for the
fonction d,(z) desired representation (18) and v,(z) has the property indicated above

according to the Plancherel [7, p. 439] and Paley-Wiener [8, p. 47] theorems. [.emma has
been proved.

§ 3. Solution of the inverse problem.

In this paragraph the inverse problem of spectral analysis formulated in the
introduction is solved entirely. First we consider the case @ = -1,

Theorem 4. In order to sequences of real numbers {a;,} and {a;,} be the
spectrums of the boundwry-value problems of the fpe (Q-la) and (Q-1la,)

(o, <) it's necessary and sufficient, that the following conditions hold:
1) the asymptotic formulae

. 2
diy =2k —(1Fsgna)a, +ea5,, > (F,Tk ) <@ (21)
Fr=

take place.
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: 4 + - . " . .
2 ey, Say, Sy, Sa), <dpg, <, S, and if two successive members of

the sequence {a;,} (or {a},}) coincide, then the member from {a},} (or {ay,})
coincident with these two members differs from the other members of the
sequence {a;;} (or {aj, });

3) the following inequalities hold:

3, my+22 2 @2)
9 S A A, )+ 4]<e, (23)
k=—oo
where
_ mtanma, e {a, —z)ag, —2)
A J(Z) B a', (aj‘ﬂ - )(a.f’a Z).ﬁl:_—[uo 4k(k - a_,r' ) ’ (24)

LEC
—% <a, <%,a1 < a,,A, are zeroes of the function A (2}~ A,(2).
Proof. Necessity. Let the sequence {aik} be the spectrum of the boundary-value
problem (Q,—1.a,). Necessity of conditions 1) and 2) of the theorem follows from the
theorems 2 and 3. By the formula (4) the number 4, is defined by the relationship

i

o
a :ul-arctan?". That’s why —%<a;. <—12~ and as o, <¢,.then g <a,.
- .

As we saw in § 1 the characteristic function A (1) of the boundary-valuc
problem (Q,—la,) is the entire function of exponential type not higher than 7z . That’s
why it can be represented as an infinite product (24). As A(4,)~A,(4,)=0 then by
(15) 5,(4,,7)=0 . Then from the identify (2) it follows that

o (A, sy (A, m) =1, (25)
Consider the tunction u, (A) = ¢, (%, 7) + 5,(A, 7). By (25)
]
s5 (A7t
So ’H_F(iﬂ,)-“ 2[ 22. As A, (A)y=u (A}+a,5(d,m)~2 (see (16)), then by the last
inequality we have
|A,.(Ak)+2[=|u+(,1k =2
So the inequality (22) is fulfiled.
Now we show that the inequality (23) is true. Introduce notation
u_(Ay=c{A,m)y—s,(A,m).
It’s easy to get that
wl (A =ul(A,)—4. (26)
It follows from the representation for the functions ¢ (A,7).,5,(4,7) and the known

asymptotic formula A4, =& + o(1) (lk\ — ) that Z u’(A,) <= . Consequently
ke an

+
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S A A, )+ 4)= ki A, () + 2F - 4= ki b2 (2 -4]= ;u%(ak) <.

k=—ot

Sufficiency. Let the conditions 1)-4) hold. By lemma in § 2 the function A ,(z)
constructed in accordance with the given sequence {a;,} by means of the formula (24)

accepts representation
A (z)=2cosmz —1)—a sinmz +m (2), (27

where a, = 2 tan ma

L, m(2)= ?ﬁj(!)e’”dt, m,(tye L|-m,x].

Consider the function
A2~ Ay (2)

51(z) = - (28)
a —u,
By the formula (27) the following representation is true for that function
5 (z)=—sinmz + mfz) - my(z) .
ai - 0‘.'3
Then by the paper |2] zeroes 4, of the function s,(z) satisfy asymptotic formulae
A =k+8,. S8} <. (29)
ko

It follows from the second condition of the theorem and the relationships (21), (22), (24),
(28) that the arrangementi of members of the sequences {af-_,{ Y. {2} is defined by
inequalities
WS S, Shy Say, Sa S Ay S (30)
and A, <A, n=0112, ..
Let’s construct the function
ul(z):azAl(Z)_alAz(Z)+2_ 31

Gy -Gy

Hence by {27) we have
o, (2) - ayn (2)

u,(2) =2cosmz + (32)
ay o
As A4, )= A5(A;) then from the formula (31) it folfows that
(A )=A,(A)+2. (33

That’s why by (22) the inequalities |, (3, )‘ > 2 take place, ie. u(A,)<-2 or u(A,)22.
Taking into account the inequalities (30) we get more precisely that signs of the members
of the sequence {(4,)} are alternating. Then there exists such p, that

u (A,) = 2(-1)" & cosh @, , (34)
where the number ¢ is equal to 1 or -1. Now consider the function u,(z) such that

()] = i (A4 . (35)

Hence taking into account (34) we oblain
e, (A, )] = 2sinh 6, | . (36)
If we claim the equality
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u,(A,) =2sinh @, (37
to be true, then we define not only |u,(4,)| but also sgn u,(4,) = sgné, .
Now let’s define u,(z) by the equality
& sinh &
u,(z)=2%(z) —m—-—f—
? ] k:z—nc (2 -4 )s'(4y)
[t follows from the fourth condition of the theorem and the equalities (33), (35), (36) that

43 sinh?6, = Z[uf(lk)—fl]: S A ), (2) +4]< 0.
koot b=—ac f=—an
Then by the theorem 28 of the paper {8] the function u, (z) accepts representation

uy(z) = ﬂjh(:)e”’dz,h(:)e Lyf-m,m]. (38)

As the function
i
5, (z) = -2—[11,(2) —uy(2)] (39)
due to the formulae (32) and (38) has a form

83 (Z) =cosaz+ I’U(Z)[IV(Z) = j‘i}d(‘)emdﬁ'{}u(’) = LZ ["?T,?I_}J F]
then by lemma 4 of the paper |2] its zeroes v, satisfy asymptotic formula

l = 2
vk:kFE+§k’ DLl <o, (40)

f=-m

Putting in (39) z = 4, and taking into account (34), (37) we get
5(A)= %[u}(lk Y-, (A )] =(-1)"ocoshf, ~sinhf, =

=(~1)*ocoshd, {1 ~(~-1)*o tanh@, ] .
From here one can see that sgn s,(4,) = (-1)*o because tanh8, < 1. That’s why on each

interval (4,,4, ) there is at least one root v,,, of the function s,(z) and due to the

asymptotic formula (40) it can’t have another roots. Consequently, zeroes of the function
5,{z) are intermitted with zeroes of the function s,(z).

So the sequences {4,} and {v,} satisfy conditions of the theorem 2 of the paper

pixy  q(x)
g(®) —p(x)J (P2,

g(x) are real functions from L,[0,n]), such that s5,(z) and s,(z) are characteristic
functions of the boundary-value problems generated by the equation (1) with this
coefficient O(x) and the boundary conditions (17) and

Consequently s,(z) = s,(z,n) and s,(z) = s5,(z,7) (for constructing Dirac equation}. It’s

[2]. in according to which there exists the matrix-function Q(x) = (

casy to get that the spectrums of constructed boundary-value problems (Q,— La,) and

(0.~ La,) coincide with the sequences {at&} and {a;,} respectively. Theorem has been
proved.
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As we see the present proof includes the method of recovery of considered
boundary-value problems. Note that one can’t in an one-to-one way recover the problems
of the type (0.~ La,), (Q.— l,az) (i.e. nor the matrix Q(x) neither the parameters o, )
by their spectrums. Let’s find out which additional information about these problems one
should have to recover them in an one-to-one way.

We indicated above that one can recover the characteristic functions

A, (L) A,{A) of the boundary-value problems (Q,—- l,a]), (Q,—l,az) by the sequences
{a7,}, {a5;} of the eigenvalues of these problems in the form of infinite product.

Besides knowing a_'ik one can define the parameter «, as by the formula (4)

o, =-2 ;}'12 tan %(am + a_:_k)‘
The function 5,(1,7) can be recovered by the formula (15). Hence we find the sequence
{4} of the eigenvalues of the problem (1), (17). By means of A (%), @, one can
recover the function

u, (A= o)Ay (A) — A (X) i

o — 0O,

u_ (A )=o, m’

where o, =sgnu_(4,). This equality and the estimate u ()L)zo(ellm)"rl_) show that
knowing the function #, (1) and the sequences {4, }. {o,} we can recover the function

By formula (26)

#_(A} by means of the interpolation formuia

o0 2 —
u (A)=s(A,7) Y. Oy )

b SUA L EHA — A0 ) .
We find the function s,(4,7) by the formula

5 (A ) = -,';[u+(_;b) —u (1))

Zeroes v, of this function are the eigenvalues of the boundary-value problem (1), (41).

It’s known ({2]) that the sequences {A,}. {v,} define the matrix Q(x) in an one-to-one
way.

So in order to recover the boundary-value problems (O L, ), (O~ 1a,) in an
one-to-one way it’s sufficient to know the sequences {a,l‘k }, {a3,} and {o,}. Thus the
following theorem on uniqueness of recovery for considered boundary-value problems is
true.

Theorem 5. The boundary-value problems (Q.-1a). (O-lo,) can be
recovered in an one-to-one way if their spectrums and the sequence of signs
o, =sgn [ci (A, m)— s, (ﬂ,k,?r)] ure kHown.

Note that the results concerning the case @ =1 are obtained quile analogously.
One should only use the fact that the cigenvalues of the problem (Q,La) are subjected to

the asymptotic (5) and the representation {19) takes place for the characteristic function of
this problem.
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Consider now the case |a)| =1, @ = xl. Proofs of the main theorem for inverse

problem and the uniqueness theorem really differ a little in this case from those stated
above. That’s why we limit ourselves with the formulation of results.

Theorem 6. In order to two sequences of real numbers {c,i’,(} and {Ci;(} be the
spectrums of the boundary-value problems of the type (Q,m,a,) and (Q,co,az)
respectively ( [a)i =1, w#+l, a,<a,} it's necessary and sufficient that the following

conditions hold.:
1) the asympiotic formulae

oo
A+ & 4 ot
Crae =2k —C; 4V 4 Z(-”_;Jr)z <0
LE
take place;
+ : . . .
2) ¢, and ¢, are intermitied, i.e.

e e . _

e S lp SO SOy S S p SO Sy

3) the inequalities
A, (3 )~ 2¢[2 2 hold,

9 Sl )-2cf -a]<w,

=—tt

o I T (
where A (2)=2@c+1) ][] ©) ZI)(C”’ _Z), ¢ :2-arctan] B;¢1/Bf+ L+¢ , ¢, B,
' fmeo M~ Wk —c]) T om L ol :

are real numbers, and M <}, B, <B,, A, areczeroes of the function A(z2)—A,(z).

Theorem 7, The houndary-value problems (Qo.2,), (Qm0,) are recovered in
an one-lo-one way (with the accuracy to the sign of lmo) if their spectrums and the
sequence of signs o, =sgn [cl (A7) —5,(4,, :ar)] are known.
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