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VAHABOV N.G.
LOCALIZATION OF SPECTRUM AND ITS APPLICATIONS 1L
NUMERICAL RANGE AND STRUCTURE OF A SPECTRUM
Abstract

At the given paper received by us the theorem of localization of residual spectrum
by means of a numerical range is Banach space is applied to the series problems of the
spectral theory of the operators. This is a criterion of the closeness of a numerical range
in the terms of spectrum, description of a spectrum of the operator through on interior of
a numerical range; conclusions about structure of a spectrum Hermitian operators in
Banach spaces.

The present paper being the continuation of [18e], has the aim to show how the
theorem about localization of residual spectrum of the operator an interior of Baner’s
numerical range [18e, theorem 11} finds applications to the problems of the spectral
theory of operators. Other applications of localization of the parts of operators spectrum
are planned to consider at the following parts of the paper.

Here first of all we apply the theorem of localization of residual spectrum to the
problem on the conditions of closeness of a numerical range of the operator in the terms
of spectrum secondly by mean of localization theorem we receive the description of the
spectrum of the operator through the interior of a numerical range and we derive series of
corolaries about properties of spectrum of the various operators, and thirdly we show
what conclusions about structure of spectrum of Hermitian operators in Banach space
may be drown from the above-mentioned description of spectrum.

Let's denote especialiy that all stated spectral properties of Hermitian operators
are true for the normal operators in Banach space.

In this paper the used notations and concepts, connected with numerical ranges
and with spectrum operators and with geometry of Banach spaces are in first part of paper
[18e]. Other necessary informations are given by the way of exposition.

§3. Numerical range and description of spectrum.

3.1. Studying the numerical range of operators in Hilbert space P.Halmos {1,
p.116] puts the question about determination of such operators whose numerical range is
closed. Let’s give the application of the theorem about localization of residual spectrum
[18e, th.1.1] to the problem about closeness of numerical range of the operators in terms
of spectrum. This problem for the various classes of operators in Hilbert space was
studied by the authors: Meng C-H., Hildebrandt §., Lin S-C., de Barra G. and others. The
discussion of general criterion for the Hausgorft’s numerical range and the literature
about the question we can find in [181].

The first result in this direction has been got by Meng [9] on the basis of spectral
decomposition for the normal operator in Hilbert space he proved the criterion of
closeness of numerical range by means of the continuous spectrum. At the same place he
shows that for the unitary operator in Hilbert space the closeness of a numerical range is
equivalence to coincidence of spectrum with the point spectrum of this operator.

At the papers [18b,d] both of these results are extended on Bauer’s numerical
range accordingly to normal and isoabelian operators in Banach space whereupon for the
Hilbert spaces new proofs are got not based on spectral decomposition. Incidentally
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emptyness of the residual spectrum following from the previously received information
on thin structure of a spectrum of normal and iscabelian operators was used (for the
Hermitian operators about this see p.4.1 of the given paper).

However at transition to wider classes of the operators the property of emptyness
of a residual spectrum is lost, that was an obstacle to attain the exact analogoue of Meng
criterion for the extended classes of operators even in Hilbert space. Received by us [18e,
th.1.1] localization relation allows to by pass this obstracie and to give full-blooded
criterion of closeness of a numerical range for various classes of operators in Banach
space. Let’s illustrate the told by one particalar result and we will show possible
generalizations.

Let’s consider the translatable paranormal or transparanormal (t.p.n.) operators,
i.e. such T e B(X) for T — A is paranormal at any complex A. Let’s remind that operator

Ae B{X) is called paranormal, if for any unit vector x€ X' the inequality HAJ:“2 s qux”

is true.

Theorem 3.1. For tp.n. operator T ¢ B(X ) in uniformly rotund Banach space
X the Bauer’s numerical range V(T) is closed iff set of exposed points on convex hull of
spectrum doesn’t intersect with continuous spectrum of T .

Scheme of the proof. The proof of necessary condition for the closeness of a
numerical range is carried out on a few steps. First of all, as in case of Hilbert space, it is
proved that in any Banach space the spectral radius and the norm of paranormal operators
are equal each other. The next step is in getting the result of Forster’s variant [ 10}, proved
by them in Hilbert space: if T - t.p.n. is the operator in uniformly rotund Banach space,
then every exposed point of the set ¥ (T ) (lving on V(T)) is approximate eigenvalues {is
eigenvalues) t.p.n. of the operator T . Finally it 1s proved that convex hull of spectrum,
t.p.n. of the operator T coincides with closure of its Bauer’s numerical range. In the
proof the sufficiency condition of closeness of a numerical range besides previously
mentioned we use: theorem 1.1 from [18e] about localization of residual spectrum and
theorem of Milman-Pettis [3, p.182]; variant the theorem Straszwecz [11], concerning the
exposed points and being analogy of the Krein-Milman theorem on extreme points and
finally the Zenger’s theorem on localization of convex hull of point spectrum [4, §15].

Corollary 3.1. For tp.n. of the operators T € B{X) in uniformly rotund Banach
space X the numerical range V(T) is closed iff exposed points of convex hull of
spectrum lie on the point spectrum of the operator T .

The simple illustration to the criterion of the closeness of a numerical range is the
operator of unilateral shift 21 {1, p.48], in if the sct expcocy(U), being the wnit circle,
coincides with continuous spectrum and the point spectrum is emply. So necessary
conditions of the closeness of a numerical range # (I} from theorem and its corollary are
broken. Indeed W (U/) is an open unit circle [1, p.308].

Degrees not for long from the applying of the theorem on the localization of

residual spectrum in order to describe the essential spectrum of Weyl for the above-
mentioned class of operators.

Remind that the essential spectrum of Weyl (Browder) o, (7} (5,(T)) of the
operators T e B(X ) is called the maximal part of the spectrum O'(T), that is invariant
with respect to any additive perturbation T + K of operator 7 with compact operator X
(commutating with T ). Let be said that for essential spectrum ,{T), e —w, b, Weyl’s
theorem holds (theorem of Weyl’s type), if o, (T)ZO’(T)—?TOO (T o (T)=
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=0'(.T)—7r"(]0(T)), where 7,,(T)(74,(T)} is a set of isolated eigenvalues with finite
geometrical (algebrical) multiplicity [2, p.211 and 229].

Theorem 3.2. Weyl's spectrum of t.p.n. operator T B(X ) in Banach space X
satisfies Weyl's theorem.

The scheme of proof. First the fulfillment of Weyl’s theorem for essential
Browder’s spectrum of t.p.n. operator T is proved. For this it is enough to show the
justice of inclusion :rUO(T)CJr"m(T), which follows from equality to null of operator
T, - A forany Acnmy (T), where T, is a restriction of T onto image R of spectral
projector corresponding to A, and this draws inclusion of R into kernel of operator
T — A . Then using finiteness of ascent of operator T — A | according to Werner’s theorem
[12, p. 469] the coincidence of Browder’s and Weyl’s spectra of t.p.n. operator I" is
shown.

Remark. Theorem 3.1 together with the corollary is true for wider class of
transaloids, moreover, in more general spaces; the necessary of closeness condition uses
only rotundness, but for deriving the sufficiency only the reflexivity of the space is
neccssary. A variant of this criterion is true even for convexoids and in particular, for
operators with first order growth condition on the resolvent with respect to spectrum.
Besides, theorem 3.2 remains in force for subclasses of the enumerated operators.

3.2, Let’s now apply the theorem about localization of residual spectrum [18e,
theorem 1.1] to the problem of description of operator spectrum via interior of numerical
range of this operator. For this let’s remind that essential spectrum of Goldberg of
operator T & B{X) in the Banach space X is called the set o, (7) of all such complex

numbers A, for which range Ran(T ~A) of operator T — A isnot closed in X .
Due to Hilbert situation [13] we call the eigenvalue A GGP(T) normal-isolated

for the operator 7 € B(X} in Banach space X, if, first, A is an isolated point of spectrum
o(T); secondly, A is normal eigenvalue, i.e. the pair of subspaces ker(T'— 1) and
Ec;r_r(i‘" - )} completely reduces the operator T: X = ker(T — A)® Ran(T — 1),
Tlker(~ )= (T - 1), T(ﬁ(}* - A))c Ran(T — 1), and thirdly, the geometrical and
algebraically multiplicity of number A are co-ordinate. It is well known that for normal
operator in Hilbert space all isolated eigenvalues are normal-isolated. We note that this
fact is also true in Banach space [18d].

Using theorem 1.1 {18¢] on localization of residual aperator spectrum via the
interior of its numerical range and proposiiion about points of compression spectrum,
tying on the border of numerical range {18e, proposition 1.2} it is possible to give the next
classification of points of spectrum.

Theorem 3.3. /n reflexive Banach space X any the points of .spectrumd(T) of

operator T € B(X ) lie either in interior intV(T) of Bauer numerical vange V(T'), or in
the Goldberg spectrum o, (T) or in the set 7, (') of normal isolated eigenvalues.

The scheme of proof. The localization relation for the residual spectrum o, (T')
from [18¢, theorem 1.1} and inclusion of continuous spectrum o (T) in Goldberg’s
spectrum @, {T') shows that point De o{T) not iying in interior V[T) and in o, (7) will
be eigenvalue of operator T . The proof of normality of eigenvalue A =0 is carried out

by the following way. According to Crabb-Sinclair theorem [4, §20, theorem 1] the
kernel kerT of operator T is orthogonal according by Birkhoff to its range RanT . It
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draws their intersection only by null vector and considering the closeness of subspace
ker? and RanT, it is possible to show that their sum is also closed subspaces in X.
Hence, it follows that the pair of subspaces ker7 and RanT completely reduces operator
T, since otherwise there would be existed non-trivial annihilator for both of these

subspaces, lying in the intersection of kernel and range of adjoint operator T°. And this
gives contradiction, since the application of proposition 1.2 from [18¢] and the above-

mentioned theorems of Grabb-Sinelair to the adjoint operator T° would reduce to the null
intersection of its kernel and range. The isolatedness of eigenvalue A =0 is obtained
from consideration of restriction of operator to the reducing subspaces kerT and RanT .
Moreover, this eigenvalue is a first order pole of resolvent of operator T which reduces
the agrement of its geometrical and algebraic multiplicity.

In particular, when the space is Hilbert’s the previous theorem gives main result
of paper [ 13, theorem 1},

Let’s note some corollaries from above-proved theorems, first of which in the
case of Hilbert's space is a second main result from [13, theorem 2]. In all of these
corollaries the Banach space is reflexive.

Corollary 3.2. For convexoid operator any extremal point of closure of
numerical range lies, either in Goldberg's spectrum, or is normal isolated eigenvalue of
this operator.

From such classification of extremal points the following criterion foliows.

Corollary 3.3. In finite dimensional Banach space an operator is convexoid iff’
any extremal point of numericul range of this operator will be its normalisolated
eigenvalue.

The following two corollaries also are derived from theorem 3.3.

Corollary 3.4. Any non-zero point of spectrum of compact operator which lies on
the boundary of its numerical range is normal-isolated eigen-value.

Corollary 3.5. The spectrum of nonzero quasi-nilpotent operator with closed
range lies in interior numerical range of this cperator.

Note that two variants of theorem 3.3 and corollaries 3.2-3.5 are true in any
Banach space. One of (weaker) by means of algebraic numerical range shows itself in the
proof of theorem 4.3. It leads to the characterization of Goldberg's spectrum of Hermitian
operator. But before describe thin structure of spectrum of Hermitian operator and give
some conclusions from it.

§ 4. The structure of spectrum of Hermitian operator and its application.

4.1. Before we describe the thin structure of spectrum of Hetmitian operators by
means of states [14] we note that the complete exposition of properties of Hermitian
operators is given in {4, §§5-8 and §§26-29].

Now a few words azbout notion of states (according to Taylor-Halberg) of
operator (detatlly see [14]). For the range Ran7 the any operator T e B(X) in normed

space X the following cases are possible: I RunT =X ; Il. RanT = X , but Ranl = X ;
11 RanT = X . For inverse mapping T~ from RunT into X the following cases are

possible: 1. I'™' exists and is continuous; 2. T~ exists and is discontinuous; 3. 7'
doesn’t exist. The record T e7,, means that 7 satisfies the conditions I and 1,

simultaneously (analogously, for other combinations of conditions 1, I, I with
conditions 1, 2, 3). This classification scheme is applicable also to the adjoint operator
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T’ . If we take ordered pair (T,T*), then condition on T and condition on T~ give
ordered pair of conditions which is called state of pair (T,T’). For example,

(T, T e(mn,, 1, )) means that 7€, and T € /I, It is known [14] that when X is
arbitrary Banach space and 7 ¢ B(X ) is arbitrary operator then the number of possible
states of pair 7,7 is equal to nine: (7,,7,); (1,10, ), (105 100y ); (2, 200 ) (42, 2,
(o, 1, ) (any, 10, ) (11, LY, (M, JIL) . If X is reflexive then number of possible

states of pair (T,T ') equal to seven since states (1,111, (111, 1113) are impossible.

The next theorem describes the state of Hermitian operators.

Theorem 4.1, The Hermitian operator T e B(X) in any Banach space X hus
the next possible states (1,1, ); (HZ,HQ); (Frr,, 11, Y, (0 1 {2, IEL), but in reflexive
X - (1,0 A0, 00, ); (1, 111).

A brief proof. The possible states of operator is convenient to formulate in terms

of parts of spectrum. Codensity of numerical range of operator I and Sincliar’s
theorem [4, §20] remove the conditions 7, and I/, for 7, and the localizability of

spectrum by algebraic numerical range @’(T) of operator 7' gives the impossibility of
state fI1,. In a reflexive X the behaviour of parts of spectrum under adjoining remove
for T of state /I, . 1t only remains use invariance of #(I') with respect to Banach

conjugation and complete the proof.

The previous theorem at once gives the next informalion about thin structure of
spectrum of Hermitian operator {18a].

Corollary 4.1. For Hermitian operator T € B(X) in any Banach space it is true
the next relations: a) O'p(T)C o, (T) s by O'(T): G, (T): s (T) ¢) o, (T)z o, (T) i X
is reflexive.

Besides Banach analogue of Weyl's theorem about emptiness of residual
spectrum {[8e, Corollary 1.3] for Hermitian operator it is true the number of other
properties of selfadjoint operators. For example, for generalized derivation A, defined
by retation A, =74 — AS for T,S,4e B(X) itis true.

Gorollary 4.2, If 7.5 B(X) are Hermitian operators then there exists semi-
inner produce [ | ] giving the norm in X, for which [R,K ]: 0 for anmy K ekerA,; and
Re RanA .

Let’s note that in Hilbert space X, when T =5 this corollary gives the result
{13, theorem 1.5] proved by another way. The other corollary of theorem 4.1 is related
with invariant subspaces.

Corollary 4.3. In a reflexive X all T invariant subspaces of injective Hermitian
operator T ¢ B(X ] is regular (no Sz-Nagy-Foias {3, p.91}]).

This a key fact in the solution of problems about approximation of inverse
operator |18b, p.74] which will be considered in the following part of our paper for a

wider class of dissipative operators. Therefore, for illustration we give only formulation
of the next criterion.

Proposition 4.1. Let A B{X) be invertible operator in reflexive X and A be
algebra of polynomials from A. Then A™' is approximated by operators from £, iff
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there exists such injective operator T from weak closure 4, that operator TA is
Hermitian.

Returning not for long to the criterion of closeness of numerical range from point
3.1, we note that, the proof of analogous fact for Hermitian operators has the same
scheme, but by virtue of point ¢) of corollary 4.1 it is not required theorem 1.1 from [18¢]
about localization of residual spectrum. Besides the following proposition enable to use
extreme points of numerical range: in a rotund Banach space every extremal point of
numerical range of Hermitian operator is eigenvalue. All that leads to the following
criterion which is special case of our result [18b, p.80] and therefore we omit the details.

Theorem 4.2. Let T e B(X) be Hermitian operator in Banach space X . Then

Jor closeness of numerical vange V (T) it is sufficient, but for rotund X it is necessary
the relation extcoo(T)c o p(T). If also X is reflexive then the previous condition can

be substituted for the next o, (T)N extcoo(T)=D.

It remains to note that unlike the case of Hilbert space theorem 4.2 doesn’t tollow
from theorem 3.1, since the Hermitian operator in Banach space can not to be paranormal.
Let’s note also that the example of multiplication operator from theorem 1.1 [18e] shows
that the condition of reflexivity and rotundness of space in theorem 4.2 mustn’t be
omitted.

4.2. Let’s move on consideration of essential specira of Hermitian operator in

Banach space. From thin structure of spectrum o(T) of Hermitian operator 7 e B(X)
{see corollary 4.1) follows that O’(T)=O'£ (T)UGP(T). In reflexive X the theorem 3.3 at

once makes this fact more precise by substituting o{T')} for =, (T'}. The following

statement which shows the justice of this verification in any Banach space gives also two
characterization of Goldbery’s spectrum noted in [18e]. For this let’s remind that the
descent (ascent) of operator 7 e B(X) called the least non-negative integer number 5(I')

(a(T))such that the ranges (kernels) of operators T* and T**' coincide for all

k28(T)(kza(rT)). By oT')" denote the set of all points of accumulation of spectrum
O'(T).

Theorem 4.3, For Hermitian operator T ¢ B(X) the following equalities are
true:

a G(T)zcg(T)U 7o, (T); b) orx(T)zo'(T)'J ;¢ ag(.T): {hea(r):8(T-A22}.

A brief proof. a) has the same scheme of proof as theorem 3.3, but with
participation of algebraic numerical range ’&'(T) we omit it; b) follows from a) if we show
that every isolated point of spectrum J(T) will be simple pole for 7 and apply the
theorem 24 from [6, p.616]; <) is proved by the following scheme; inclusion of the set
o, ={Aea(l):6(T-21)= 2} to the Goldberg’s spectrum O'g(T) is obtained by
restriction of operator 7 — A on its range and utilization of corollary 4.1, and also A -
paranormality of Hermitian operator [4, §10, theorem 1). The inverse inclusion o H(T ) to

the set o, (T) is based on Riesz’s decomposition for operators with finite ascent and finite
descent.

Now a few words about analogue of theorem 3.2 for Hermitian operators. It is
well known that for selfadjoint operator T in Hilbert space all four essential spectra:
Kato o, (T) Fredholm CTJ,—(T) (see [2, p.305)) Weyl o, (T) and Browder oy,(T) (see
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p.3.1 of the given paper) coincide and for them Weyl’s theorem holds. From the previous

theorem 4.3 follows proposition which makes the result of paper {16] more precise (in

[16] for Weyl’s spectrum of Hermitian operator of Weyli’s type theorem is proved}.
Corollary 4.4. For Weyl's spectrum o, (T} (coinciding with o, (T),crf (T) and

g, (T) ) of Hermitian operator T B(X ) Weyl's theorem holds.
Moreover, for any polynomial p(T ) from Hermitian operator 7 holds

Corollary 4.5. p(oy (T))= oy (p(T)) and o (p(7)) = o (p(T)) - 74 (p(T)).
Before deriving spectral characterization of compact operators we do remark
about Hermitian operators of meromorphic type. Let TeB(X ) be an operator with

enumerable spectrum for which only zero can be point of accumulation (for example,
compact operator). If for such operator T every non-zero points of spectrum is a pole
then T is called operator of meromorphic type (for example, Hermitian compact
operator).

Well known spectral expansion of compact seif-adjoint operators for Hermitian
compact operators in Banach space was obtained by a series of authors [4, §28] in various
complementary conditions. For Hermit operators of meromorphic type the similar results
are in paper [17]. From the previous considerations follows the proof of auxiliary key
facts from |17], suitable for normal operators. Thus, its is possible to obtain main
theorems 3.5 and 3.6 from [17] for normal operators of meromorphic type in reflexive
Banach space,

At last, let’s note two corollaries of Theorem 4.3 motivated by classical results
from spectral theory, of compact self-adjoint operators in Hilbert space and extending
them to the case of Banach spaces.

First of these corollaries belongs to spectral characteristics of compact self-
adjoint operators in Hilbert space [7, p.162} or {8, p.351, theorem 12.30]. It is well known
that for compact operator 7 in Banach space for any non-zero complex 4 the operator
T — 2 has closed range and finite-dimensional kernel [8, theorems 4.23 and 4.25]. 1t turns
out that when T is a Hermitian operator in Banach space these two necessary conditions
are also sufficient for compactness of T .

Corollary 4.6. Hermition operator T e B(X) in Banach space X is compact iff
Jor any nonzero A e o{T) the following conditions holds: aj A doesn’t lie in Goldberg's
spectrum o, (T); b) the kernel of operator T -- A is finite-dimensional

Let’s note that in Hilbert space this corollary exactly coincides with theorem
about spectral characterization of compact operators [7, p.162] if according to previous
theore 4.3 instead of condition a) we take equivalent condition a’) the spectrum O'(T)
cannot have nonzero points of accumulation.

From the same theorem it follows precides generalization to Banach space of
well known classical result about self-adjoint compact operators in Hilbert space.

Corollary 4.7. In Banach space X for Hermition compact operator T B(X )

there exists normal-isolated eigenvalue of finite multipliciny whose modulus coincides
with the norm of T .
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