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AN INVESTIGATION OF THE MAXWELL-HYPOTHESIS THROUGH
METHODS FROM EXPERIMENTAL STOCHASTICS

Abstract

The validity of the Maxwell-Hypothesis concerning the velocity distribution of the
micro-constituents of a gas is examined here by methods from ‘Experimental
Stochastisc’, ie. respective stochastic models are built on the computer in order lo
investigate effects of the dynamic computer model applying statistical tools.

The method developed allows 10 treat this phenomenon of velocity distribution in
a non-real WOP‘Id context.

Keywords: Computer-experiment, Experimental Stochastics, collision dynamics
of molecules, velocity distribution, Maxwell-Hypotyhesis, kernel density estimator, non-
real physics.

1. Introduction.

The phenomenon to be treated here is the velocity distribution of gas molecules,
i.e. the validity of the Maxwell-Hypothesis. As the movement of gas molecules is not
observable, a direct confirmation of the Maxwell-Hypotheses is not possible in physics.
On the other hand the computer opens possibilities to investigate phenomena by virtual
experiments. These phenomena may be from the real world, possibly not easily
accessible, or even non-real phenomena, i.e. phenomena, which have no counterpart in
the real world.

The method to be applied here is what we call *‘Experimental Stochastics’, i.e. we
build a stochastic dynamic model on the computer- here of collisions of molecules
determined by the Newtonian axioms in order to investigate effects of the dynamic
computer model by means of statistical methods, cf. [Moeschlin et al. 1998].

These statistical methods may be understood- in correspondence to real
laboratory experiments- as a virtual laboratory mounting measuring devices.

Although, as well the design of the stochastic, dynamic medel on the computer,
as also the statistical evaluation of effects of it, may be based on deeply lying
mathematical methods; the act of recognition is not a mathematical one, it belongs to the
realm of empirical sciences. The insights reveal themselves through an experiment of a
virtual laboratory, as which we want to understand a computer-experiment.

In section 4 the Maxwell-Hypothesis (James Clerk Maxwell 1831-1879)
concerning the velocity distribution of the micro-constituents of a gas, cf. {Sklar 1993],
p.30/31, is examined by a computer experiment. The methods developed may even be
applied to study this phenomenon in a non-real world context. Section 3.

These both section arc preceeded by two section, Section 2 and 3, having a
preparatory character. In Section 2 a Newtonian dynamic is developed to be implemented
on the computer while in Section 3 we are describing the kernel density estimator, acting
as the virtual laboratory mounting device.

To avoid technicalities we switch fairly freely between random variables and
their realizations,

2. Kinetic Dynamics,

In this section we describe a dynamic to be implemented on the computer, which
is based on the Newtonian axioms. The cutcome of a collision between molecules is
determined by the laws of conservation of momentum and energy. As within the
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experiments the molecules are represcnted by discs it is sensible to restrict ourselves
exclusively to translation movements, i.e. the transformation from kinetic translation
energy to rotational energy does not take piace. In the following we consider a 2-
dimensional container B, which is modelled as a not necessarily convex subset of the

Euclidean plane: BcR’; furthermore, we assume that the boundary 8B of B is a
piecewise differentiable curve such that with the exception of a subset N cJB of
Lebesgue measure 0 at every point xe€ @8\ N there is an uniquely determined direction
which is orthogonal to the wall 08.

The container B is filled with N molecules; the molecules are represented by
non-overlapping discs of radius X >0 and mass m >0, Let

((O)v(0)={xV(0)... x V(0}V (O}, b"H0))e BY xR
be an initial (microscopic) state of the system, where x')(0) denotes the position and

U(‘J(O) the velocity of the /™ molecule at the time instant =0 (i= 1,...,N). The
microscopic state of the system at time ¢ >0 is given by

(:(holr) - (x0)+ o0k o(0)),
if no collisions between the molecules and no reflections of a molecule off a wall have
taken place during the time intervai [0;!].

The time ¢, , 1<i<N of a potential reflection of the i™ disc off a wall can be

computed as the smallest positive solution of the equation
a(x"(0)+ (o), 0B)=x,
where d denotes the Euclidean distance on R” and the expression d(y,dB) is defined by
d(y,oB)==infld(y,a)ae 6B}
for ye0B.
The time 7, ,1<i<j< N, of a potential collision of between the molecules §
and ; is the smallest positive solution of the (quadratic) equation
d(x(0)+ ro"(0), x(0) + o (0))= 2% . @2.1)
If (2.1) has no real or no positive solutions, then the molecules i and ;j will not collide
with one another before the next collision or reflection has occurred. The time 7 of the
next collision or reflection in the system is defined as
f= min({q[l <i<NJU {z,.; h<i<jx N}).

If the i™ molecules reflects off the wall of the container (such a reflection is
interpreted as an instantaneous action, i.e. an action whose time duration has Lebesgue
measure 0) at time 7, then the velocity vector v (F) is reversed at the tangent to 88 at
the point of reflection.

If, however, a collision between the i ™ and ;" molecule occurs at the time 7,
then the direction of momentum exchange is given by

e =L [x0F) - x(7)).

2R
Under the assumption that the molecules have the same mass, consernanion of
momentum tmplies

UU}’ = U{‘.}(ET)-FAE,
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RO - o) -2z

with 0% and 0% the velocities after the coilision and A are determined by the

condition
<U(‘)(f),u('}(f)) + <l){-’}(t_),u(-”(f)> - <U(;)’ e > + <U(.;)' me >

(conservation of energy).
According to theorem 4.2.1 of |Cercignani et al. 1994] the iterative application of

the described procedure yields a trajectory (x{t}v{t)).n in B” xR*" for Lebesgue-
almaost all initial conditions (x(O);v(O))e BY R,

3. The kernel density estimator.

In Section 4 and 5 we have to estimate distributions being defined by its

Lebesgue densities, which gives rise to recall the concept of kernel density estimators.
Let A denote the Lebesgue measure on (H E’). Furthermore, let

K(x):= rexp(—lr ] xeh. (3.1)

Let £'(A) denote the set of the Lebesgue integrable functions. If neN and

h > 0, then the value of the mapping §, , :R" — Z{A) at (x,,...x,) is the function
‘C,'H ,a,["n - %, ] R '"'>“ *

Sualiean b L3k 5]

8,4 15 the kernel density estimator (for the sample size n and band-width 4).
Let O be a probability measure on (R,2). fc.£'(1) its Lebesgue density
function, and (X, )::1 a sequence of independent random variables on a probability space

(0, #,2) distributed according to Q. Now let (h(n))-, be a sequence of positive
numbers with

lim h{n) =0 and lim nh(u)“ (3.2)
1t follows (cf. [Devroye, Gydrfi 1985], chap.3, sec.], lheorem 1)
lim [[S, )0 X1 0 X, K0 FE}dA()=0 P -as, (3.3)

1.e. the sequence of estimators S, ;¢ converges in terms of the variational distance -
a.s, to the Lebesgue density function f of Q.

To analyze the experiments, we usc the kernel density estimator S, .,y with

Aa)=c-n " (neN). (3.4)

This choice of (#(n))’, is motivated from theorem 4.9 in [Wertz 1978]; notice
that the sequence defined in (3.4) fulfills the condition in (3.2).

The statement of consistency (3.3} is formulated in terms of the variational
distance between the estimator and the (density} function to be estimated, which means
convergence with respect to the strong topology; by experience one knows that the

estimates of a kernel density estimator generate a dispersion, which leads to a
significantly positive variational distance.
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4. The examination of the MaxweH-Hypothesis within a virtual experiment,
4.1. The Maxwell-Hypothesis.

The hypothesis of Maxwell says that the velocity distribution of the constituents
of a gas in a three-dimensional space follows a centered normal distribution
~o.02)® No,0%)® Mo,6? )= N(0,,0°1,)
over R®, the variance o’ being determined up to a multiplicative constant by the
temperture in {K] (Kelvin}

o= , 4.1

where 0, denotes the O-vector in R, 7, the {(3x3)-identity matrix,

kp=138-10%[J/K] the Boltzmann constant and m the mass of the molecule.
In the virtual experiment considered here, we have to reduce the dimensionality,
i.e. instead of a three-dimensional normal velocity distribution over R* a corresponding

two-dimensional velocity distribution over R* is considered.

Confirmation for this hypothesis can be given in {Experimental) Physics only
indirectly, i.e. through checking results out of theories, basing on this hypothesis.

In Theoretical Physics one proves, that the wvelocity distribution of the
constituents of a gas follows a normal distribation, appealing to the principle of
maximization of entropy, which of course is a principle created by the brains of men, and
which itself also can be confirmed only indirectly. The maximization of entropy is not a
causal argument. To prove the one hypothesis, i.e. the one of Maxwell, one bases on an
another one, i.e. the one of maximization of entropy. The phenomenon, which is subject
to the Maxwell-Hypothesis, is evidently a statement about an ergodic equilibrium, as a
consequence out of the ruling dynamics determining the movement of molecules. This
consequence of course is not accessible to direct observation in a laboratory experiment-
but in a computer experiment. In the following we show by a computer experiment, that
the molecular dynamics in mind entails, that the ergodic velocity distribution indeed is a
normal distribution.

4.2. The design of the experiment.
We consider a 2-dimensional circular container B with radius B> 0:

B:z{(xl,xz)el’lz]xf +x§£R1} (4.2)

on the computer. We inject uniformly N non-overlapping molecules of mass m and
radius A into B. The intention of the experiment is to show computer-experimentally,
that the velocity distribution of our molecules follows- independently of any prevailing
starting velocity distribution- in equilibrium, i.e. large 7, a centered normal distribution

N0.07)® No.o? )= No,.6°1,), 4.3)
o’ being determined by the second moment p? of the starting velocity distribution. The
equality o” = pu’ is a consequence out of the law of conservation of energy, saying that
the total kinetic energies K, (0) and £,() at =0 and ¢ =7 are equal.

The conclusion foliows, as by the strong law of large numbers, we have

| i < ' fi ’-a.8
— £, (0)= T2 p(0)00)> —2=25 5p? for N >0 (4.4)
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and
_ N o N
B )= 5 20 ) > o ~LEE@) (beN) @)
for N —>; the latter in case of a centered normal distribution, E(E,{f)) denoting the
expectation of £,{f). <.,.> denotes the standard scalar product.

Remark 4.6. One recc;gnize‘?I from (4.1) and (4.5), that the quadratic form

“ 5, Z?‘” "0t }(‘)V*—E /) (4.6)
is an consistent estimator for the temperature I :
] _
JITOT = %]—rﬂoﬁ:E O)=T *;;;—E(E”(r]) {(neN). (4.7)

Standard argumentation from normal-distribution statistics delivers, that T s
biasfree and as a consequence of the theorem of Lehmann-Scheffé it follows, that it is
even of minimal variance. The resul opens possibilities for the thermal interpretation of
virlual systems of molecules, cf. Section 5.

Remark 4.9. One notices, moreover, that (4.8) is a stochastic formulation of
Boltzmann’s result saying that the temperature 7 in [K] is up to multiplication by a
constant equal to the total kinetic energy.

The dynamics describes in Section 2 is imposed on the system. In order to
compare the evolution of the velocity distribution of the molecules with the equilibrium
distribution postulated by Maxwell, the velocity distribution is estimated basing on a
kemel density estimator (and displayed) at regular {ime intervals.

By reasons of visualization and as our data basis, using a PC only, s too limited,
we substitute the estimation of the 2-dimensional velocity distribution in equilibrium
based on 2-dimensional kernel density estimator by technique applying 1-dimensional
kernel density estimator only: let (¥;,7,) be a vector valued random variable distributed

according to N(0,62)® N(O,o‘z) (cf. (4.1)) over R? equipped with a standard
orthonormal coordinate system. Let a linear subspace 1, of R’ be determined by the
angle ¢ between the first component of the elements of R® and L, ; then the orthogonal
projection V,cos((p)H/gsin((p) of (V,.¥,) onto L, ftollows the normal distribution
N(0,0'z) over L . This is a consequence of the fact that the family of normal

distributions is closed under the convolution operation. But this is only a necessary
condition for (#;,¥,) to be distributed according to N{0,52)® M{0,6*}; beeing fulfiiled
for every angle 0 <@ <2x this condition is also sufficient which follows from the proof
of the Cramer-Wold theorem (cf. [Billingsley 19957, p.383).

4.3. The experiment.

In an experiment available through internet the experimentator can select one of
three predetermined one-dimensional velocity distributions. The mecasure-theoretic
second power of the chosen distribution is taken as two-dimensional starting distribuiion
of the velocities of the molecules.

Moreover, the experimentator can fix two linear subspaces I, and £, related

with angles @, and ¢, resp.
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Basing on the velocity data (micro-data) of the (running) molecules, sampled at
regular time intervals, the velocity distribution of the projection of (V;,7;) onto L, and

L, resp. Is estimated by kernel density estimators, V| and ¥, being random variables
modeling the first and the second component of the velocity vector resp.

The velocity distributions estimated over L, and L, are compared- according to
the Maxwell-Hypothesis- with N(O,Juz)z }\4’({),0'2 )

Independently of the chosen starting distribution and the fixed subspaces L, and
L, the estimates approximate the N (0,0'2), which proves experimentally the

distributional aspect of the Maxwell-Hypothesis. -
We renounced applying the Kolmogorov- Smirnov goodness-of-fit test; instead

of this we calculated the variational distance between the estimates and N (0,0'2 ), i.e. the
distance generating the strong topology on the set of probability measures over L, and
L, resp. The whole experiment is available in the internet under

Choose: Examination of the Maxwell-Hypothesis: Experiment 1.

R

Puisustiiasion o the wxpirnent i " e § EjCommut © ]
The kirnel genslty #sdmates (red curves) ard
COMpAMRT WiiT e Rma fistnixitlon {yretn
CutRs] paatulated at equllirisn by bawalk.

. P Tt ¥ou £an Change the projerton supspuces LT and

REREERA N, L2 tureng; 1he Expanenient

N

[T Angle releted with L 12 79°-

s——nr

r(} Centinu¢ i Renorn t K Canaal

Fig. 1. Examination of the Maxwell- Hypothesis. Experiment1.

The experiment was carried out with 200-400 molecules. According to our
experience, the approximation of the normal distribution by the estimated distribution
improves when the number of molecules is increased. This observation prompted us to
complete these experiments on the vector computer VPP 300 at the Technical University
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of Aachen / Germany with 5000 molecules. The data, which were oblained in a total
computation time of ninety hours, were used to produce three digital videos, each
approximately one minute in length. These videos confirm our observation described
here.

5. One-way-permeable membranes- an example of non-real physies.

5.1. The specification of the problem context.

An advantage of computer experimentation is that even non-real phenomena can
be trated. This prompted us to discuss the thermal velocity distribution of molecules in
the context of a non-real physics (computer-) experiment,

We again consider a system of molecular constituents following, as before, the
Newtonian dynamics, cf. Section 2, imposing now a thermodynamically non-real
behavior. In detail, we consider a ring-shaped box with molecules, which is divided into
two parts by two membranes, which can be passed by the molecules only in the
mathematically positive way. This, of course, contradicts nature; one-way-permeable
membranes for micro-constituents do not exist in reality.

The tangential direction is obviously distinguished among all other directions
with respect to the average velocity of the micro-constituents, which gives rise to analyze
the thermodynamical behavior of the system, e.g. the validity of the equipartition theorem
under the prevailing conditions. The latter states, that the thermodynamics kinetic energy
is uniformly distributed over all degrees of freedom.

We treat this question in a more general way, as we check the Maxwell-
Hypothesis the latter entailing the validity of the equipartition theorem. The methods
applied are, essentially, the ones of Section 4.

5.2. The course of analbysis,

In a ring-shaped box B we consider a system of N molecules of mass m >0
and radius A >0, on which the dynamics from Section 2 is imposed, The ring-shaped box
is divided into two parts by two one-way-permcable membranes, i.e. the molecules can
pass the membranes in only the mathematically positive way. This, of course, contradicts
nature.

A momentary micro-state of the system at time ¢ is described by the 4N -tuple

(x(]}(1),..._.xm(!}U{])(r),...,uw)(t)),
x{“')(t) describing the positions and x["}(t) the velocities of the molecules at time ¢ . The
initial positions xm(ﬂ) and the initial velocities UM(O) are gencrated according to the
uniform distribution over B and according to the normal distribution N(O_.O'Z(O))(@

® ;‘\-’(0,0'2(0)) over R? with o%(0)> 0, resp. By the generation of the initial state of the

system the mechanical energy of it is 0 at time ¢ = 0, while the thermal energy is given by
the total kinetic energy of the micro-constituents:

E,, (0}~ Nmao?(0). (5.1)

For an immediate reference we defing the tangential and the radial component of U(’)(t):

o)~ 00, () (5.2)
U,g}(f):: <U[i)(f)=ek(x{!)(‘))>s (3.3)

and
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e?-(x(') (t)) and ¢, (x{"-) (!)) denoting the unit vector in the tangential an the radial direction
at x(f)(z) resp., i=1..,N. Mareover, we denote the Euclidean norm of x(“](.t) by
r(i}(t), i=1,...N.

As demonstrated in a first experiment, the system of molecules (medium) enters
into a rotational movement in the mathematically positive sense. The angular velocity
o(t) increases as function of time, which can be quantified by solving the LS-ansatz:

N

3 ) - ol r‘*"(r))2 —~> min (5.4

1=l
with respect to w(¢) at regular time intervals.
The whole experiment is available in the internet under
www. fernuni-hagen.de/ WTHEORIE/onling-dokumente.html
Choose: One-way-permeable Membranes: Experimen 1.
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Fig. 2. One-way-permeable Membranes. Experiment 1.

In the first experiment we obviously have a thermodynamic machine which
converts heat, i.e. disordered energy, into mechanical kinetic energy, of course, without
having two pools of heat!

Provided the Maxwell-Hypothesis remains valid even.in this context, the thermal

velocity
(vf;?(r)) _ ( v} ) w(t)r("’(r)}
o3 0)) i) ’
i=1,..,N, at time 7 being a realization of a random variable distributed according o
NMo.o2 ()@ Moo 2()) with

(5.5)
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62 (()= 07 (0) - —- £,,() (5.6)
miN
with
E,, (r):=—i;miw(t)2r‘-”(t)2 , (5.7)
i=1

which will be proved in a second experiment basing on the same technique, as developed
in Section 4.
L, is now fixed as the linear space of the tangential direction, while L, can be

determined in the experiment by the experimentator by fixing the angle ¢, 0<o<n,
between L, and L, .

Analogously to Section 4, (U:h] (r),u,,,z) (instead of (V],Vz) in section 4) is
projected at regular time intervals onto L, and L, . The distributions of these projections

are given with same arguments as in Section 4 by N(O,crz(r)). One notices that &’
defined by (5.6} is a decreasing function of time. In the experiment again the estimates of
the distribution densities may be compared with the cnes of the theoretically correct
distributions. The experiment proving the validity of the Maxwell-Hypothesis under these
spectal conditions is available in the internet under

www.fernuni-hagen.de/WTHEQRIE/online-dokumente himl
Choose: One-way-permeable Membranes: Experiment 2.
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Fig.3. One-way-permeable Membranes: Experiment 2

Notice thereby: In the present experiment we are making only snapshots of the
thermal velocity distribution at ditferent time instants; the variance of the velocity
distribution being decreasing as function of time, By contrast, in Experiment 1 of Section
4 we intended to have an estimate of the velocity distribution as precise as possible. In

-
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Section 4 the initial velocity distribution was an arbitrary one; in the present section we
fixed special normal distributions.

5.3. Cenclusions,

The angular velocity of the medium increases; as an immediate consequently we
get together with (4.1) and (5.6) that the temperature of the medium decreases.

The increases of w(r) is limited, as a consequence of the law of conservation of

energy. the theoretically maximal angular velocity cannot be assumed in the experiment,
nor does the temperature reach ¢ [K]. As the angular velocity of the medium increases,
the molecules are concentrated more and more at the periphery of the ring-shaped box,
but the ideal concentration at the periphery of B cannot be reached. This is a
consequence of the technical data of the experimental plant, especially of A being
positive.

Of course, the design of the experiment defines a thermodynamic machine,
having only one pool of heat, which means a perpetum mobile of second kind,
contradicting Kelvin’s formulation of the second law of thermodynamics, cf. [Reif 1965],
sec. 5.11. this irreality could also be confirmed by showing, that the entropy of the
medium is decreasing as function of time. Although, the Maxwell-Hypothesis, cf. Section
4.1 and 4.2, remains valid and with it also the equipartition theorem,
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