ISKENDEROV B.A., SARDAROV V.G.

ON BEHAVIOR OF SOLUTION OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE ROSSBI WAVE EQUATION IN CYLINDRICAL DOMAIN AT $t \to +\infty$

Abstract

In this article the unique solvability of initial-boundary value problem for the Rosshi wave equation in cylindrical domain is investigated and the estimation of solution of the initial-boundary value problem at $t \to +\infty$ is received.

At studying dynamics of the acoustic, surface and intrinsic waves Rossbi equation was introduced. In [1]-[6] the Cauchy problem and some initial-boundary value problems for the Sobolev type equations was studied. But initial-boundary value problem for the Rossbi wave equation wasn't studied. We study unique solvability of the initial-boundary value problem for this equation in multidimensional cylindrical domain and receive the estimation of solution of this problem at $t \to +\infty$. For this Green function of corresponding stationary boundary value problem was constructed.

§1. Notations, definitions and uniqueness of solution of initial-boundary value problem for Rossbi equation.

Let $R_m(y)$ be m-dimensional Euclidean space with element $y = (y_1, y_2, ..., y_m)$ and $R_n(x)$ is the same space with element $x = (x_1, x_2, ..., x_m)$. Let $\coprod = R_n(x) \times \Omega$ be a cylindrical domain in $R_n(x) \times R_m(y)$, where Ω is a bounded domain in $R_m(y)$ with smooth boundary $\partial \Omega$. Let $Q = \coprod \times (0, \infty)$ We consider in Q the next problem

$$\frac{\partial}{\partial t} \Delta_{n+m} u(x, y, t) + \Delta_m u(x, y, t) = 0$$
 (1.1)

with the initial condition

$$u(x, y, 0) = \varphi(x, y) \tag{1.2}$$

and the boundary condition

$$u(x,y,t)|_{\partial \mathbb{H}^{\times}(0,\infty)} = 0, \qquad (1.3)$$

where Δ_{n+m} is the Laplacian on (x,y), Δ_n - on $x, \varphi(x,y) \in C_0^{0,\mu}(\mathbf{H})$, μ - natural number. At n=2, m=1 the equation (1.1) describes Rossbi waves.

By $C^{(2,2,1)}$ we denote a class of functions u(x,y,t), which is defined at $(x,y,t) \in \coprod \times [0,\infty)$, $D_x^a D_v^\beta D_t^\nu u(x,y,t) \in C^{0,0,0}(\coprod \times (0,\infty))$ and

$$\left| D_x^{\alpha} D_y^{\beta} D_t^{\gamma} u(x, y, t) \right| \le C e^{ct - c(\varepsilon) |x|} \tag{1.4}$$

uniformly with respect to y, where |x| is Euclidean norm of x in $R_n(x)$, $c(\varepsilon) > 0$ - some constant, $0 \le \alpha \le 2$, $0 \le \beta \le 2$, $0 \le \gamma \le 1$.

Definition. The function u(x,y,t) we shall call a classical solution of problem (1.1)-(1.3), if $u(x,y,t) \in C^{2,2,1}(\coprod \times [0,\infty)) \cap C^{1,1,1}(\coprod \times [0,\infty))$, satisfies the equation (1.1) and conditions (1.2)-(1.3) in ordinary sense.

Theorem 1. The classical solution of the problem (1.1)-(1.3) is unique.

Proof. We show that homogeneous problem, corresponding to the problem (1.1)-(1.3) has only trivial solution. Multiplying equation (1.1) to u(x, y, t) and integrating on $\coprod \times (0, t)$, we have

$$\int_{0}^{t} \iint_{\Omega} \left(\frac{\partial}{\partial t} \Lambda_{n+m} u(x,y,t) \right) u(x,y,t) d \coprod dt + \int_{0}^{t} \iint_{\Omega} (\Delta_{m} u(x,y,t)) u(x,y,t) d \coprod dt = 0.$$
 (1.5)

Let $\sigma_R(x)$ be the sphere with center at origin of coordinates and radius R in $R_n(x)$, $\coprod_R = \Omega \times \sigma_R(x)$. The boundary of \coprod_R is

$$\partial \coprod_{R} = \partial \Omega \times \sigma_{R}(x) \cup \Omega \times \partial \sigma_{R}(x).$$

Using the first Green's formula and boundary condition (1.3) we receive

$$\int_{\mathbf{U}_{R}} \left(\frac{\partial}{\partial t} \Delta_{n+m} u \right) u d \mathbf{U} = \int_{\mathbf{U}_{R}} \left\{ \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\frac{\partial u}{\partial t} \right) \frac{\partial u}{\partial x_{i}} + \sum_{i=1}^{n} \frac{\partial}{\partial y_{j}} \left(\frac{\partial u}{\partial t} \right) \frac{\partial u}{\partial y_{j}} \right\} d \mathbf{U} - - \int_{\Omega \times \partial \sigma_{R}(x)} u \frac{\partial}{\partial n} \left(\frac{\partial u}{\partial t} \right) ds, \tag{1.6}$$

where ds is the element of the surface \coprod_R . In (1.6) tending $R \to \infty$ by virtue of condition (1.4) we have that integral on the surface $\Omega \times \partial \sigma_R(x)$ tends to zero. Then

$$\iint_{\Pi} \left(\Delta_{n+m} \frac{\partial u}{\partial t} \right) u d \Pi = \frac{1}{2} \frac{\partial}{\partial t} \iint_{\Pi} \left[\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}} \right)^{2} + \sum_{j=1}^{n} \left(\frac{\partial u}{\partial y_{j}} \right)^{2} \right] d \Pi . \tag{1.7}$$

By analogy,

$$\int_{\Pi} u(x, y, t) \Delta_m u(x, y, t) d \coprod = \int_{\Pi} \int_{J=1}^{m} \left(\frac{\partial u}{\partial y_J} \right)^2 d \coprod . \tag{1.8}$$

Denoting by

$$\int_{\coprod_{i=1}^{m}} \left(\frac{\partial u}{\partial x_{i}} \right)^{2} d \coprod = \left\| \nabla_{x} u \right\|_{L_{2}(\coprod)}^{2},$$

$$\int_{\coprod_{i=1}^{m}} \left(\frac{\partial u}{\partial y_{i}} \right)^{2} d \coprod = \left\| \nabla_{y} u \right\|_{L_{2}(\coprod)}^{2}.$$

From (1.5)-(1.8) we receive

$$\frac{1}{2} \int_{0}^{t} \frac{d}{dt} \left(\left\| \nabla_{x} u \right\|_{L_{2}(\Pi)}^{2} + \left\| \nabla_{y} u \right\|_{L_{2}(\Pi)}^{2} \right) dt + \int_{0}^{t} \left\| \nabla_{y} u \right\|_{L_{2}(\Pi)}^{2} dt = 0.$$
 (1.9)

Denoted by E(t) energy integral

$$E(t) = \left\| \nabla_x u \right\|_{L_2(\coprod)}^2 + \left\| \nabla_y u \right\|_{L_2(\coprod)}^2$$

from (1.9) we have

$$\int_{0}^{t} \left\| \nabla_{y} u \right\|_{L_{2}(\mathbf{U})}^{2} dt + E(t) = E(0). \tag{1.10}$$

Since for homogeneous problem E(0) = 0, then from (1.10) we get

$$\int_{0}^{t} \left\| \nabla_{y} u \right\|_{L_{2}(\mathbf{U})}^{2} dt + E(t) = 0.$$
 (1.11)

By virtue of non-negativity every term in (1.11) we have

$$\left\|\nabla_{x}u\right\|_{L_{2}(\mathbf{H})}=0, \quad \left\|\nabla_{y}u\right\|_{L_{2}(\mathbf{H})}=0.$$

From this and from $\varphi(x,y) \equiv 0$ for homogeneous problem, we receive that $u(x,y,t) \equiv 0$. Theorem is proved.

§2. Construction of Green's function of stationary problem.

By virtue of estimation (1.4) we accomplish Laplace transformation with respect to t in problem (1.1)-(1.3). Then obtain the next boundary value problem with complex parameter k

$$k\Delta_{n+m}\hat{u}(x,y,k) + \Delta_m\hat{u}(x,y,k) = \varphi(x,y), \tag{2.1}$$

$$\hat{u}(x,y,k)|_{\partial H} = 0, \tag{2.2}$$

where $\operatorname{Re} k > 0$, $\hat{u}(x, y, k)$ is a Laplace transformation of u(x, y, t). Now we construct Green's function for the problem (2.1)-(2.2). Accomplishing in (2.1)-(2.2) Fourier transformation with respect to x in this taking into account estimation (1.4) we have

$$(k+1)\Delta_m \widetilde{u}(s,y,k) - k|s|^2 \widetilde{u}(s,y,k) = \widetilde{\varphi}(s,y), \qquad (2.3)$$

$$\widetilde{\hat{u}}(s,y,k)|_{\partial\Omega} = 0, \qquad (2.4)$$

where $\widetilde{\varphi}(s, y)$ denotes Fourier transformation of $\varphi(x, y)$.

We consider the differential operator L, generated by differential expression $\widetilde{L} = \Delta_m$ with domain of definition

$$D(L) = \left\{ V(y) : V(y) \in C^2(\Omega) \cap C(\overline{\Omega}), \Delta_m V(y) \in L_2(\Omega), V \right\}_{\partial \Omega} = 0$$

Operator L is a negative-definite self-adjoint operator. It is known [8] (p.177-178) that a spectrum of operator L is discrete and for its eigen-values λ_i are true the inequality

$$0 > \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell \ge \dots, \quad \lim_{\ell \to \infty} \lambda_\ell = -\infty. \tag{2.5}$$

The eigen-functions $\psi_l(y)$ of the operator L, corresponding to eigen-values λ_l forms a basis in the space $L_2(\Omega)$. The next theorem takes place.

Theorem 2. Green's function of problem (2.1)-(2.2) is an analytic function of the parameter k at Rek > 0 and for its take place the next representation

$$G(x,y,z,k) = \frac{(2\pi)^{-\left(\frac{n}{2}+1\right)}|x|^{1-\frac{n}{2}}}{4k^{\frac{1}{2}}} \sum_{l=1}^{\infty} \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}} \times H_{\frac{n-1}{2}}^{(1)} \left(|x| \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)} \psi_{l}(y) \psi_{l}(z)\right),$$
(2.6)

where $H_v^{(1)}(z)$ is a Hankel function of the first kind and order v. The series in (2.6) at $|x| \ge \delta > 0$ converges uniformly with respect to k and (x, y, z) in every compactum of H, $0 < \delta$ - some number.

Proof. For construction of Green's function of problem (2.1)-(2.2) we apply the method of paper [7]. Using theorem 3.6 from [8] (p.177) for the solution of problem (2.3)-(2.4) we have

$$\widetilde{\hat{u}}(s,y,k) = \sum_{l=1}^{\infty} \frac{c_l(s)\psi_l(y)}{(k+1)\lambda_l - k|s|^2},$$
(2.7)

where

$$C_l(s) = \int_{\Omega} \widetilde{\varphi}(s,z) \psi_l(z) dz$$
.

The solution of problem (2.1)-(2.2) is determined as the inverse Fourier transformation of $\tilde{u}(s, y, k)$ with respect to s:

$$\hat{u}(x,y,k) = \frac{1}{(2\pi)^n} \sum_{l=1}^{\infty} \psi_l(y) \int_{R_n} \frac{C_l(s) e^{-i(s,x)}}{(k+1)\lambda_l - k|s|^2} ds , \qquad (2.8)$$

The integrating here is allowed by virtue of theorem 8 from [9] (p.253). Taking into account

$$\widetilde{\varphi}(s,y) = \mathcal{F}(\varphi(x,y)),$$

where 7 is a Fourier transformation, from (2.8) w obtain

$$\hat{u}(x,y,k) = \frac{1}{(2\pi)^n} \sum_{l=1}^{\infty} \psi_l(y) \int_{R_n} \varphi_l(\xi) \left[\int_{R_n} \frac{e^{i(x,\xi-x)}}{(k+1)\lambda_l - k|s|^2} \right] d\xi , \qquad (2.9)$$

where

$$\varphi_I(\xi) = \int_{\Omega} \varphi(\xi, z) \psi_I(z) dz. \qquad (2.10)$$

Denote by $\tau = \xi - \tau$ we calculate interior integral in (2.9)

$$J_{I}(k,\tau) = \frac{1}{(2\pi)^{n}} \lim_{N \to \infty} \int_{|s| \le N} \frac{e^{I(N,\tau)} ds}{(k+1)\lambda_{I} - k|s|^{2}} = \frac{1}{(2\pi)^{n}} \lim_{N \to \infty} J_{I,N}(k,\tau).$$
 (2.11)

Passing on to spherical coordinates, in this taking into account spherical symmetry of integrand in (2.11) we obtain

$$J_{I,N}(k,\tau) = \frac{\tau^{1-\frac{n}{2}}}{(2\pi)^{(\frac{n}{2}+1)}} \int_{0}^{N} \frac{|s|^{\frac{n}{2}} \dot{J}_{\frac{n}{2}-1}(\tau||s|)}{(k+1)\lambda_{I} - k|s|^{2}} d|s|, \qquad (2.12)$$

where $\dot{J}_{\nu}(z)$ is the Bessel function of ν order. We now calculate integral in (2.12). Let n be an add number. Then $z^{\frac{n}{2}}\dot{J}_{\frac{n}{2}-1}(z)$ is an even integral function. Continuing this

function on interval (-N,0) in even form and using formula

$$\dot{J}_{\frac{n}{2}-1}(z) = \frac{1}{2} \left(H_{\frac{n}{2}-1}^{(1)}(z) + H_{\frac{n}{2}-1}^{(2)}(z) \right)$$
 (2.13)

we obtain

$$J_{l,N}(k,\tau) = \frac{|\tau|^{1-\frac{n}{2}}}{4(2\pi)^{\left(1+\frac{n}{2}\right)}} \begin{cases} \int_{N}^{N} \frac{|s|^{\frac{n}{2}} H_{\frac{n}{2}+1}^{(1)}(|\tau||s|)}{\frac{1}{2}(k+1)\lambda_{l} - k|s|^{2}} d|s| + \frac{1}{2} \int_{N}^{N} \frac{|s|^{\frac{n}{2}} H_{\frac{n}{2}+1}^{(1)}(|\tau||s|)}{\frac{1}{2}(k+1)\lambda_{l} - k|s|^{\frac{n}{2}}} d|s|^{\frac{n}{2}} d|$$

$$+ \int_{N}^{N} \frac{\left| s \right|^{\frac{n}{2}} H_{\frac{n}{2}-1}^{(2)} \left(|\tau| \left| s \right| \right)}{\left(k+1 \right) \lambda_{l} - k \left| s \right|^{2}} d \left| s \right| + \begin{cases} = J_{l,N}^{(1)} \left(k, \tau \right) + J_{l,N}^{(2)} \left(k, \tau \right). \end{cases}$$
 (2.14)

Poles of the integrand in (2.14) are

$$|s|_{1.2} = +\sqrt{\lambda_i\left(1+\frac{1}{k}\right)}$$
.

Taking into account analyticity of integrand in (2.14) and the asymptotic behavior of the Hankel function as $|s| \to \infty$ [10] (p.219), applying theorem of residues and turn N to infinity, we obtain

$$J_{l}(k,\tau) = \frac{\left|\tau\right|^{1-\frac{n}{2}}}{4(2\pi)^{\left(\frac{n}{2}+1\right)}} \left\{ \frac{1}{2\sqrt{k}} \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}} \left[H_{n-1}^{(1)} \left(\left|\tau\right| \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)} \right) + \left(-1\right)^{\frac{n}{2}-1} H_{\frac{n-1}{2}-1}^{(2)} \left(-\left|\tau\right| \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)} \right) \right] \right\}.$$

$$(2.15)$$

Taking into account [10] (p.218)

$$H_{\frac{n}{2}-1}^{(2)}(-z) = (-1)^{\frac{n}{2}-1}H_{\frac{n}{2}-1}^{(2)}(z), \qquad (2.16)$$

from (2.15) for $J_I(k,\tau)$ we receive

$$J_{l}(k,\tau) = \frac{|\tau|^{1-\frac{n}{2}}}{4(2\pi)^{\left(\frac{n}{2}+1\right)}} \sqrt{\lambda_{l}\left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}} H_{\frac{n}{2}-1}^{(1)}\left||\tau|\sqrt{\lambda_{l}\left(1+\frac{1}{k}\right)}\right|. \tag{2.17}$$

Now let n be an even number. Then $z^{\frac{n}{2}} \dot{J}_{\frac{n}{2}-1}(z)$ is an even integral function. As above expressing in (2.12) the Bessel function by the Hankel functions $H_{\frac{n}{2}-1}^{(1,2)}(z)$ on formula (2.13) making section $(-\infty,0)$ and using formula (2.16), we obtain

$$J_{t,N}(k,\tau) = \frac{|\tau|^{1-\frac{n}{2}}}{2(2\pi)(\frac{n}{2}\cdot 1)} \int_{-N}^{N} \frac{|s|^{\frac{n}{2}} H_{\frac{n}{2}\cdot 1}^{(1)} (|\tau||s|)}{(k+1)\lambda_{t} - k|s|^{2}} d|s|.$$
 (2.18)

Further, applying theorem of residues to integral (2.18) and turn N to infinity at even n for $J_i(k,\tau)$ again we obtain formula (2.17). Putting expression of $J_i(k,\tau)$ from (2.17) in (2.9), changing order of integration and summation, we have

$$\hat{u}(x,y,k) = \frac{1}{4(2\pi)^{\binom{n}{2}+1}\sqrt{k}} \prod_{i} |x-\xi|^{i} \sum_{j=1}^{n} \sqrt{\lambda_{j} \left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}},$$

$$H_{\frac{n}{2}-1}^{(1)} \left(|x-\xi|\sqrt{\lambda_{j} \left(1+\frac{1}{k}\right)}\right) \psi_{j}(y) \psi_{j}(z) \varphi(\xi,z) d \coprod,$$

or

$$\hat{u}(x,y,k) = G(x,y,z,k) * \varphi(\xi,z),$$
 (2.19)

where convolution is accomplished on the cylinder \coprod . From this for the Green's function G(x,y,z,k) of problem (2.1)-(2.2) we receive expression (2.6).

Now we study the convergence of series in (2.6). For this aim we establish some estimations of the eigen-functions $\psi_I(y)$, which are necessary for further.

In [7] it is shown that

$$\|\psi_I(y)\|_{H^{\left(\left\lfloor\frac{m}{2}\right]+1\right)}(\Omega)} \leq C\left|\lambda_I\right|^{\frac{1}{2}\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)},$$

where $[\sigma]$ denotes integral part of σ . From this by Sobolev's imbedding theorem we obtain

$$\|\psi_{l}(y)\|_{C(\overline{\Omega})} \le C|\lambda_{l}|^{\frac{1}{2}(\left[\frac{m}{2}\right]+1)}.$$
 (2.20)

It is known, that [9] (p.200)

$$c_0 l^{\frac{2}{m}} < |\lambda_i| < c_1 l^{\frac{2}{m}}, \tag{2.21}$$

where c_0, c_1 are some constants, which do not depend on l. Then from (2.20)-(2.21), it follows that

$$\|\psi_l(y)\|_{C(\overline{\Omega})} \le Cl^{\frac{\left[\frac{m}{2}\right]+1}{m}}.$$
 (2.22)

Since $\Delta^v \psi_I(y)$ (v-natural number) is on eigen-function of operator L, corresponding eigen-values λ_I^v , then, as above, we can show that

$$\|\psi_{I}(y)\|_{C^{(r)}(\overline{\Omega})} \leq CI^{\frac{\left[\frac{m}{2}\right]^{r+\nu}}{m}}.$$
(2.23)

It can be shown, that at $\text{Re } k \ge \varepsilon > 0$

$$\operatorname{Re}\left(1 + \frac{1}{k}\right)^{\frac{1}{2}} \ge \frac{\sqrt{2}}{2} \left(1 + \frac{1}{|k|^2}\right)^{\frac{1}{4}} \ge \frac{\sqrt{2}}{2}.$$
 (2.24)

Since λ_l satisfies the inequality (2.5), then considering the asymptotic behavior of the Hankel function $H_{\frac{n}{2}-1}^{(1)}(z)$ at $z \to \infty$ [10] (p.219), from (2.22)-(2.24) we receive that the

series in (2.6) converges uniformly with respect to k and (x, y, z) in every compactum of \coprod . Its at $x \neq 0$ can be differentiated arbitrary time with respect to (x, y, z, k). Theorem is proved.

Lemma 1. Green's function G(x,y,z,k) of problem (2.1)-(2.2) admits analytic continuation by k to left half plane on exterior of interval [-1,0], which composes continuous spectrum of problem (2.1)-(2.2).

Proof. Since every term of series (2.6) has singularity at points of interval [-1,0], then making section [-1,0] for square root we choose a branch which is positive for positive value radicand. Thus we receive one-valued functions which admits analytic continuation by k to left half plane. Denote by D_{δ} an exterior of angle 2δ with vertex

on origin, for with negative semi-axis is bisectrix. Now we show, that at $|x| \ge \sigma_0 > 0$ on exterior of interval [-1,0] on left half plane the series (2.6) convergences uniformly with respect to $k \in D_{\delta}$ and (x,y,z) in every compactum of \coprod . For this it is necessary to estimate $\operatorname{Re} \sqrt{1+\frac{1}{k}}$ from below.

Let r = |k| and $\varphi = \arg k$. Then

$$\left|1 + \frac{1}{k}\right| = \sqrt{1 + \frac{1}{r^2} + \frac{2\cos\varphi}{r}} \ge \sqrt{1 + \frac{1}{r^2} - \frac{1}{r}}.$$
 (2.25)

The radicand function in (2.25) its minimum value, which is equal to $\frac{1}{4}$, receives at r=2. Since

$$\frac{-\pi + \delta}{2} \le \arg\left(1 + \frac{1}{k}\right)^{\frac{1}{2}} \le \frac{\pi - \delta}{2}$$

then

$$\operatorname{Re}\left(1+\frac{1}{k}\right)^{\frac{1}{2}} \ge \frac{1}{2}\sin\frac{\delta}{2}.\tag{2.26}$$

Taking into account (2.5) and the asymptotics of the Hankel function $H_{\frac{n}{2}-1}^{(1)}(z)$ for $z \to \infty$

from (2.22), (2.26) we receive uniform convergence of series (2.6) in indicated domain.

The interval [-1,0] composes continuous spectrum of problem (2.1)-(2.2), since in points of interval (-1,0) and $k \rightarrow -1 + 0$ series (2.6) diverges. Lemma is proved.

§3. The behavior of the solution of non-stationary problem (1.1)-(1.3) at $t \to +\infty$.

The solution u(x, y, t) of non-stationary problem (1.1)-(1.3) is determined as the inverse Laplace transformation of $\hat{u}(x, y, k)$, that is

$$u(x,y,t) = \frac{1}{2\pi i} \int_{s-\mu_0}^{s+i\infty} e^{kt} \hat{u}(x,y,k) dk, \qquad (3.1)$$

where $\varepsilon > 0$ is an arbitrary small number and integral in (3.1) is understood in main sense. Now we will study behavior of u(x,y,t) at $t \to +\infty$. Then following theorem is true.

Theorem 3. Let $\partial \Omega \in C^{\mu}$, $\varphi(x,y)$ be a finite function, continuous with respect to x and differentiable to order $\mu = \left[\frac{n-1}{2}\right] + \left[\frac{m}{2}\right] + m$ with respect to y. Then for solution of initial-boundary value problem (1.1)-(1.3) at $t \to +\infty$ it holds the estimation $u(x,y,t) = O(t^{-\nu})$

uniformly on (x,y) in arbitrary-compactum of \coprod .

Proof. From (2.19) we receive that

$$\hat{u}(x,y,k) = \frac{(2\pi)^{-\binom{n}{2}+1}}{4k} \iint_{R_p} |x-\xi|^{1-\frac{n}{2}} \sum_{l=1}^{\infty} \sqrt{\lambda_l \left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}} \times H_{\frac{n}{2}-1}^{(1)} \left[|x-\xi| \sqrt{\lambda_l \left(1+\frac{1}{k}\right)}\right] \psi_l(y) \varphi_l(\xi) d\xi,$$
(3.2)

where $\varphi_i(\xi)$ is defined by formular (2.10). By virtue of uniform convergence of series in (3.2) it can be integrated term by term on k. Changing the order of integration, we have

$$u(x,y,t) = -\frac{(2\pi)^{-\left(\frac{n}{2}+2\right)}}{4} \sum_{l=1}^{\infty} \psi_{l}(y) \int_{R_{n}} |x-\xi|^{1-\frac{n}{2}} \varphi_{l}(\xi) \times \left[\int_{\varepsilon-i\infty}^{\varepsilon-i\infty} \frac{e^{kt}}{\sqrt{k}} \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)^{\frac{n}{2}-1}} H_{\frac{n}{2}-1}^{(1)} \left(|x-\xi| \sqrt{\lambda_{l} \left(1+\frac{1}{k}\right)} \right) dk \right] d\xi,$$
(3.3)

where the interior integral is understood in the main sense. Denote

$$T_{i}(x,t) = \int_{\kappa-i\infty}^{\kappa+i\infty} \frac{e^{kt}}{\sqrt{k}} \sqrt{\lambda_{i} \left(1 + \frac{1}{k}\right)^{\frac{n}{2} - 1}} H_{\frac{n}{2} - 1}^{\{1\}} \left(|x - \xi| \sqrt{\lambda_{i} \left(1 + \frac{1}{k}\right)} \right) dk, \qquad (3.4)$$

we shall regularize the integral in (3.4) in the next form. Denote in the complex plane k by L_0^+ ray outgoing from origin and making with the positive imaginary axis an angle of $\frac{\pi}{6}$ and by L_0^- same ray making with the negative imaginary axis an angle of $-\frac{\pi}{6}$. We make section $(-\infty,0)$ on the plane k and for square root choose such a branch, which is real for the positive arguments. Denote by C_k a circle of radius k with center at origin in the complex plane k and by

$$\widetilde{C}_{k} = \left\{ k : k \in C_{\varepsilon}, -\frac{2\pi}{3} \le \arg k \le \frac{2\pi}{3} \right\},$$

$$L_{\varepsilon} = L_{\varepsilon}^{-} \bigcup \widetilde{C}_{\varepsilon} \bigcup L_{\varepsilon}^{+}, \quad L_{0} = L_{0}^{-} \bigcup L_{0}^{+}$$

where L_{ε}^- , L_{ε}^+ are the parts of rays L_0 , L_0^+ at exterior of C_{ε} respectively.

Since integrand in (3.4) decreases at $k \to \infty$, then by Cauchy theorem contour of integration can be substructed on contour L_{ε} . From the asymptotics of the Hankel function $H_{\frac{n-1}{2}-1}^{(1)}(z)$ at $z\to\infty$ it follows that, integrand in (3.4) tends to zero faster than

arbitrary degree of k at $k \to 0$, $-\frac{2\pi}{3} \le \arg k \le \frac{2\pi}{3}$. Therefore in integral (3.4) taken on contour L_k we can pass to limit at $\varepsilon \to 0$. Thus

$$T_{l}(x,t) = \int_{l_{1}}^{\infty} \frac{e^{kt}}{\sqrt{k}} \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)^{\frac{n}{2} - 1}} H_{\frac{n}{2} - 1}^{(t)} \left(|x| \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)} \right) dk . \tag{3.5}$$

We study now $T_l(x,t)$ at $t \to +\infty$, $0 < |x| \le A$, where A is a constant. Integrating in (3.5) v times by parts in this integrating e^{kt} and taking into consideration a differentiation formula of Hankel functions [10] (p.183) we have

$$T_{l}(x,t) = \frac{(-1)^{\nu}}{2^{\nu} I^{\nu}} \left\{ \nu!! \int_{L_{0}} \frac{e^{kt}}{k^{\nu+\frac{1}{2}}} \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)^{\frac{n}{2} - 1}} H_{\frac{n}{2} - 1}^{(1)} \left(|x| \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)} \right) dk + \dots + \left(|x| \lambda_{l} \right)^{\nu} \int_{L_{0}} \frac{e^{kt}}{k^{2\nu+\frac{1}{2}}} \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)^{\frac{n}{2} - \nu - 1}} H_{\frac{n}{2} - \nu - 1}^{(1)} \left(|x| \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)} \right) dk \right\}.$$

$$(3.6)$$

Now we estimate integrals in (3.6). Since they are estimated by the same form, then we estimate the last integral.

Lemma 2. At $k \in L_0^{\pm}$, $|k| = r \ge \frac{1}{2}$

$$\operatorname{Re}\sqrt{1+\frac{1}{k}} \ge \frac{1}{2} \left(\frac{3}{4}\right)^{\frac{1}{4}},$$
 (3.7)

and $r < \frac{1}{2}$

$$\operatorname{Re}\sqrt{1+\frac{1}{k}} \ge 2^{-\frac{5}{4}}r^{-\frac{1}{2}}$$
.

Proof. Consider the case $k \in L_0^-$, the case $k \in L_0^-$ is done by analogy

$$1 + \frac{1}{k} = 1 + r^{-1} \left(\cos \frac{2\pi}{3} - i \sin \frac{2\pi}{3} \right).$$

Then

$$f(r) = \left|1 + \frac{1}{k}\right| = \sqrt{1 + \frac{1}{r^2} - \frac{1}{r}}$$
.

At $r < \frac{1}{2}$

$$\sqrt{1+\frac{1}{r^2}-\frac{1}{r}}>\frac{\sqrt{2}}{2}r$$
.

From this

$$\operatorname{Re} \sqrt{1 + \frac{1}{k}} = \left| 1 + \frac{1}{k} \right|^4 \cos \frac{\pi}{3} > 2^{-\frac{5}{4}} r^{-\frac{1}{2}}.$$

Let now $r \ge \frac{1}{2}$. Then the function f(r) takes its minimal value at r = 2 and

$$\min_{r\geq \frac{1}{2}}f(r)=\frac{3}{4}.$$

Then

$$\operatorname{Re} \sqrt{1 + \frac{1}{k}} \ge \frac{1}{2} \left(\frac{3}{4} \right)^{\frac{1}{4}}.$$

Lemma is proved.

Consider

$$T_{l}^{(v)}(x,t) = \int_{L_{0}} \frac{e^{kt}}{k^{2\nu + \frac{1}{2}}} \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)^{\frac{n}{2}-\nu - 1}} H_{\frac{n}{2}-\nu - 1}^{(1)} \left(|x| \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)}\right) dk . \tag{3.8}$$

We estimate $T_l^{(v)}(x,t)$ at $|x| \ge \delta > 0$, $\lambda_l \to -\infty, t \to \infty$. By virtue of asymptotic form of the Henkel function $H_{\frac{n}{2}-1}^{(1)}(z)$ at $z \to \infty$ we have

$$T_{l}^{(v)}(x,t) = \int_{l_{0}} \frac{e^{kt}}{k^{2v+\frac{1}{2}}} \sqrt{\lambda_{l} \left(1 + \frac{1}{k}\right)^{\frac{n}{2}-v-1}} e^{-|x||\lambda_{l}|^{\frac{1}{2}} \sqrt{1 + \frac{1}{k}}} dk .$$
 (3.9)

Integrand in (3.9) at point k = 0 has a zero of infinity order and at $k \to \infty$ on contour L_0 tends to zero exponentially. Estimating modulo by virtue of (2.5), (3.7) we obtain

$$|T_I^{(v)}(x,t)| \le C|\lambda_I|^{\frac{1}{2}(\frac{n}{2}-v-\frac{3}{2})}|x|^{-\frac{1}{2}},$$

where C is a constants. From this and (3.6) it follows that

$$|u(x,y,t)| \le \frac{C(v)}{t^{\nu}} \sum_{l=1}^{\infty} |\lambda_l|^{\frac{1}{2} \left(\frac{n}{2} + v - \frac{3}{2}\right)} ||\psi_l(Y)||_{C(\overline{\Omega})} \int_{\mathcal{R}_c} |x - \xi|^{\frac{1-n}{2} + v} \varphi_l(\xi) d\xi , \qquad (3.10)$$

where C(v) is a constant, depending of v.

Taking into account estimation (2.20) and that $\varphi(\xi, z)$ is finite function with respect to ξ applying Cauchy's-Bunyakovcki's inequality to (3.10) we obtain

$$|u(x, y, t)| \le \frac{C(v)}{t^{v}} \left\{ \sum_{l=1}^{\infty} |\lambda_{l}|^{-m} + \sum_{l=1}^{\infty} |\lambda_{l}|^{\frac{n-1}{2} + v + \left[\frac{m}{2}\right] + m} \int_{\Omega} |\varphi_{l}(\xi)|^{2} d\xi \right\}$$
(3.11)

uniformly with respect to x in every compactum of R_x . Further by B.Levi's theorem

$$\sum_{l=1}^{\infty} |\lambda_l|^{\mu} \int_{D} |\varphi_l(\xi)|^2 d\xi = \int_{D} \left(\sum_{l=1}^{\infty} |\lambda_l|^{\mu} |\varphi_l(\xi)|^2 \right) d\xi . \tag{3.12}$$

Since function $\varphi(\xi, z)$ no z satisfies to conditions of theorem 8 of [9] (p.253) then

$$\sum_{l=1}^{\infty} |\lambda_{l}|^{\mu} |\varphi_{l}(\xi)|^{2} \leq ||\Phi(\xi, z)||_{H^{\mu}(\Omega)}^{2}.$$
 (3.13)

From (3.11)-(3.13) we get

$$|u(x, y, t)| \le \frac{C(y)}{t^{\nu}} \left\{ \sum_{l=1}^{\infty} |\lambda_l|^{-m} + \iint_{\Omega} |\varphi(\xi, z)||_{H^{\mu}(\Omega)}^{2} d\xi \right\}$$
(3.14)

uniformly with respect to (x, y) in every compactum of \mathcal{U} . By virtue of estimation (2.21) series in (3.14) converges. From (3.14) we get

$$U(x, y, t) = O(t^{-\nu})$$

uniformly with respect to (x, y) in every compactum of \mathcal{U} . Theorem 3 if proved.

§4. The estimation of the solution of non-stationary problem (1.1)-(1.3).

Now we receive the estimation (1.4) for the solution of non-stationary problem (1.1)-(1.3). Estimating modulo in (3.3) where the contour of integration $(\varepsilon - i\infty, \varepsilon + i\infty)$ is substituted by L_{ε} we get

$$|u(x, y, t)| \le C \sum_{l=1}^{\infty} ||\psi_{l}(y)||_{C(\overline{\Omega})} \int_{R_{n}} |x - \xi|^{1 - \frac{n}{2}} |\varphi_{l}(\xi)| \left[\int_{L_{n}} H_{n-1}^{(1)} \left(|x - \xi| \sqrt{\lambda_{l} \left(1 + \frac{1}{k} \right)} \right) |d_{k}| \right] d\xi. \quad (4.1)$$

It can be show that at $k \in C_{\varepsilon}$

$$\operatorname{Re}\left(1+\frac{1}{k}\right) \ge \frac{1}{2}\left(1+\frac{1}{2\varepsilon^2}\right)^{\frac{1}{4}} = c_0(\varepsilon). \tag{4.2}$$

By virtue of estimations (2.20), (4.2) and the asymptotic of the Hankel function at infinity from (4.1) we have

$$|u(x,y,t)| \leq Ce^{st} \sum_{l=1}^{\infty} |\lambda_{l}|^{\frac{1}{2}\left(1+\left[\frac{m}{2}\right]\right)} \iint_{R_{n}} |x-\xi|^{1-\frac{n}{2}} e^{-c_{0}(\varepsilon)|\lambda_{l}||x-\xi|} |\varphi_{l}(\xi)| d\xi \leq$$

$$\leq Ce^{st-c(\varepsilon)|x|} \sum_{l=1}^{\infty} |\lambda_{l}|^{\frac{1}{2}\left(1+\left[\frac{m}{2}\right]\right)} \iint_{R} |x-\xi|^{1-\frac{n}{2}} e^{c(\varepsilon)|\xi|} |\varphi_{l}(\xi)| d\xi ,$$

where $c(\varepsilon) = c_0(\varepsilon) |\lambda_1|$, D is the compact support of $\varphi(\xi, z)$ on ξ . Applying Cauchy's-Bunyakovcki's inequality we obtain

$$|u(x,y,t)| \le Ce^{\delta t - c(\varepsilon)|x|} \left(\sum_{l=1}^{\infty} |\lambda_l|^{-m} + \sum_{l=1}^{\infty} |\lambda_l|^{1-m+\varepsilon} \left[\frac{m}{2} \right] \right) \left(\iint_D \varphi_l(\xi) |^2 d\xi \right). \tag{4.3}$$

Further by B.Levi's theorem [11] (p.134) from (4.3) we get

$$\left|u(x,y,t,)\right| \le Ce^{\beta + c(\varepsilon)|x|} \left(\sum_{l=1}^{\infty} \left|\lambda_l\right|^{-m} + \int_{D} \left(\sum_{l=1}^{\infty} \left|\lambda_l\right|^{1+m+\left\lceil \frac{m}{2}\right\rceil} \left|\varphi_l(\xi)\right|^2 \right) \right) d\xi. \tag{4.4}$$

From (3.15) and (4.4) we have

$$|u(x,y,t,)| \leq Ce^{\varepsilon t - c(\varepsilon)|x|} \left(\sum_{\ell=1}^{\infty} |\lambda_{\ell}|^{-m} + \iint_{D} |\phi(\xi,z)|^{2} d\xi \right).$$

By analogy we estimate derivatives of u(x, y, t), contained in (1.4). In this in formula (3.3) the $\psi_t(y)$ substituted by $D_y^{\beta}\psi_t(y)$ and $\varphi_t(\xi)$ by $D_{\xi}^{\alpha}\varphi_t(\xi)$. Then we get

$$\left|D_x^{\alpha}D_y^{\beta}D_t^{\gamma}u(x,y,t)\right| \leq Ce^{\varepsilon t-c(\varepsilon)|x|} \left(\sum_{l=1}^{\infty} |\lambda_l|^{-m} + \int_D |D_\xi^{\alpha}\varphi(\xi,z)|^2_{L^{1+m}\left(\frac{m}{2}\right)+\beta} d\xi\right).$$

The estimation (1.4) is proved.

References

- [1]. Соболев С.Л. об одной новой задаче математической физики. Изв. АН СССР, сер.мат., 1954, т.18, №1, с.3-50.
- [2]. Sobolev S.L. Sur une class des problems de physique mathematicues. 48 Reunione Soc.Ital.Progresse Science, Roma, p.192-208.
- [3]. Зеленяк Т.И., Михайлов В.П. Асимптотическое поведение ращений некоторых краевых задач математической физики при 1→∞. Труды симнозиума, посвященного 60-летию академика С.Л.Соболева. М.: Наука, 1970, 252с.
- [4]. Габов С.А., Свешников А.Г. Задачи динамики и стратифицированных жидкостей. М.: Наука, 1986, 288с.
- [5]. Габов С.А., Свешников А.Г. липейные хадачи теории нестационарных внутренных волн. М.: Наука, 1990, 342с.

- [6]. Демиденко Г.В., Успенский С.В. Уравнения и системы неразрешенные относительно старшей производной. Новосибирск: Научная книга, 1998, 436с.
- [7]. Iskenderov B.A. principles of radiation for elliptic equation in the cylindrical domain. Colloquia sociotats Janos Bolyai. Szeged, Hungary, 1988, p.249-261.
- [8]. Мизохата С. теория уравнений с частными производными. М.: Мир, 1977, 504с.
- [9]. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 424с.
- [10].Никифоров А.В., Уваров В.В. Специальные функции математической физики. М.: Наука, 1974, 303с.
- [11].Натансон И.П. теория функций вещественной переменной. М.: Наука, 1974, 480с.

Iskenderov B.A., Sardarov V.G.

Institute of Mathematics and Mechanics of AS Azerbaijan.

9, F.Agayev str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20.

Received September 4, 2000; Revised February 29, 2001. Translated by authors.