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THE IMBEDDING THEOREM FOR A CLASS OF
WEIGHT ANISOTROPIC PREUDONORMED

SPACES

Abstract

In this work the sufficient conditions are obtained on weight functions at
which the imbedding of some classes of weight anisotropic pseudonormed spaces
in the weight Lebesgue spaces holds.

The work is dedicated to investigation of some properties and questions of imbed-
ding for a class of pseudonormed spaces [1]. Study of the nonlinear spaces caused
by questions connected with nonlinear boundary value problems. Sufficiently many
works are dedicated to this theme. Detailed study of properties of the preudonormed
spaces and imbedding theorem for them, and its application of obtained results to
differential equations have been considered by K.N.Soltanov in works [1-4].

The weight spaces appear also as the ”classical” Sobolev spaces at studying
the differential equations, but now with degeneration and singularity. Similarly,the
nonlinear weight spaces appear at researching the nonlinear differential equations
with coefficients which have degeneration and/or singularities .

In the works, mentioned above, the properties of nonlinear spaces in weightless
case have been researched. The paper [5] was dedicated to the question of imbedding
for weight nonlinear pn-space S1

α,p,q (Ω, υ, h), in which sufficient conditions have been
obtained on weight functions, for which corresponding imbedding holds.

In the given paper, applying the methods of the works [5-7] the research of
some properties and questions of imbedding for one class of weight anisotropic pn-
spaces are considered.There are obtained sufficient conditions on weight, in which
imbedding theorems holds.The results of the present work generalize the results of
the work [5], on wider class of weight pn-spaces.

The main concepts and notation of the paper are in section 1. Some preparatory
results and main imbedding theorem are given in section 2.

1. Preliminary information.

Let Rn (n ≥ 1) be n - dimensional Euclidean space, Ω be a bounded set in Rn.
Arbitrary measurable on Ω function ν, that 0 < ν (x) < +∞ almost everywhere

on Ω we call weight function or just weight. Set of all weights on Ω we denote by
W (Ω). For ν ∈ W (Ω) , ν - weight measure of the measurable set E ⊂ Ω we shall
denote by |E|ν = ν (E) =

∫
E

ν (x) dx. At ν (x) ≡ 1 the Lebesgue measure of the set

E we denote by |E|.
For ν ∈ W (Ω) the space of measurable on Ω functions u = u (x), for which the

norm:

|u : Lp (Ω, ν)| =


(∫

Ω

|u (x)|p ν (x) dx

)1/p

at 1 ≤ kp < +∞

ess sup
Ω

|u (x)| ν (x) at p = +∞
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is finite, we denote by Lp (Ω; ν).
Remark. In the definition of space Lp (Ω; ν) as usually it’s assumed that the

question is on the classes of equivalencies relative to the Lebesgue zero measure.
We denote by C1 (Ω) the set of all continuously differentiable functions on Ω.
Let 0 ≤ pi < +∞, qi < +∞, νi ∈ W (Ω) , i = 0, n. We introduce a notation

for the function u ∈ C1 (Ω)∣∣u : S1
p̄,q̄ (Ω, ν̄)

∣∣ = |u : Lp0+q0 (Ω, ν0)|+

+
n∑

i=1

(∫
Ω

vi (x) |u (x)|pi

∣∣∣ ∂u
∂xi

(x)
∣∣∣qi

dx

)1/(poi+qi) (1)

where p̄ = (po, ..., pn) , q̄ = (qo, ..., qn) , ν̄ = (νo, ..., νn).
Let’s consider a set of all u ∈ C1 (Ω), for which the expression (1) is finite. We

denote by S1
p̄,q̄ closure of this set related to the pseudonorm (1) ([1, 2]).

As it was mentioned above the definitions of pseudonormed (pn) spaces and their
properties are sufficiently stated in details in works [1-4]. Here we’ll need just the
following definition, which gives us the concept of imbedding in these spaces.

Let X, Y are local convergens topological spaces, B, B ∩ Y 6= ∅ is Banach
space and g : X → Y is a mapping from X into Y . We denote by SgB (X) =
{x : x ∈ X and g (x) ∈ B ∩ Y }.

Definition ([1,2]). Let S1 = Sg1b1(x) and S2 = Sg2b2 (x) be pn-spaces. We’ll
say that S2 is imbedded to the S1, S2 ⊂ S1, if the following relations hold:

(i) S2 ⊂ S1 in the sense of sets theory;
(ii) There is a non-negative increasing function ϕ (τ) ≥ 0, that for any x ∈ S2

the inequality
[x]S1

≤ ϕ
(
[x]S2

)
is valid, where ϕ ↑, at that ϕ (0) = 0, ϕ depends on mappings g1 and g2 and the
pair of Banach spaces B1 and B2 and for g1 ≡ g2 =⇒ ϕ (τ) = Cτ, C > 0 is a
constant, and [·]S is a pseudonorm in space S.

2. Imbedding theorem.

Before to formulate and to prove the main result of the work, we’ll introduce
some auxiliary statements.

Lemma 1. Let Ω ⊂ Rn be a bounded open set and β > 1 be some number.
Then from family of closed balls{

B̄ (x, r (x)) : βr (x) = dist (x, ∂Ω) , x ∈ Ω
}

it is possible to choose at most countable subfamily
{

B̄k
j

}
such, that

(i) Ω =
ξn

U
k=1

U
j≥1

B̄k
j where number ξn depends only on dimension of n.

(ii) B̄k
i ∩ B̄k

j = ∅, i 6= j, k = 1, ξn.
Lemma 1 is a simple consequence of the Besichovitch’s covering theorem (see,

for example [8])
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Lemma 2. Let 1 ≤ q < +∞, B (y, r) be an arbitrary ball in Rn and
ω ∈ W (B (y, r)). Then for any u ∈ C1 (B (y, r)) such that

∫
B(y,r)

u (z) dz = 0 an

inequality

|u : Lq (Ω; ω)| ≤ C

n∑
k=1

∣∣∣∣∣∣∣
∫

B(y,r)

|Dku (z)|
|x− z|n−1 : dxLq (Ω; Ω)

∣∣∣∣∣∣∣ (2)

holds, where C is a constant, depending only on n.
To prove lemma 2 it is enough to use the integral representation from the book

[9] (lemma 1, page 436) and perform simple estimations.
Let’s consider the integral operators

Ku (x) =
∫
Ω

k (x, y) u (y) dy x ∈ Ω

K∗u (x) =
∫
Ω

k∗ (x, y) u (y) dy x ∈ Ω

where k : Ω → R is non-negative measurable function, k∗ (x, y) = k (y, x).
At ω, ν ∈ W (Ω). For operator K we suppose

[K]pν1−p′ ,qω =

= sup
{∣∣∣Kν1−p′χQ : Lq (Ω; ω)

∣∣∣ ∣∣∣χQ : Lp

(
Ω; ν1−p′

)∣∣∣−1
: dyadic Q ⊂ Ω

}
, (3)

where upper boundary is taken by all diadic cubes Q ⊂ Ω.
For the kernel k of operator K we introduce the quantity

[k]pν1−p′ ,pω = sup
x∈Ω

sup
r>0

{
|Ω ∩B (x, r)|1/q

ω

∣∣∣χΩ\B(x,r)k (x·) : Lp

(
Ω; ν1−p′

)∣∣∣} . (4)

We shall denote the kernel k of operator K by kh,a if it has the following form:

kh,a (x, y) = χ[h,a] (|x− y|) k (x, y) 0 ≤ h ≤ a < +∞ .

We denote the operator K with kernel kh,a

(
k∗h,a

)
by Kh,a

(
K∗

h,a

)
.

The given notation (3) and (4) are taken from the work [10].
Also we need the following statements, which are obtained by applying theorem

1 from [10] and lemma 2.
Lemma 3. Let α ≥ 0, 1 ≤ p0 ≤ p < +∞, 1 < pi ≤ p < +∞, B (y, r) ⊂ Rn

be an arbitrary ball, ω, ν0, νi ∈ W (B (y, r)) and the following conditions be fulfilled:

1) C0 (B (y, r)) =
1

|B (y, r) |

( ∫
B(y,r)

ω (z) dz

)1/p( ∫
B(y,r)

ν
1−p′0
0 (z) dz

)1/p′0

< +∞

2)
Ci (B (y, r)) =

[
K0,6

√
nr

]
piν

1−p′
i

i ,pω
< +∞

C∗
i (B (y, r)) =

[
K∗

0,6
√

nr

]
p′ω,p′iν

1−p′
i

i

< +∞

 if 1 < pi ≤ p < +∞

or
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Ci (B (y, r)) =
[
k0,6

√
nr

]
piν

1−p′
i

i ,pω
< +∞

C∗
i (B (y, r)) =

[
k∗

0,6
√

nr

]
p′ω,p′iν

1−p′
i

i

< +∞

 if 1 < pi < p < +∞

i = 1, n, where k (x, y) = 1
|x−y|n−1 is the kernel of operator K.

Then for any u ∈ C1 (B (y, r)) it follows an inequality∣∣u : L(α+1)p (B (y, r) ω)
∣∣ ≤

≤ Cmax
i=1,n

{
C0 (B (y, r)) , Ci (B (y, r)) , C1

i (B (y, r))
}
×

×
{∣∣u : L(x+1)p0

(B (y, r) ; v0)
∣∣+ n∑

i=1
||u (x)|α Diu (x) : Lpi (B (y, r) ; νi)|

}
,

(5)

where C is a constant, which is independent on u, ω, v0, vi, i = 1, n and B (y, r).
Proof. Let u ∈ C1 (B (y, r)) be an arbitrary function. Then applying Minkowski

inequality, we obtain ( ∫
B(y,r)

|u (x)|(α+1)p ω (x) dx

)1/p

=

( ∫
B(y,r)

∣∣∣∣∣|u (x)|α u (x)− 1
|B(y,r)|

∫
B(y,r)

|u (z)|α u (z) dz

∣∣∣∣∣
p

ω (x) dx

)0/p

+

+ 1
|B(y,r)|

∫
B(y,r)

|u (x)|α+1 dx

( ∫
B(y,r)

ω (x) dx

)1/p

= I1 + I2 .

(6)

First of all we’ll estimate I2. Applying the Hölder inequality, we obtain

I2 =
1

|B (y, r)|

∫
B(y,r)

|u (x)|α+1 ν
1

p0
0 (x) ν

− 1
p0

0 (x) dx

 ∫
B(y,r)

ω (x) dx


1/q

≤

≤

 ∫
B(y,r)

|u (x)|(α+1)p0 ν0 (x) dx


1/p0

1
|B (y, r)|

×

×

 ∫
B(y,r)

ν
1−p′0
0 (x) dx


1/p′0

 ∫
B(y,r)

ω (x) dx


1/q

=

= C0 (B (y, r))
∣∣u : L(α+1)p0

(B (y, r) , ν0)
∣∣ . (7)

Now we’ll estimate I2. Taking into account, that

1
|B (y, r)|

∫
B(y,r)

|u (x)|α u (x)− 1
|B (y, r)|

∫
B(y,r)

|u (z)|α u (z) dz

 dx = 0
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and applying lemma 2, we shall obtain

I1 ≤ C
n∑

i=1

∣∣∣∣∣ ∫
B(y,r)

|u(z)|α|Diu(z)|
|x−z|n−1 dz : Lp (B (y, r) ;ω)

∣∣∣∣∣ =
= C

n∑
i=1

∣∣∣∣∣ ∫
B(y,r)

χ[0,2r](|z−x|)
|x−z|n−1 |u (z)|α |Diu (z)| dz : Lp (B (y, r) ;ω)

∣∣∣∣∣ .

Taking into account condition (2) and theorem 1 from [10], we get:

I1 ≤ C
n∑

i=1
[Ci (B(y, r)) + C∗

i (B(y, r))]×

× ||u(x)|α Diu (x) : Lpi (B(y, r); νi)| ≤

≤ Cmax
i=1,n

{Ci (B (y, r)) , C∗
i (B (y, r))}

n∑
i=1

||u (x)|α Diu (x) : Lpi (B (y, r) ; νi)|

(8)

Taking into account (7) and (8) in (6), we get (5).
The lemma is proved.
Now we shall give the main result of the work:
Theorem. Let Ω ⊂ Rn be an arbitrary bounded open set with non-empty in-

terior, α ≥ 0, 1 ≤ p0 ≤ p < +∞, 1 < pi ≤ p < +∞, ω, ν0, νi ∈ W (Ω) and the
following conditions be fulfilled:

1) C̃0 (Ω) = sup
B(y,r)

y∈Ω, r=
ρ(y)
12
√

n

C0 (B (y, r)) < +∞

2) C̃i (Ω) = sup
B(y,r)

y∈Ω, r=
ρ(y)
12
√

n

C0 (B (y, r)) < +∞

3) C̃∗
i (Ω) = sup

B(y,r)

y∈Ω, r=
ρ(y)
12
√

n

C∗
0 (B (y, r)) < +∞

where C0, Ci, C
∗
i , i = 1, n were defined in lemma 3.

Then the imbedding
S1

αp,p (Ω; ν̄) ⊂ L(α+1)p (Ω; ω) (9)

holds.
Proof. We should show, that for any function u ∈ S1

αp,p (Ω; ν̄) it holds the
inequality ∣∣u : L(α+1)p (Ω; ω)

∣∣ ≤
≤ C̃ (Ω)

{∣∣u : L(α+1)p0
(Ω; ν0)

∣∣+ n∑
i=1

||u (x)|α Diu (x) : Lpi (Ω; νi)|

}
, (10)

where constant C̃ (Ω) = C max
{

C̃0 (Ω) , C̃i (Ω) , C̃∗
i (Ω) , i = 1, n

}
doesn’t depend

on the function u.
Taking into account definition of the considered pn-space, it is enough to prove

inequality (10) for arbitrary function u ∈ C1 (Ω) ∩ S1
αp,p (Ω; ν̄)
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Let’s consider a family

{
B̄ (y, r) : y ∈ Ω, r =

ρ (y)
12
√

n

}
(11)

of closed balls, contained in Ω and its coverings.
By lemma 1, from family (11) it is possible to select at most countable subfamily{

Bk
j

}
j≥1

, k = 1, ξn, satisfying the conditions (i) and (ii) of lemma 1.

Taking into account the noted, we obtain

∣∣u : L(α+1)p (Ω; ω)
∣∣ ≤

 ξn∑
k=1

∑
j≥1

∫
Bk

j

|u (x)|(α+1)p ω (x) dx

1/p

≤

≤ sup
k=1,ξn

∑
j≥1

∫
Bk

j

|u (x)|(α+1)p ω (x) dx

1/p

ξ
1/p
n .

As
∣∣∣∂Bk

j

∣∣∣ = 0, then in the last expression we can replace the domain of integration

by open ball Bk
j . Taking this into account, we shall obtain

∣∣u : L(α+1)p (Ω; ω)
∣∣ ≤ ξ1/p

n sup
k=1,ξn

∑
j≥1

∫
Bk

j

|u (x)|(α+1)p ω (x) dx


1/p

Applying inequality (5) in the right hand side of this ratio and taking into account
conditions (1) and (2), we get

∣∣u : L(α+1)p (Ω; ω)
∣∣ ≤ C̃ (Ω)

 sup
k=1,ξn

∑
j≥1

∫
Bk

j

∣∣∣u : L(α+1)p0

(
Bk

j ; ν0

)∣∣∣p
1/p

+

+
n∑

i=1
sup

k=1,ξn

(∑
j≥1

∣∣∣|u (x)|α Diu (x) : Lpi

(
Bk

j ; νi

)∣∣∣p)1/p
 .

Taking into account that p
pi
≥ 1, i = 0, n and applying the known inequality:

(∑
i

|ai|α
)1/α

≤

(∑
i

|ai|β
)1/β

α ≥ β ≥ 1
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at α = p
pi

and β = 1, we get

∣∣u : L(α+1)p (Ω; ω)
∣∣ ≤ C̃ (Ω)

 sup
k=1,ξn

∑
j≥1

∫
Bk

j

|u (x)|(α+1)p0 ν0 (x) dx

1/p0

+

+
n∑

i=1
sup

k=1,ξn

∑
j≥1

∫
Bk

j

(|u (x)|α |Diu (x)|)pi νi (x) dx

1/pi

 ≤

≤ C̃ (Ω)
∣∣∣u : S1

αp,p (Ω; ν̄)
∣∣∣ .

The last inequality proves the estimation (10) therefore and imbedding (9).
The theorem is proved.
From the proved theorem in the case of α = 0 the validity of corresponding

theorem follows for weight anisotropic Sobolev spaces W 1
p0,...,pn

(Ω; ν0, ..., νn).
The obtained result gives more common conditions on weight functions, at which

the corresponding imbedding theorems are valid in the works [5-7].
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