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ON BEHAVIOR OF SOLUTION OF THE INITIAL-BOUNDARY VALUE
PROBLEM FOR THE ROSSBI WAVE EQUATION IN CYLINDRICAL
DOMAIN AT 1 — 4o

Abstract

M this article the unique solvability of itial-boundary value problem for the
Rosshi wave equation in eylindrical domain is investigated and the estimation of solufion
of the initial-boundary value problem at t > +o s received.

At studying dynamics of the acoustic, surface and intrinsic waves Rossbi
equation was introduced. In | 1]-[6] the Cauchy problem and some initial-boundary value
problems for the Sobolev type cquations was studied. But initial-boundary value problem
for the Rosshi wave equation wasn’t studied. We study unique solvability of the initial-
boundary value problem for this equation in multiditmensional cylindricat domain and
receive the estimation of solution of this problem at f-» +co, For this Green function of
corresponding stationary boundary value problem was constructed.

§1. Notations, definitions and uniqueness of solution of initial-boundary
value problem for Rossbi equation.

Let Rm(y) be m -dimensional Euclidean spacc with element y:(y,,yz,...,ym)
and R,{x) is the same space with clement x={x,x, sy ). Let IT=R,{x)xQ be a
cylindrical domain in R, (x}x R {), where Q is a bounded domain in R, (y) with
smooth boundary 3. Let = 1x(0,00) We consider in @ the next problem

g;An+rr:u(x5 -})71) + Aﬂi‘u(x3 }I,f): U (I 1 )
with the initial condition
u(x, .0)=o(x, ) (12)
and the boundary condition
H(JC, .":9{1(?]_[40\0:} =0 " (13)

where A,,, is the Laplacian on (x,y), A, - on x,¢(x,¥)e C3* (1), ¢ - natural number.
Al n=2, m=1 the equation (1.1) describes Rossbi waves.

By C%2) we denote a class of functions u{x,y,1}, which is defined at
(x.y.)e Ux[0,0). DI DY D ulx, y.r)e € (Hx{(0,00)) and

uniformly with respect to y, where M is Euclidean norm of x in R,,(x),-c(8)> ¢ - some
constant, 0sa <2, 0<f8<2 0<y <],

Definition. The function n(x, y,t) we shall call a classical solution of problem
(1.1-(1.3}, if u(x,y_._t)e ¢ (Hx[O,oo))ﬂ ¢t (Hx[ﬂ,d:-)), satisfies the equation (1.1

and conditions {1.2)-(1.3) in ordinary sense.
Theorem 1. The classical solution of the problem ¢1.1)-(1.3) is unigue.
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Proof. We show that homogeneous problem, corresponding to the problem (1.1)-
{1.3) has only trivial solution. Multiplying equation (1.1} to u(x,y,f) and integrating on
11>{0,), we have

f A emtilx, 3, )}A(x,y,t)dl_ldm ]'I(Amu(x,y,r)};(x,y,z)dljdz:0. (1.5)
oY

Let o, (x) be the sphere with center at origin of coordinates and radius R in R, (x),
L, = Qx0,(x). The boundary of [, is

U, = x o, {x)UQxds,(x).
Using the first Green’s formula and boundary condition {1.3) we receive

UI(; }‘du I{,lax[ J Z—[a:)ay}u‘

. B (ou)
ﬂxé‘o{.[x}uan[at )d (-0

where ds is the element of the surface H,. In (1.6) tending R — o by virtue of
condition {1.4) we have that integral on the surface Qx o, (x) tends to zero, Then

RENSEAN
I!( e+t ) JH_ZBIU ;[ax j = I[ ] JJH (17)

By analogy,

_[u(x yOAulx,y.0)d U = IZ[ ou J (1.8)

1t ;
Denoting by

LJ;Z(—@EJdU SV
(S 2] auefoaf

+=!
From (1.5)-(1.8) we receive

1'ed 1 _ ‘
EJ:TIOV,H A "Vyunim}}it + {ﬂ[vj,ujli U”dt =0. (1.9)

Denoted by E(t) energy intcgral
Er) =

v,

i (T.I L0

from (1.9) we have

dt+E(t):E(0). (1.10)

.

Since for homogeneous problem E(0)=0, then from (1.10) we get

(U

g]]vyuihzm)dr + E(f)=0. (1.11)

By virtue of non-negativity every term in (1.11) we have
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V.4, o =0 1||V.v“”;.._,(1n:0'

1,(11)
From this and from ¢(x,y)=0 for homogeneous problem, we receive that ulx, y,0)= 0.
Theorem is proved.

§2. Construction of Green’s function of stationary problem.

By virtue of estimation (1.4) we accomplish Laplace transformation with respeci
to ¢ in problem (1.1)-(1.3). Then obtain the next boundary value problem with complex
parameter & '

kA, (e, p, k) + A, a(x, v, k) = o(x, v), 2.
ﬁ(x,y,k} =0, (2.2)
where Rek >0, #{x,v,k) is a Laplace transformation of u(x,y,t). Now we construct
Green’s function for the problem (2.1)~(2.2). Accomplishing in (2.1)-(2.2) Fourier
transformation with respect to x in this taking into account estimation (1.4) we have
(e + 1A, 5 (s, 3, k)~ kJs|“ (s v, k) = s, ), (2.3)
(s, vk ) o0 = 0, (2.4)
where G(s.y) denotes Fourier transformation of ¢{x,).
We consider the differential operator /., generated by differential expression
L =A,, with domain of definition

()= V) B)ec@Nc@) A v (e L@yr]_-of.
Operator L is a negative-definite self-adjoint operator. It is known [8] (p.177-178) that a
spectrum of operator L is discrete and for its cigen-values 4, are true the inequality

O) A.,] 212 2...2),[,: 2..., Jil‘[l/‘\.g = -0, (2.5)

The eigen-functions y,(y) of the operator L, corresponding to eipen-values A, forms a
basis in the space L,{Q). The next theorem takes place.

Theorem 2. Green’s function of problem (2.1)-(2.2) is an analytic function of the
parameler k at Rek >0 and for its take place the next representation

RSN .
v a2 = 2
Glx,yrz k)= ZV I 2 & L“»[Hﬂ )

=1 .

4k? (2.6)

_ ' 3
* Hf(’.]_Jl(i!x‘ }v(l + %}P’s AE )J,

where H},.'-}(z) is a Hankel function of the first kind and order v. The series in (2.6} at

]x] 208 >0 converges uniformly with respect 1o k and (x, y,z) in every compactum of

11,0< & - some number.

Proof. For construction of Green’s function of problem (2.1)-(2.2) we apply the
method of paper [7]. Using theorem 3.6 from [8] (p.177) for the solution of problem
(2.3)(2.4) we have
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E(S!y, ) i ()Vf(y) 2.7

=k + A, ks

Cils)= Jals. 2 (e)de

The solution of problem (2.1)-(2.2) is determined as the inverse Fourier transformation of

where

E(S,y,k) with respect to 5 :

alx, y. k)=

C (s
(2 )"Z%(y) r(Jc+1);LI k|¢| = @8

The integrating here is ailowed by virtue of theorem 8 from |9] (p.253). Taking into
account
Bls, v}=7(olxx)).

where 7 is a Fourier transformation, from (2.8) w obtain

. USRS
ii(x, y.k) = G )Zw;(y)Iw;(é)L reT— ]dc: 2.9)

where '
0,(&)= Jolg, 2y (). (2.10)
o
Denote by r =& —7 we calculate interior integral in (2.9)
:(\ t}
g (k,7)= ds l m J, o (k.7). Q.11

(ﬁ) ’\ "’“Hﬂ (k+ 1A, - k[.s‘ (275 ’V

Passing on to spherical coordinates, in this taking into account spherical symmetry of
integrand in (2.11) we obtain

oy otS
7. (&, (2.12)
(VLT (Qn-)\z”l fJ[(k+l A, - k‘ I | |

where J, (z) is the Bessel function of v order. We now calculate integral in (2.12). et

H

n be an add number. Then 25.},, I(z) is an even integral function. Continuing this
2

function on interval (- N,0} in even form and using formula

J, (2)= l{}ff} (z)+ 2 (zﬂ (2.13)
L1 2 = E-—] }

2 2

we obtain
‘ li-£ [;\. ‘s|2 ff{” QT‘ |.$)
T
J k)= j dls|+
N k

o)) I
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s Ji' M), @

Poles of the integrand in (2.14) are

. ] \
ISJ]_Z =+ AFLI + ;) .
Taking into account analyticity of integrand in (2.14) and the asympltotic behavior of the

Hanke! function as !s‘ > [10] (p.219), applying theorem of residues and turn N 1o

infmity, we obtain

J’(k’r)_a(zt)_tz J{M /”(H { {'\/— “]
vC)TH (’] [— [ !\/ZE}—HJ} - (2.15)

Taking into account [10] (p.218)
HO (= 2)= (- 1)5 H“’ (z) (2.16)
2y -

2

from (2.15) for J, (k,r) we receive

1.0 _-’:-l e
J, (&, r)*——U—z-— A 14— J Hf,”“z\ Aﬁrnﬂ . (2.17)
a3 VA Ly

Now ket n be an even number. Then z? Jﬁ (z) is an even intepral function. As above
| °
2
expressing in (2.12) the Bessel function by the Hankel functions H E‘z-}{z) on formula
-1

4
i

(2.13) making section (— =0,0} and using formula (2.16), we obtain

s PR )

j’ 2 dls|. (2.18)
22 )5 % (ke + DA, ~ ks
Further, applying theorem of residues to mtcgral (2.18) and turn N to infinity at cven #
for J,{k,7} again we obtain formula (2. 17). Putting expression of .J,{k,7) from (2.17) in
{2.9), changing order of integration and summation, we have

> s

i n (k.7)=

H

- 1 [P i 3
u(x’ }’,.k) = mﬂ X = é 2 Z }I. [l + —
4(2::)[&‘]}\/}—19 | V7 k

H;'j](JAf—ﬁJ [r- %U%(y)w;( b 2L

3

-1
E
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or
ilx,y. k)= Glx, v, 2.k )* o€, 2). (2.19)
where convolution is accomplished on the cylinder IJ. From this for the Green’s
function G(x, y,z,k) of problem (2.1)-(2.2) we receive expression {2.6).
Now we study the convergence of series in (2.6). For this aim we establish some
estimations of the eigen-tunctions y,{y), which are neccssary for further.
In |7] it is shown that

- ifm],
b O, 12 < clafal 5
where lcr] denotes integral part of o . From this by Sobolev’s imbedding theorem we
obtain

1{{m] }
s Wy < c\,y,[i_[ oo (2.20)
It is known, that [9] (p.200)
2 z
col ™ <|A| <™, (2.21)

where ¢g,c, are some constants, which do not depend on /. Then from (2.20)-(2.21), i
follows that

[_EL,
L2
e Oy <t (2.22)

Since A'w,(y} (v-natural number) is on eigen-function of operator L, corresponding

eigen-values A;, then, as above, we can show that

“‘Vf(y]i(-{'-l{‘ﬁ} st (2.23)

It can be shown, thatat Rek > >0

]
I —_
3
Re[l + %}2 2[%([ 1 ! } 2_3_ (2.24)

Since A, satisfies the inequality (2.5), then considering the asymptotic behavior of the

Hankel function HS} (z) at z-—»co [10] (p.219), from (2.22)-(2.24) we receive that the
2.1
2

series in (2.6) converges uniformly with respect to & and (x.y,z) in every compactum of

I[.Its at x =0 can be differentiated arbitrary time with respect to (x,y, z.k). Theorem is
proved.

Lemma 1. Green's function G(x,y,z,k) of problem (2.1)-(2.2) admits analytic
continuation by k to left half plane on exterior of interval [-1,0], which composes
continuous spectrum of problem (2.1)-(2.2).

Proof. Since every term of series (2.6) has singularity at points of interval
[ 1,0}, then making section |- 1,0] for square root we choose a branch which is positive
for positive value radicand. Thus we receive one-valued functions which admits analytic
continuation by 4 to left half planc. Denote by D, an exterior of angle 28 with vertex
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on origin, for with negative semi-axis is bisectrix. Now we show, that at {x| =g, >0 on
exterior of interval [— I,O] on left half plane the series (2.6) convergences uniformly with
respect to ke Dy and (x,y,z_) in every compactum of 1l. For this it is necessary to

estimate Re,[1+ ;{— from below,

Let :{k| and ¢ =argk . Then

el L s, LT L @29
k P

The radicand function in (2.25) its minimum value, which is equal to Ve receives at

F=2.Since
|
—T+ S { Py 7-8
——<arg 1+~ | €
2 k 2
then
1
' \ES 5 .
Re(1+l! Z-l~si119—. {(2.26)
k) T2 2

Taking into account (2.5) and the asymplotics of the Hankel function HS} (z) for z > w
e |

-

from (2.22), (2.26) we receive uniform convergence of series (2.6) in indicated domain.
The interval [— I,O} composes continucus spectrum of problem (2.1)-(2.2), since
in points of interval (-~ 1,0} and &k - —1 + 0 series (2.6) diverges. Lemma is proved.

§3. The behavior of the solution of non-stationary problem (1.1)-
(L3)at1—>+w.

The solution u(x,y,f) of non-stationary problem (1.1)-(1.3) is determined as the
inverse Laplace transformation of #(x, y,k}, that is

ulx, y,1) = 51— et i, v, ) (3.1)

Lt
where £>0 is an arbitrary small number and integral in (3.1} is understood in main
sense. Now we will study behavior of u(x,y,) at £ — +=. Then following theorem is
true.

Theorem 3. Let 8Qe ¥, olx,y) be a finite function, continuous with respect

o x and differentiable 1o order p :{nz J+ {i:— +m with respect to y. Then for

solution of initial-boundary value problem (1.1)-(1.3) at t ~» +ec it holds the estimation
ulx, y,f) = ()(r" ! ]
uniformly on (x, y) in urbitrary-compactum of 1] .
Proof, From (2.19) we receive that
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i, 3,k)= (2“' ﬂ e z,/ W

x HY) [lx 4 l;[ —U%(}’h;(é)dé (3.2)

where ¢, (cf) is defined by 10rmular (2.10). By virtue of uniform convergence of series in
(3.2) it can be integrated term by term on k . Changing the order of integration, we have

(xyt)~—( ) ]Zw (> ﬂx &5 0,(E)x

e 1 %_I m( 1 X
FL\F [” J Hg_i\1X*55 /’L{H;} dk &, (3.3)

where the interior integral is understood in the main sense. Denote

e g_l
T{x0)= IJ_ (nl] H_}l'_}l[\x-zg[ [l-i—Hdk (3.4)

we shall regularize the integral in (3.4) in the next form. Denote in the complex plane %

by Lj ray outgoing from origin and making with the positive imaginary axis an angle of
% and by I, same ray making with the negative imaginary axis an angle of — % We

make section (- 0,0} on the plane k and for square root choose such a branch, which is
real for the positive arguments. Denote by (', a circle of radius £ with center at origin in
the complex plane & and by

5, =Jk:kr.—t(ﬂ'8, 2 sizalrgkg—zi .
] 3 3
L=LUC UL, L=LUL
where L, [, are the parts of rays L, Lj at exterior of (', respectively,

Since integrand in (3.4) decreases at & — oo, then by Cauchy theorem contour of
integration can be substructed on comour L. . From the asymptotics of the Hankel

funetion HL” (z) at z >« it follows that, integrand in (3.4) tends to zero faster than
-
2

arbitrary degree of & at £ >0, - «231 <argk 2—233. Therefore in integral (3.4) taken on

contour L, we can pass 10 limit at £ — 0. Thus

r,(x.,z) (u—\ y {ixt\fx,{nln (3.5)

We study now ?}(x,t) at r— o0, U<

x| < A, where 4 is a constant. Integrating in (3.5)

v times by parts in this integrating ¢ and taking into consideration a differentiation
formula of Hankel functions [10] (p.183) we have
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[ —
1) e Ll 1) {}( (
T{x,1)= S T.-ujf I A 1+; : le /1“1+};} dk +

Ly L

—v—i .
+ () j-m——\/afu—J HY [M z,,fulﬂdk . (3.6)
fq;k 2 2 i B k

Now we estimate integrals in (3.6). Since they arc cstimated by the same form, then we
estimate the last integral.

Lemma 2, A1 k eLﬁ,]k\:rz%

_ 3\
Re 1+*-> IJ (3.7)
| .5 ..]
R61/I+—.?2 1p 2,
k

Proof. Consider the case &  L; , the case k < L is done by analogy

and ¥ <—

1 S 2 . 2%
1+—=14r"| cOs— —isin-—1.
k 3 3

Then
] ] ]
rlell+—{= Jl +—— -
S0)2|l+ =l
Atr{l
2
\[ L1 W2
]-1——'-;-—-—35-“—"?"
r I3 2
From this
! LI
Re”l-'rl:l+l4(:05;£:~2_7r_E
k ki 3

Let now r 25-. I'hen the function / (r) takes its minimal value at » = 2 and

. 3
min () =

P
2

|
Re ]...l_g.l..;;}jJ
\ k24

Then

Lemma is proved.
Consider
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& L
T;M(x.t)~fj ,1,[1+;( 2 f“’ Ux|/ 1+ dk (3.8)
Ll,k ‘”‘*—

We estimate 7' (x, 1) at |x125 >0, 4, - —o0,t —> . By virtue of asymptotic form of

the Henkel function H” (z) at z > we have
=1

:
=5l T
2 —|x|| A I+-
’A,(Hl) oM ! k. (3.9)
k -.+—2— k

Integrand in (3.9) at point £ =0 has a zero of infimity order and at k — oo on coniour L,

W(.If)

tends to zero exponentially. Estimating modulo by virtue of (2.5), (3.7) we oblain
Ifn, 2} -1
7 (x, I)I <O, )22 2}'.\" 7,
whore C is a constants. From this and (3.6) it follows that

TeSESS ’ZM““ Il g, ﬂx-r'él'_Tn+"<p;(§)dé, (3.10)

where C'(v) is a constant, depending of v .
Taking into account estimation {2.20) and that (&, z) is finite function with
respect to £ applying Cauchy’s-Bunyakovcki’s inequality to (3.10) we obtain

e, y, 0= £ ){ Ak ’”+ZM“‘ bl _ﬂ(ﬂ;(é)] dé} (3.11)

uniformly with respect to x in every compactum of R Further by B.Levi’s theorem

le " ﬂ%(é)l dé = ZI»‘»I rw,(a)l }1 (3.12)

nii=l
Since function (&, 2) no z satlsﬁes to conditions of theorem 8 of [9} (p.253) then

“lo &) <0 N - (3.13)

)\q

From (3.11)-(3.13) we get
e, 30 < “‘”{i mfp(e:,4||m,d¢} (3.14)

uniformly with respect to (x, ¥) in every compactum of IJ . By virtue of estimation
{2.21) series in (3.14) converges. From (3.14) we get

Ulx, y, y=0("")
uniformly with respect to (x, y) in every compactum of Z{ . Theorem 3 if proved.

§4. The estimation of the solution of nou-stationary problem (1.1)-(1.3).

Now we receive the estimation (1.4) for the solution of non-stationary problem
{1.1)-(1.3). Estimating modulo in (3.3) where the contour of integration (& — i, & + i)

is substituted by L_ we get
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= IR | |
e, v, 0l < CY o O, Jl ¢l 2Joo)f JH f?fjl(\x*é\ A,[nﬂ I, | |2 . a1y
{=t R, Ll 2 :

It can be show that at k € (:L

1
| i Y
Re(l . ;) . 5[1 ' .;?]‘ —¢y(z). (4.2)

By virtue of estimations (2.20), (4.2) and the asymptotic of the Hankel function at
infinity from (4.1) we have

s voof e S 5] ] o-gp st

i, (E)dE <

et dg)mz‘llz}u[. H ﬂx ‘:‘ 2(:‘ ts)ln:\ko (é)]dg .

where c(6)=¢, ()4, D is the compact support of @(&,z) on & . Applying Cauchy’s-
Bunyakoveki’s inequality we obtain

e H S,
f=

S H)[ Jor®) “'EJ @3)

Further by B.Levi's theorem [11] {p.134) from (4.3) we get

sce” M Sl " S
=]

i d=1

5 e ] d . (4.4)

e, 3,2,
From (3.15) and (4.4) we have

< C‘gﬂquﬂxl{i[lx ‘--m m(o E zl' rw+ dé
f]

-(Sl}

(%, 3,1,

By analogy we estimate derivatives of u(x,y,r), contained in (1.4). In this in formula
(3.3) the w,{y) substituted by D_fl;/,(y) and o, (E) by ¢, (é) Then we get

"+ flpzote, N e )
I o

b

ety ce” | 5
[

The estimation (1.4} is proved.
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