Niyazi A. ILYASOV

TO THE M.RIESZ THEOREM ON ABSOLUTE CONVERGENCE OF THE TRIGONOMETRIC FOURIER SERIES (THE SECOND REPORT)

Abstract

This paper is a continuation of the author's investigations in the same name paper on the extension of the known M.Riesz criterion for absolute convergence of trigonometric Fourier series of continuous functions for values $p \neq 2$. The case of functions $f \in L_p(T)$, $g \in L_q(T)$ generating the convolution h = f * gare considered, where $1 < p, q \leq 2$. The exact upper estimate of $l^{r'}$ norm of sequence of Fourier coefficients of the convolution by product of norms $||f||_p \cdot ||g||_q$, where $r' = pq/(2pq - p - q) \in [1, \infty)$, as well as the upper estimate of residual series generating above mentioned $l^{r'}$ norm by product of the best (in metrics $L_p(T)$ and $L_q(T)$, respectively) approximations $E_{n-1}(f)_{\rho} \cdot E_{n-1}(g)_q$, $n \in N$, of these functions are obtained, and its exactness in the sence of the order in the scale of power majorants was proved.

Let $L_p(T)$, $1 \leq p < \infty$, be the space of all measurable 2π -periodic functions $f: R \to \mathbf{C}$ with the finite norm $||f||_p = \left((1/2\pi)^{-1} \int_T |f(x)|^p dx\right)^{1/p} < \infty$, $C(T) \equiv L_{\infty}(T)$ be the space of all continuous 2π periodic functions, $||f||_{\infty} = \max\{|f(x)|; x \in T\}$, where $T = [-\pi, \pi]$. For a function $f \in L_1(T)$ with the Fourier-Lebesque series

$$f(x) \sim \sum_{n \in Z} c_n(f) e^{inx}, \ x \in T,$$
(1)

put $\rho_n^{(\gamma)}(f) = \left(\sum_{|\nu|=n}^{\infty} |c_{\nu}(f)|^{\gamma}\right)^{1/\gamma}, \ \gamma \in (0,\infty), \ n \in \mathbb{Z}_+.$

It is obvious that if $\rho_0^{(\gamma)}(f) < \infty$ then $\rho_0^{(\gamma)}(f) \downarrow 0$ $(n \uparrow \infty)$; besides, it is clear that the condition $\rho_0^{(1)}(f) < \infty$ provides absolute and uniform convergence of series (1) everywhere on T, moreover $||f(\cdot) - S_n(f; \cdot)||_{\infty} \leq \rho_n^{(1)}(f; x)$, where $S_n(f; x)$ are partial sums of series (1) of order $n \in Z_+$: $S_n(f; x) = \sum_{|\nu|=0}^n c_{\nu}(f) e^{i\nu x}$. It is also obvious that the absolute convergence of series (1) everywhere on T implies $\rho_0^{(1)}(f) < \infty$.

The convolution h = f * g of the functions $f \in L_1(T)$ and $g \in L_1(T)$ is defined by the formula $h(x) = (f * g)(x) = (1/2\pi) \int_T f(x-y)g(y)dy$. It is known (see f.e. [1], v.1, § 2.1, pp. 64-65, [2], v.1, § 3.1, pp. 65-66) that the function h is determined almost everywhere, 2π periodic, measurable and $||h||_1 \leq ||f||_1 \cdot ||g||_1$, hence, in particular, it follows that $h = f * g \in L_1(T)$. The last statement is a special case of the following result known under the name of W.Young inequality (see f.e. [1], v.1, theorem (1.15), 136 _____ [N.A.Ilyasov]

pp.67-68; [2], v.2, theorem 13.6.1, pp.176-177; [2], v.1, theorem 3.1.4, p.70, theorem 3.1.6, p.72):

Theorem A. Let $1 \le p, q \le \infty, 1/r = 1/p + 1/q - 1 \ge 0, f \in L_p(T), g \in L_q(T)$, h = f * g; then $h \in L_r(T)$ and $\|h\|_r \leq \|f\|_p \cdot \|g\|_q$. When 1/p + 1/q = 1, i.e. q = p' is an exponent conjugate to p (p' = 1 for $p = \infty$ and $p' = \infty$ for p = 1), the function h is determined everywhere, continuous and $\|h\|_{\infty} \leq \|f\|_{p} \cdot \|g\|_{p'}$.

We also note that the Fourier coefficients $c_n(h)$ of the convolution h = f * g of two functions $f \in L_1(T)$ and $g \in L_1(T)$ are calculated by the formula (see [1], v.1, theorem (1.5), p. 64; [2], v.1, p.66, formula (3.1.5))

$$c_n(h) = c_n(f * g) = c_n(f) \cdot c_n(g), n \in \mathbb{Z},$$
(2)

such that

$$h(x) \sim \sum_{n \in \mathbb{Z}} c_n(f) \cdot c_n(g) e^{inx}, \ x \in T.$$
(3)

Denote by $A^{(\gamma)}(T)$ the class of all functions $f \in L_1(T)$ for which $\rho_0^{(\gamma)}(f) < 0$ $(A^{(1)}(T) \equiv A(T))$. By virtue of M.Riesz criterion on absolute convergence of trigonometric Fourier series of continuous functions (see [4], §9.7, pp. 634-635; [1], v.1, ch.6, theorem 6 on p. 399; [5], §2.2, p.17; [2], v.1, §10.6.2, remark (4) on p.208) the convolution h = f * g of any two functions $f \in L_2(T)$ and $g \in L_2(T)$ belongs the class A(T). In the case $1 \le p < 2$ the correspondity statement does not hold, more exactly, for any $p \in [1,2)$ there exist functions $f_0(\cdot; p), g_0(\cdot; p) \in L_p(T)$, such that their convolution $h_0 = f_0 * g_0 \notin A(T)$ (see for example, [5], Example 1 (case p = 1) and Example 2 (case 1)).

In the paper [6] (theorem 4 A on p. 53) the following was proved.

Theorem B. If functions $f \in L_p(T)$, $g \in L_p(T)$ for some $p \in (1,2]$, then their convolution $h = f * g \in A^{(p'/2)}(T)$, where p' = p/(p-1).

In this paper [6] (p.53, theorem 5) it was proved that the statement of Theorem B is exact, namely, for each $p \in (1,2]$ there exist the functions $f_0(\cdot; p) \in L_p(T)$, $g_0(\cdot; p) \in L_p(T)$, such that their convolution $h_0 = f_0 * g_0 \notin A^{(\gamma)}(T)$ for any number $\gamma < p'/2$, i.e. we cannot decrease the exponent $p'/2 \ge 1$ in the statement of Theorem B (see f.e. Example 3 in [5]). Consequently, since p'/2 > 1 at 1 then afortiory $h_0 = f_0 * g_0 \notin A(T)$ in the case $p \in (1, 2)$ (see Example 2 in [5]).

Theorem 1. Let $1 , <math>1 < q \le 2$, $f \in L_p(T)$, $g \in L_q(T)$, h = f * g, $r = pq/(p+q-pq), \ r' = pq/(2pq-p-q) = p'q'/(p'+q'), \ where \ r \in (1,\infty],$ 1/r + 1/r' = 1/p + 1/p' = 1/q + 1/q' = 1; then

1) $h \in L_r(T)$ in the case $r < \infty$ (i.e. if 1 , <math>1 < q < 2 or 1 , $1 < q \leq 2$, and $||h||_r \leq ||f||_p \cdot ||g||_q$;

$$h \in C(T) \text{ in the case } r = \infty \text{ (i.e., if } p = q = 2), \text{ and } \|h\|_{\infty} \le \|f\|_{2} \cdot \|g\|_{2};$$

2) $h \in A^{(r')}(T) \text{ and } \rho_{0}^{(r')}(h) = \left(\sum_{|n|=0}^{\infty} |c_{\nu}(h)|^{r'}\right)^{1/r'} \le \|f\|_{p} \cdot \|g\|_{q};$

Transactions of NAS of Azerbaijan _____ 137 [To the M.Riesz theorem on absolute ...]

3) $\rho_n^{(r')}(h) = \left(\sum_{|\nu|=n}^{\infty} |c_{\nu}(h)|^{r'}\right)^{1/r'} \leq M(p)M(q) \cdot E_{n-1}(f)_p \cdot E_{n-1}(g)_q, \ n \in N,$ where M(p) is the constant in the known M.Riesz inequality (see f.e. [4], § 8.20, $p.594; [2], v.2, \S 12.10, p.120; [7], \S 5.11, p.339)$

$$\|\varphi(\cdot) - S_n(\varphi; \cdot)\|_p \le M(p) \cdot E_n(\varphi)_p, \ n \in \mathbb{Z}_+,$$
(4)

 $1 is the best approximation of the function <math>\varphi$ in $L_p(T)$ metric by trigonometric polynomials of order $\leq n$.

Proof. 1) The statement $h \in L_r(T)$ in the case $r < \infty$ and $h \in C(T)$ in the case $r = \infty$ is the obvious consequence of Theorem A: $\|h\|_r \leq \|f\|_p \|g\|_q$, 1/r = $1/p + 1/q - 1 > 0 \text{ and } \|h\|_{\infty} \leq \|f\|_2 \cdot \|g\|_2, \ 1/r = 0 \quad (\Longrightarrow r = \infty \Longleftrightarrow p = q = 2);$ 2) By virtue of equality 1/r' = 2 - (1/p + 1/q) = (1 - 1/p) + (1 - 1/q) == 1/p' + 1/q' = (p' + q')/p'q', we obtain r' = p'q'/(p' + q'), whence

$$\sum_{|n|=0}^{\infty} |c_n(h)|^{r'} = \sum_{|n|=0}^{\infty} |c_n(f)|^{r'} \cdot |c_n(g)|^{r'} = \sum_{|n|=0}^{\infty} |c_n(f)|^{p' \cdot r'/p'} |c_n(g)|^{q' \cdot r'/q'},$$

and applying the Hölder inequality with the exponents s = p'/r' = 1 + p'/q' > 1 and s' = q'/r' = 1 + q'/p' > 1 (1/s + 1/s' = 1), we obtain

$$\sum_{|n|=0}^{\infty} |c_n(h)|^{r'} \le \left(\sum_{|n|=0}^{\infty} |c_n(f)|^{p'}\right)^{r'/p'} \cdot \left(\sum_{|n|=0}^{\infty} |c_n(g)|^{q'}\right)^{r'/q'}.$$

Hence, by virtue of the first part of Hausdorff - Young theorem (see f.e. [1], v.2, §12.2, theorem (2.3) on p.153; [2], v.2, §13.5, theorem 13.5.1 on p. 172; [4], § 2.4, p.211) we have $(1 < p, q \le 2)$

$$\rho_0^{(r')}(h) = \left(\sum_{|n|=0}^{\infty} |c_n(h)|^{r'}\right)^{1/r'} \le \le \left(\sum_{|n|=0}^{\infty} |c_n(f)|^{p'}\right)^{1/p'} \left(\sum_{|n|=0}^{\infty} |c_n(g)|^{q'}\right)^{1/q'} \le \|f\|_p \cdot \|g\|_q;$$

3) Fix arbitrary $n \in N$ and denote $(x \in T)$

$$f_{n-1}(x) = f(x) - S_{n-1}(f;x) \sim \sum_{|\nu|=n}^{\infty} c_{\nu}(f)e^{i\nu x},$$
$$g_{n-1}(x) = g(x) - S_{n-1}(g;x) \sim \sum_{|\nu|=n}^{\infty} c_{\nu}(g)e^{i\nu x};$$

then, by virtue of (2) and (3), we have

$$h_{n-1}(x) = f_{n-1}(x) * g_{n-1}(x) \sim \sum_{|\nu|=n}^{\infty} c_{\nu}(f) \cdot c_{\nu}(g) e^{i\nu x} = h(x) - S_{n-1}(h;x),$$

and consequently, by virtue of estimate in 2) of the present theorem and M.Riesz inequality (4), we obtain

$$\rho_n^{(r')}(h) \equiv \rho_0^{(r')}(h_n) = \left(\sum_{|\nu|=n}^{\infty} |c_{\nu}(f) \cdot c_{\nu}(g)|^{r'}\right)^{1/r'} \le \|f_{n-1}(\cdot)\|_p \cdot \|g_{n-1}(\cdot)\|_q = 0$$

Transactions of NAS of Azerbaijan

138_____[N.A.Ilyasov]

$$= \|f(\cdot) - S_{n-1}(f; \cdot)\|_p \cdot \|g(\cdot) - S_{n-1}(g; \cdot)\|_q \le M(p)E_{n-1}(f)_p \cdot M(q)E_{n-1}(g)_q =$$
$$= M(p) \cdot M(q) \cdot E_{n-1}(f)_p \cdot E_{n-1}(g)_q.$$

Theorem 1 is proved.

Remark 1. Theorem 1 in the case of 1 is provedby the author in [5] (Theorem 1).

Remark 2. In the proof of point 3) of Theorem 1, the equality $h(x) - S_{n-1}(h; x) =$ $= [f(x) - S_{n-1}(f;x)] * [g(x) - S_{n-1}(g;x)]$ was established. Using the obvious identity

$$f(x) * S_{n-1}(g;x) = g(x) * S_{n-1}(f;x) = S_{n-1}(f;x) * S_{n-1}(g;x) = S_{n-1}(f*g;x),$$

we can be convinced the validity of this equality:

$$[f(x) - S_{n-1}(f;x)] * [g(x) - S_{n-1}(g;x)] =$$

= $f(x) * g(x) - S_{n-1}(f;x) * g(x) - f(x) * S_{n-1}(g;x) + S_{n-1}(f;x) * S_{n-1}(g;x) =$
= $f(x) * g(x) - S_{n-1}(f * g;x) = h(x) - S_{n-1}(h;x).$

From this equality, by virtue of Theorem A (r > 1 at p > 1, q > 1) and M.Riesz inequality (4), we have

$$E_{n-1}(h)_r \le \|h(\cdot) - S_{n-1}(h; \cdot)\|_r = \|f * g(\cdot) - S_{n-1}(f * g; \cdot)\|_r =$$
$$= \|[f(\cdot) - S_{n-1}(f; \cdot)] * [g(\cdot) - S_{n-1}(g; \cdot)]\|_r \le$$
$$\le \|f(\cdot) - S_{n-1}(f; \cdot)\|_p \cdot \|g(\cdot) - S_{n-1}(g; \cdot)\|_q \le M(p)E_{n-1}(f)_p \cdot M(q)E_{n-1}(g)_q,$$

whence the estimate $E_{n-1}(h)_r \leq M(p) \cdot M(q) \cdot E_{n-1}(f)_p \cdot E_{n-1}(g)_q$, $n \in N$, follows.

The estimates in 1) and 2) of Theorem 1 are exact in the following sense: without loss of statement of the theorem in the point 1) we cannot increase the exponent $r \in (1,\infty]$ in the case of $r < \infty$, and substitute by no other one in the case of $r = \infty$; we cannot decrease the exponent $r' \in [1, \infty)$ (r' = 1 for p = q = 2) in 2), namely the following is valid.

Theorem 2. For any $p, q \in (1, 2]$ there exist functions $f_0(\cdot; p) \in L_p(T)$ and $g_0(\cdot;q) \in L_q(T)$ such that

1) $h_0 = f_0 * g_0 \notin L_{\theta}(T)$ for every $\theta > r$ in the case of $r < \infty$ and $\|h_0\|_{\infty} = \|f_0\|_2 \cdot \|g_0\|_2$ in the case of $r = \infty$; 2) $h_0 = f_0 * g_0 \notin A^{(\gamma)}(T)$ for every $\gamma < r'$. **Proof.** Put $(1 < p, q < \infty, p' = p/(p-1), q' = q/(q-1))$

$$f_0(x;p) = \sum_{n=2}^{\infty} \left(n^{1/p'} \ln n \right)^{-1} e^{inx}, \ g_0(x;q) = \sum_{n=2}^{\infty} \left(n^{1/q'} \ln n \right)^{-1} e^{inx};$$

Transactions of NAS of Azerbaijan _____ 139 [To the M.Riesz theorem on absolute ...]

since

$$c_n(f_0) \equiv \left(n^{1/p'} \ln n\right)^{-1} \downarrow 0 \left(n \uparrow \infty\right), \ c_n\left(g_0\right) \equiv \left(n^{1/q'} \ln n\right)^{-1} \downarrow 0 \left(n \uparrow \infty\right)$$

and

$$\sum_{n=2}^{\infty} n^{p-2} c_n^p(f_0) = \sum_{n=2}^{\infty} n^{p-2} n^{-p/p'} (\ln n)^{-p} = \sum_{n=2}^{\infty} n^{-1} (\ln n)^{-p} < \infty,$$
$$\sum_{n=2}^{\infty} n^{q-2} c_n^q(g_0) = \sum_{n=2}^{\infty} n^{q-2} n^{-q/q'} (\ln n)^{-q} = \sum_{n=2}^{\infty} n^{-1} (\ln n)^{-q} < \infty,$$

then by virtue of Hardy and Littlewood theorem (see f.e. [4], §10.3, pp.657-658, [1], v.2, §12.6, lemma (6.6) on p.193; [2], v.1, § 7.3.5, pp.148-149) $f_0(\cdot; p) \in L_p(T)$, $g_0(\cdot; q) \in L_q(T)$, moreover

$$\|f_0\|_p \asymp \left(\sum_{n=2}^{\infty} n^{-1} (\ln n)^{-p}\right)^{1/p}, \|g_0\|_q \asymp \left(\sum_{n=2}^{\infty} n^{-1} (\ln n)^{-q}\right)^{1/q}.$$

1) For convolution $h_0 = f_0 * g_0$ of these functions (see above (2) and (3); $c_n(h_0) \downarrow$ $0(n \uparrow \infty))$

$$h_0(x;p,q) = f_0(x;p) * g_0(x;q) = \sum_{n=2}^{\infty} \left(n^{1/p' + 1/q'} \ln^2 n \right)^{-1} e^{inx}$$
(5)

in the case of $r < \infty$ for every $\theta > r$ we have (1/r' = 1/p' + 1/q' = 1 - 1/r)

$$\sum_{n=2}^{\infty} n^{\theta-2} c_n^{\theta}(h_0) = \sum_{n=2}^{\infty} n^{\theta-2} \left(n^{1/p'+1/q'} \ln^2 n \right)^{-\theta} =$$
$$= \sum_{n=2}^{\infty} n^{\theta-2} n^{-(1-1/r)\theta} (\ln n)^{-2\theta} =$$
$$= \sum_{n=2}^{\infty} n^{-(2-\theta/r)} (\ln n)^{-2\theta} = \infty, \text{ since } \theta/r > 1 \Longrightarrow 2 - \theta/r < 1;$$

hence by virtue of above mentioned Hardy and Littlewood theorem (in the partnecessity) it follows that $h_0 \notin L_{\theta}(T)$. In the case of $r = \infty$ (i.e. for p = q = 2), putting $f_0 = g_0$, by virtue of Parseval equality, we obtain (see formula (5))

$$\begin{aligned} \|f_0\|_2 \cdot \|g_0\|_2 &= \left(\sum_{n=2}^{\infty} n^{-1} (\ln n)^{-2}\right)^{1/2} \left(\sum_{n=2}^{\infty} n^{-1} (\ln n)^{-2}\right)^{1/2} = \\ &= \sum_{n=2}^{\infty} n^{-1} (\ln n)^{-2} = h_0(0; 2, 2) \le \|h_0\|_{\infty} \le \|f_0\|_2 \|g_0\|_2, \end{aligned}$$

whence $||h_0||_{\infty} = ||f_0||_2 \cdot ||g_0||_2$, where $h_0 = f_0 * g_0$.

2) For every $\gamma < r \implies \gamma/r' = \gamma (1/p' + 1/q') < 1)$ we have (see above formula (5))

$$\rho_0^{(\gamma)}(h_0) = \left(\sum_{n=2}^{\infty} |c_n(h_0)|^{\gamma}\right)^{1/\gamma} = \left(\sum_{n=2}^{\infty} n^{-(1/p'+1/q')\gamma} (\ln n)^{-2\gamma}\right)^{1/\gamma} = \left(\sum_{n=2}^{\infty} n^{-\gamma/r'} (\ln n)^{-2}\right)^{1/2} = \infty, \text{ whence it follows that } h_0 = f_0 * g_0 \notin A^{(\gamma)}(T)$$

140_____ [N.A.Ilyasov]

Theorem 2 is proved.

Remark 3. The statement of point 2) of Theorem 2 in the case of 1 $2 \implies r' = p'/2$, was proved in [6] (theorem 5 on p. 53).

Remark 4. Since r' > 1 for $r < \infty$, i.e. in the case of 1 , <math>1 < q < 2 or $1 , then the convolution <math>h_0 = f_0 * g_0$ of functions $f_0(\cdot; p) \in L_p(T)$ and $g_0(\cdot;q) \in L_q(T)$ taken in proof of Theorem 2 in the considered case does not belong to the class A(T). We also note that $f_0(\cdot; p) \notin A(T)$, $g_0(\cdot; q) \notin A(T)$.

Remark 5. Statement 1) of Theorem 2 in the case of $r = \infty$ may be generalized by the following way. For every function $f \in L_2(T)$ with the real Fourier coefficients $\{c_n(f)\} \subset R, n \in Z$, by virtue of Theorem A, the convolution $h = f * f \in C(T)$ and $\|h\|_{\infty} = \|f * f\|_{\infty} \leq \|f\|_2 \|f\|_2 = \|f\|_2^2$. On the other hand, taking into account equality (2), we have

$$\|h\|_{\infty} = \|f * f\|_{\infty} = \max\left\{ \left| (f * f) (x) \right|; \ x \in T \right\} \ge \left| (f * f) (0) \right| = \sum_{|n|=0}^{\infty} c_n^2(f) = \|f\|_2^2.$$

Thus, by virtue of written out estimates, $||f * f||_{\infty} = ||f||_2^2$.

In the following theorem it is shown that estimate 3) of Theorem 1 is exact in the sense of order in scale of power majorants of sequences of the best approximations of the functions $f \in L_p(T)$ and $g \in L_q(T)$, where $1 < p, q \le 2$.

Theorem 3. Let $1 < p, q \leq 2, \alpha, \beta \in (0, \infty), r' = pq/(2pq - p - q) =$ $= p'q'/(p'+q') \geq 1$; there exist functions $f_0(\cdot; \alpha; p) \in L_p(T), g_0(\cdot; \beta; q) \in L_q(T)$ such that

1)
$$E_{n-1}(f_0) \approx n^{-\alpha}, \ E_{n-1}(g_0)_q \approx n^{-\beta}, \ n \in N;$$

2) $\rho_n^{(r')}(f_0 * g_0) = \left(\sum_{|\nu|=n}^{\infty} |c_{\nu}(f_0 * g_0)|^{r'}\right)^{1/r'} \approx n^{-(\alpha+\beta)}, n \in N.$
Proof. Put $(1 < p, \ q < \infty, \ p' = p/(p-1), \ q' = q/(q-1))$

$$f_0(x;\alpha;p) = \sum_{n=1}^{\infty} n^{-(\alpha+1/p')} e^{inx}, \quad g_0(x;\beta;q) = \sum_{n=1}^{\infty} n^{-(\beta+1/q')} e^{inx};$$

since $c_n(f_0) = n^{-(\alpha+1/p')} \downarrow 0 \ (n \uparrow \infty), \ c_n(g_0) = n^{-(\beta+1/q')} \downarrow 0 \ (n \uparrow \infty)$ and

$$\sum_{n=1}^{\infty} n^{p-2} c_n^p(f_0) = \sum_{n=1}^{\infty} n^{p-2} n^{-p(\alpha+1/p')} = \sum_{n=1}^{\infty} n^{-(p\alpha+1)} < \infty$$
$$\sum_{n=1}^{\infty} n^{q-2} c_n^q(g_0) = \sum_{n=1}^{\infty} n^{q-2} n^{-q(\beta+1/q')} = \sum_{n=1}^{\infty} n^{-(q\beta+1)} < \infty,$$

then, by virtue of Hardy-Littlewood theorem, we have $f_0(\cdot; \alpha; p) \in L_p(T)$, $g_0(\cdot;\beta;q) \in L_q(T) \text{ and } \|f_0\|_p \asymp \left(\sum_{n=1}^{\infty} n^{-(p\alpha+1)}\right)^{1/p}, \|g_0\|_q \asymp \left(\sum_{n=1}^{\infty} n^{-(q\beta+1)}\right)^{1/q}.$ Further, by virtue of the obvious inequality $E_{n-1}(\varphi)_p \leq \|\varphi(\cdot) - S_{n-1}(\varphi;\cdot)\|_p$ and

M.Riesz inequality (4), we obtain

$$E_{n-1}(f_0)_p \asymp ||f_0(\cdot) - S_{n-1}(f_0; \cdot)||_p \asymp \left(\sum_{\nu=n}^{\infty} \nu^{p-2} c_{\nu}^p(f_0)\right)^{1/p} =$$

Transactions of NAS of Azerbaijan

[To the M.Riesz theorem on absolute ...] 141

$$= \left(\sum_{\nu=n}^{\infty} \nu^{-(p\alpha+1)}\right)^{1/p} \asymp n^{-\alpha}, \ n \in N;$$
$$E_{n-1}(g_0)_q \asymp ||g_0(\cdot) - S_{n-1}(g_0; \cdot)||_q \asymp \left(\sum_{\nu=n}^{\infty} \nu^{q-2} c_{\nu}^q(g_0)\right)^{1/q} =$$
$$= \left(\sum_{\nu=n}^{\infty} \nu^{-(q\beta+1)}\right)^{1/q} \asymp n^{-\beta}, \ n \in N.$$

Besides, it is easy to note that $f_0(\cdot; \alpha; p) \in A(T), g_0(\cdot; \beta; q) \in A(T)$ for 1/p < 1 $\alpha < \infty, \ 1/q < \beta < \infty \ \text{and} \ f_0(\cdot; \alpha; p) \notin A(T), \ g_0(\cdot; \beta; q) \notin A(T) \ \text{for} \ 0 < \alpha \le 1/p,$ $0<\beta\leq 1/q.$ Finally, by virtue of equality (2) we have (1/p'+1/q'=1/r')

$$\begin{split} \rho_n^{(r')} \left(f_0 * g_0 \right) &= \left(\sum_{\nu=n}^{\infty} |c_{\nu}(f_0) \cdot c_{\nu}(g_0)|^{r'} \right)^{1/r'} = \\ &= \left(\sum_{\nu=n}^{\infty} \nu^{-(\alpha+1/p')r'} \cdot \nu^{-(\beta+1/q')r'} \right)^{1/r'} = \\ &= \left(\sum_{\nu=n}^{\infty} \nu^{-(\alpha+\beta)r'} \cdot \nu^{-(1/p'+1/q')r'} \right)^{1/r'} = \\ &\left(\sum_{\nu=n}^{\infty} \nu^{-(\alpha+\beta)r'-1} \right)^{1/r'} \asymp n^{-(\alpha+\beta)}, \ n \in N. \end{split}$$

Theorem 3 is proved.

Remark 6. Theorem 3 in the case of 1 was provedby the author in [5] (theorem 2).

References

[1]. Zygmund A. Trigonometric series. M.: "Mir", 1965, v.1, 616 p., v.2, 538 p. (Russian)

[2]. Edwards R. Fourier series in modern exposition. M.: "Mir", 1985, v.1, 264 p., v.2, 400 p. (Russian)

[3]. Bari N.K. Trigonometric series. M.: "Fizmatgiz", 1961, 936 p. (Russian)

[4]. Kahane J.-P. Absolutely convergent Fourier series. M.: "Mir", 1976, 208 p. (Russian)

[5]. Ilyasov N.A. To the M.Riesz theorem on absolute convergence of the trigonometric Fourier series. Transactions of NAS of Azerbaijan, Ser. of phys.-tech. and math.sciences, 2004, v.XXIV, No1, pp.113-120.

[6]. Onneweer C.W. On absolutely convergent Fourier series. Arkiv for matematik, 1974, v.12, No1, pp.51-58.

[7]. Timan A.F. Theory of approximation of functions of real variable. M.: "Fizmatgiz", 1960, 624 p. (Russian)

142 [N.A.Ilyasov]

Niyazi A. Ilyasov

Institute of Mathematics and Mechanics of NAS of Azerbaijan. 9, F.Agayev str., AZ1141, Baku, Azerbaijan. Tel.: (99412) 439 47 20 (off.). E-mail: nilyasov@yahoo.com

Received December 22, 2003; Revised March 24, 2004. Translated by Mirzoyeva K.S.