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ESTIMATIONS OF THE BEST APPROXIMATION
OF CONVOLUTION OF FUNCTIONS BY MEANS

OF THEIR SMOOTHNESS MODULES IN Lp (T)

Abstract

In the paper the upper estimations of the best (in Lr (T)) approximation
En−1 (h)r of the convolution h = f ∗ g of two 2π periodic functions f ∈ Lp (T)
and g ∈ Lq (T) are obtained by means of the product ωl (f ; δ)p ωk (g; δ)q of
smoothess modules of these functions, where p, q ∈ [1,∞], l, k ∈ N, 1/r =
1/p + 1/q − 1 ≥ 0. It is proved in the case p, q ∈ (1,∞) and the case p = 1,
q = r ∈ (1,∞) that the obtained estimations are exact in the terms of order
on the classes of convolutions with given majorants of smoothness modules of
functions forming the convolution.

In what follows we use the following notation.

• T is the interval (−π, π] in R.

• Lp (T) , 1 ≤ p < ∞, is the space of all measurable 2π periodic functions

f : R → C with finite Lp-norm ‖f‖p =
(
(2π)−1 ∫

T |f (x)|p dx
)1/p

<∞.

• C (T) ≡ L∞ (T) is the space of all continuous 2π periodic functions with norm
‖f‖∞ ≡ max {|f (x)| : x ∈ T}.

• En (f)p is the best approximation of a function f in the metric of Lp (T) by
the trigonometric polynomials of order ≤ n ∈ Z+.

• Tn,p (f) is the polynomial of the best approximation of a function f in the
metric Lp (T) : ‖f − Tn,p (f)‖p = En (f)p , n ∈ Z+.

• Sn (f ; ·) is the partial sum of order n ∈ Z+ of the Fourier-Lebesgue series of a
function f ∈ L1 (T) : Sn (f ;x) =

∑n
|ν|=0 cν (f) eiνx, x ∈ T.

• ωl (f ; δ)p is the smoothness module of l-th order of a function f ∈ Lp (T) :

ωl (f ; δ)p = sup
{∥∥∆l

tf
∥∥

p
: t ∈ R, |t| ≤ δ

}
, l ∈ N, δ ≥ 0, where ∆l

tf (x) =∑l
ν=0 (−1)l−ν

(
l
ν

)
f (x+ νt) , x ∈ R.

• Ωl (0, π] ≡ Ωl is the class of all functions ω (δ) defined on (0, π] and satisfying
the conditions: 0 < ω (δ) ↓ 0 (δ ↓ 0) and δ−lω (δ) ↓ (δ ↑).

Denote, for 1 ≤ p ≤ ∞, l ∈ N, ω ∈ Ωl,

H l
p [ω] =

{
f ∈ Lp (T) : ωl (f ; δ)p ≤ ω (δ) , δ ∈ (0, π]

}
.

The convolution h = f ∗ g of f ∈ L1 (T) and g ∈ L1 (T) is defined by the formula:
h (x) = (f ∗ g) (x) = (1/2π)

∫
T f (x− y) g (y) dy; it is known (see f.e. [1], v.1, § 2.1,

pp.64-65, [2], v.1, § 3.1, pp.65-66) that the function h is defined almost everywhere,
2π periodic, measurable and ‖h‖1 ≤ ‖f‖1 ‖g‖1 (whence it follows in particular that
h = f ∗ g ∈ L1 (T)). The last statement is a particular case of the following result
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known as the W.Young’s inequality (see, f.e. [1], v.1, Theorem (1.15), pp.67-68; [2],
v.2, Theorem 13.6.1, pp.176-177; [2], v.1, Theorem 3.1.4, p.70, Theorem 3.1.6, p.72).

Given p ∈ [1,∞], let p′ = p/(p − 1) be the exponent conjugate to p. As usual,
we assume that p′ = 1 for p = ∞ and p′ = ∞ for p = 1.

Theorem A. Let h = f ∗ g be the convolution of f ∈ Lp (T) and g ∈ Lq (T) for
1 ≤ p, q ≤ ∞. Then, for 1/r = 1/p+ 1/q − 1,

• If 1/r > 0 then h belongs to Lr (T) and ‖h‖r ≤ ‖f‖p ‖g‖q.

• If 1/r = 0 then h belongs to C (T) ≡ L∞ (T) and ‖h‖∞ ≤ ‖f‖p · ‖g‖p′.

Recall that the Fourier coefficients cn (h) of h = f ∗ g of two arbitrary functions
f ∈ L1 (T) and g ∈ L1 (T) are calculated by the formula (see [1], v.1, Theorem
(1.5), p.64; [2], v.1, p.66, formula (3.1.5)) cn (h) = cn (f ∗ g) = cn (f) · cn (g) for
every n ∈ Z.

Between the best approximation and the smoothness modulus of a function f ∈
Lp (T) there exists the known connection expressed by the following direct theorem
of the approximation theory (see [3; p.226, Theorem 1], [4; p.338, Inequality (1)]
and references therein).

Theorem B. Let f ∈ Lp (T) with 1 ≤ p ≤ ∞, and l ∈ N. Then

En−1 (f)p ≤ C1 (l)ωl (f ;π/n)p for every n ∈ N (1)

(where C1 (l) is a positive constant depending only on the parameter l).

Estimation (1) is exact in the terms of order on H l
p [ω], that is, there exists a

function f0 (x; p;ω) ∈ H l
p [ω] such that En−1 (f0)p ≥ C2 (l, p)ω (π/n) for every n ∈ N.

The individual function f0 (x; p;ω) is extremal for p = 1 (see [5; p.575], [6; p.24])
and for p = ∞ (see [7; p.73], [8; p.292], [9; p.52], [10; p.503]; see the both of the
cases in [11; pp.378-380] and [12; Lemma 1, pp.44-45]). For the case 1 < p < ∞,
exactness of estimation (1) is realized by means of some sequence {fn (x; p;ω)}∞n=1 ⊂
H l

p [ω] (see [12; Lemma 2, pp.45-46], [13; Lemma 2.4, p.104], [14; Lemma 4, pp.69-
70], [15; Lemma 3, pp.221-223]). Moreover, given p ∈ (1,∞), for the existence
of an individual function f0 ∈ H l

p [ω] that realizes the estimation En−1 (f0)p ≥
C2 (l, p)ω (π/n), n ∈ N, it is necessary and sufficient that the majorant ω ∈ Ωl

satisfies the Sl - Stechkin condition ω ∈ Sl: there exists a number γ ∈ (0, l) such
that δ−(l−γ)ω (δ) ↓ (δ ↑) (see [12; Remark 1, p.50], [13; Remark 6, pp.94-95], [14;
Theorem 2, pp.70-72], [15; Remark 6, pp.231-232]). Recall that there is a series of
equivalent descriptions of the condition ω ∈ Sl in [10; § 2, p.493].

In the present paper the analogous questions are considered for the convolution
h = f ∗ g of two arbitrary functions f ∈ Lp (T) and g ∈ Lq (T).

Theorem 1. Let h = f ∗ g be the convolution of f ∈ Lp (T) and g ∈ Lq (T) for
p, q ∈ [1,∞]. Then, for 1/r = 1/p+ 1/q − 1 and l, k ∈ N,

(i) If 1/r > 0 then h ∈ Lr (T) and

En−1 (h)r ≤ C3 (l, k)ωl (f ;π/n)p ωk (g;π/n)q for every n ∈ N.

(ii) If 1/r = 0 then h ∈ C (T) ≡ L∞ (T) and

En−1 (h)∞ ≤ C4 (l, k)ωl (f ;π/n)p ωk (g;π/n)q for every n ∈ N,

where q = p′ and C3 (l, k) = C4 (l, k) = C1 (l)C1 (k) .
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Proof. Note that r = pq/ (p+ q − pq) ∈ [1,∞) for 1/r > 0 and r = ∞ for
1/r = 0. By Theorem A, h ∈ Lr (T) for 1/r > 0 and h ∈ C (T) for 1/r = 0.
Denote by Pn (T) a set of all trigonometric polynomials of degree ≤ n ∈ Z+. Since
Tn,p (f) , Tn,q (g) ∈ Pn (T) then Tn,p (f) ∗ g, Tn,q (g) ∗ f, Tn,p (f) ∗ Tn,q (g) ∈ Pn (T)
and therefore Tn,p (f) ∗ g + Tn,q (g) ∗ f − Tn,p (f) ∗ Tn,q (g) ∈ Pn (T) . Further, by
distributivity and commutativity of convolution operation, we have that

f ∗ g − (Tn,p (f) ∗ g + Tn,q (g) ∗ f − Tn,p (f) ∗ Tn,q (g)) =

= (f − Tn,p (f)) ∗ (g − Tn,q (g)) ,
and, applying W.Young’s inequality (see Theorem A), we obtain that

En (h)r ≤ ‖f ∗ g − {Tn,p (f) ∗ g + Tn,q (g) ∗ f − Tn,p (f) ∗ Tn,q (g)}‖r =

= ‖(f − Tn,p (f)) ∗ (g − Tn,q (g))‖r ≤
≤ ‖f − Tn,p (f)‖p ‖g − Tn,q (g)‖q = En (f)pEn (g)q ,

whence
En (h)r ≤ En (f)pEn (g)q , n ∈ Z+. (2)

Applying inequality (1) in (2), we obtain the required estimations in (i) and (ii).
Theorem 2 is proved.

Remark 1. Estimation (2) for p, q ∈ (1,∞) can be obtained with the help of
the known M.Riesz inequality (see, f.e. [4; § 5.11, p.339, Inequality (6)], [16; § 8.20,
p.594], [1; v.1, § 7.6, p.423], [2; v.2, § 12.10, p.120])

‖ψ − Sn (ψ)‖p ≤ C5 (p)En (ψ)p for 1 < p <∞, ψ ∈ Lp (T) , n ∈ Z+, (3)

if we take into account the obvious equality f ∗ g − Sn (f ∗ g) = [f − Sn (f)] ∗
[g − Sn (g)] (see, f.e. [17; p.138, Remark 2]) in the following chain of inequalites

En (h)r ≤ ‖h− Sn (h)‖r = ‖[f − Sn (f)] ∗ [g − Sn (g)]‖r ≤
≤ ‖f − Sn (f)‖p ‖g − Sn (g)‖q ≤ C5 (p)En (f)p · C5 (q)En (g)q ,

whence En (h)r ≤ C5 (p)C5 (q)En (f)pEn (g)q for n ∈ Z+.
Denote, for p, q ∈ [1,∞] , l, k ∈ N, ω ∈ Ωl, ϕ ∈ Ωk,

H l
p [ω] ∗Hk

q [ϕ] =
{
h = f ∗ g : f ∈ H l

p [ω] , g ∈ Hk
q [ϕ]

}
.

Estimations (i) and (ii) of Theorem 1 are exact in the terms of order onH l
p [ω]∗Hk

q [ϕ]
for p, q ∈ (1,∞).

Theorem 2. Let p, q ∈ (1,∞), 1/r = 1/p + 1/q − 1 ≥ 0, l, k ∈ N, ω ∈ Ωl and
ϕ ∈ Ωk. Then

sup
{
En−1 (h)r : h ∈ H l

p [ω] ∗Hk
q [ϕ]

}
� ω (π/n)ϕ (π/n) for n ∈ N. (4)

The upper estimates in (4) follow from inequalities (i) and (ii) of Theorem 1.
The lower estimates in (4) are realized by some sequence {hn (x; p; q;ω;ϕ)}∞n=1 ⊂
H ′

p [ω] ∗ Hk
q [ϕ], hn (x; p; q;ω;ϕ) = C−1

6 (l, p) fn (x; p;ω) ∗ C−1
6 (k, q) gn (x; q;ϕ) for

every n ∈ N (see Lemma 1 below). If we put some restrictions on the behavior of
majorants ω ∈ Ωl and ϕ ∈ Ωk then the lower estimates in (4) are realized by means of
an individual function (see Lemma 3 below) h0 (x; p; q;ω;ϕ) = C−1

14 (l, p) f0 (x; p;ω)∗
C−1

15 (k, q) g0 (x; q;ϕ) ⊂ H l
p [ω] ∗Hk

q [ϕ] .
Lemma 1. Let p, q ∈ (1,∞), 1/r = 1/p+1/q−1 ≥ 0, l, k ∈ N, ω ∈ Ωl and ϕ ∈

Ωk. There exist sequences {fn (·; p;ω)}∞n=1 ⊂ Lp (T) and {gn (·; q;ϕ)}∞n=1 ⊂ Lq (T)
such that
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(i) ωl (fn; δ)p ≤ C6 (l, p)ω (δ) , δ ∈ (0, π] ⇒
{
C−1

6 (l, p) fn (x; p;ω)
}
⊂ H l

p [ω] ,

ωk (gn; δ)q ≤ C6 (k, q)ϕ (δ) , δ ∈ (0, π] ⇒
{
C−1

6 (k, q) gn (x; q;ϕ)
}
⊂ Hk

q [ϕ].

(ii) En−1 (hn)r ≥ C7 (r)ω (π/n)ϕ (π/n) for hn = fn ∗ gn and every n ∈ N.

Proof. Put, for every n ∈ N, fn (x; p;ω) = n1/p−1ω (π/n) d4n (x) and
gn (x; q;ϕ) = n1/q−1ϕ (π/n) d4n (x), where d4n (x) =

∑4n
ν=1 e

iνx for x ∈ T. Then
hn (x; p; q;ω;ϕ) = n1/p+1/q−2ω (π/n)ϕ (π/n) d4n (x). In the paper [15; p.221, For-
mula (11)] the estimation ‖Re d4n‖p ≤ [2p/ (p− 1)]1/p (4n)1−1/p = C8 (p) (4n)1−1/p

was proved. It follows from this estimation that

‖d4n‖p ≤ ‖Re d4n‖p + ‖Im d4n‖p ≤ (1 + C9 (p))C8 (p) (4n)1−1/p = C10 (p)n1−1/p,

where C9 (p) is the constant in the known M.Riesz inequality (see f.e. [4; § 3.11.1,
p.169], [16; § 8.14, p.566], [1; v.1, § 7.2, p.404], [2; v.2, § 12.9.1, p.113])

∥∥∥ψ̃∥∥∥
p
≤

C9 (p) ‖ψ‖p for the function ψ̃ trigonometric conjugate to a function ψ ∈ Lp (T) , 1 <
p <∞. By the estimation for ‖d4n‖p, we obtain that

‖fn (·; p;ω)‖p = n1/p−1ω (π/n) ‖d4n‖p ≤ C10 (p)ω (π/n) ≤ C10 (p)ω (π) <∞,

whence {fn (·; p;ω)}∞n=1 ⊂ Lp (T). We have similarly that

‖gn (·; q;ϕ)‖q = n1/q−1ϕ (π/n) ‖d4n‖q ≤ C10 (q)ϕ (π/n) ≤ C10 (q)ϕ (π) <∞.

Therefore {gn (·; q;ϕ)}∞n=1 ⊂ Lq (T).
We prove (i). For an arbitrary fixed n ∈ N and any δ ∈ (0, π], either δ ≤ π/n or

δ > π/n.
For the case δ ≤ π/n, taking into account that δ−lω (δ) ↓ (δ ↑) and using

S.N.Bernstein-M.Riesz-F.Riesz-A.Zygmund inequality for Lp-norms of derivatives
of trigonometric polynomials (see [1; v.2, § 10.3, p.20, § 16.7, p.414], [4; § 4.8, p.223,
p.228, p.230], [16; p.47, p.895], [18; § 2.11, p.115]) we obtain that

ωl (fn; δ)p ≤ δl
∥∥∥f (l)

n

∥∥∥
p

= δln1/p−1ω (π/n)
∥∥∥d(l)

4n

∥∥∥
p
≤

≤ δln1/p−1ω (π/n) (4n)l ‖d4n‖p ≤

≤ δln1/p−1ω (π/n) (4n)l C10 (p)n1−1/p =

= C10 (p) 4lδlnlω (π/n) ≤ C10 (p) 4lπlω (δ) .

For δ > π/n, taking into account that ω (δ) ↑ (δ ↑), we obtain that

ωl (fn; δ)p ≤ 2l ‖fn‖p = 2ln1/p−1ω (π/n) ‖d4n‖p ≤

≤ 2ln1/p−1ω (π/n)C10 (p)n1−1/p =

= 2lC10 (p)ω (π/n) ≤ 2lC10 (p)ω (δ) .

By the estimations obtained, for every δ ∈ (0, π] we have that

ωl (fn; δ)p ≤ C10 (p) 2l
(
2lπl + 1

)
ω (δ) = C6 (l, p)ω (δ) ,
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whence it follows that
{
C−1

6 (l, p) fn (x; p;ω)
}∞

n=1
⊂ H l

p [ω].
The estimation ωk (gn; δ)q ≤ C10 (q) 2k

(
2kπk + 1

)
ϕ (δ) = C6 (k, q)ϕ (δ) , δ ∈

(0, π] is similar. Thus
{
C−1

6 (k, q) gn (x; q;ϕ)
}∞

n=1
⊂ Hk

q [ϕ].
Now we prove (ii). In the case r ∈ (1,∞), by (3) and the estimation ([15; p.221,

Formula (11)]) ‖Im d4n − Sn (Im d4n)‖r ≥ C11 (r)n1−1/r for every n ∈ N, we obtain
that

C5 (r)En−1 (hn)r ≥ C5 (r)En (hn)r ≥ ‖hn − Sn (hn)‖r =

= n1/p+1/q−2ω (π/n)ϕ (π/n) ‖d4n − Sn (d4n)‖r ≥

≥ n1/p+1/q−2ω (π/n)ϕ (π/n) ‖Im d4n − Sn (Im d4n)‖r ≥

≥ n1/p+1/q−2ω (π/n)ϕ (π/n)C11 (r)n1−1/r =

= C11 (r)n−[1/r−(1/p+1/q−1)]ω (π/n)ϕ (π/n) =

= C11 (r)ω (π/n)ϕ (π/n)

for every n ∈ N.
In the case r = ∞ (=⇒ 1/r = 1/p+ 1/q − 1 = 0 ⇔ 1/p+ 1/q = 1) we note first

that, for a complex valued function ψ ∈ C (T),

En (Reψ)∞ = ‖Reψ − Tn,∞ (Reψ)‖∞ ≤ ‖Reψ − Re (Tn,∞ (ψ))‖∞ =

= ‖Re [ψ − Tn,∞ (ψ)]‖∞ ≤ ‖ψ − Tn,∞ (ψ)‖∞ = En (ψ)∞ ,

whence En (ψ)∞ ≥ En (Reψ)∞ , n ∈ Z+.
Involving inequality (132) in [18; p.117]: 3En (ψ)∞ ≥ ‖ψ − σn,n (ψ)‖∞, where

σn,n (ψ; ·) is the Vallèe-Poussin sum [18; p.51, Formula (49)] of a real valued function
ψ ∈ C (T), and noting that cosx = 1 at x = 0, we obtain (see also [15; Remark 2,
p.222]) that

3En (Re d4n)∞ ≥ ‖Re d4n − σn,n (Re d4n)‖∞ ≥

≥

∥∥∥∥∥
4n∑

ν=1

cos νx−

{
n∑

ν=1

cos νx+
2n∑

ν=n+1

(
1− ν − n

n

)
cos νx

}∥∥∥∥∥
∞

≥

≥

∣∣∣∣∣
4n∑

ν=1

1−

{
n∑

ν=1

1 +
2n∑

ν=n+1

(
1− ν − n

n

)}∣∣∣∣∣ = 5n+ 1
2

>
5
2
n

for every n ∈ N. Taking into account the last estimation, we have

En−1 (hn)∞ ≥ En (hn)∞ ≥ En (Rehn)∞ =

= n1/p+1/q−2ω (π/n)ϕ (π/n)En (Re d4n)∞ ≥

≥ n1/p+1/q−2ω (π/n)ϕ (π/n) (5/6)n =

= (5/6)n1/p+1/q−1ω (π/n)ϕ (π/n) = (5/6)ω (π/n)ϕ (π/n) ,

for every n ∈ N. Lemma 1 is proved.

Let M0 be the class of all sequences λ = {λn}∞n=1 of reals such that 0 < λn ↓ 0
as n ↑ ∞. Given numbers θ ∈ [1,∞) and l ∈ N, we put

D(θ) =
{
λ ∈M0 :

∑∞

n=1
n−1λθ

n <∞
}
,
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B(θ) =
{
λ ∈M0 :

(∑∞

ν=n
ν−1λθ

ν

)1/θ
= O (λn) , n ∈ N

}
,

B
(θ)
l =

{
λ ∈M0 : n−l

(∑n

ν=1
νθl−1λθ

ν

)1/θ
= O (λn) , n ∈ N

}
.

Note for example that the sequence of λn = n−α, n ∈ N, belongs to D(θ) and
B(θ) for every α > 0 (it is clear that B(θ) ⊂ D(θ)) and belongs to the class B(θ)

l for
0 < α < l, where θ ∈ [1,∞).

Lemma 2. Let p ∈ (1,∞), p′ = p/ (p− 1), l ∈ N and λ = {λn} ∈ M0.
Then the function f0 (x; p;λ) =

∑∞
n=1 λnn

−1/p′
einx for x ∈ T, satisfies the following

conditions

(i) f0 ∈ Lp (T) for λ ∈ D(p).

(ii) En−1 (f0)p = O (λn) , n ∈ N, for λ ∈ B(p).

(iii) ωl (f0;π/n)p = O (λn) , n ∈ N, for λ ∈ B(θ)
l ∩B(p), where θ = min {2, p}.

Proof. (i) Since λ ∈ D(p), cn (f0) = n−1/p′
λn ↓ 0 (n ↑ ∞) and∑∞

n=1
np−2cpn (f0) =

∑∞

n=1
np−2n−p/p′

λp
n =

∑∞

n=1
n−1λp

n <∞,

then, by the Hardy-Littlewood theorem (see f.e. [16; § 10.3, p.657-658]; [1; v.2, §
12.6, Lemma (6.6) on p.193]; [2; v.1, § 7.3.5, pp.148-149]), f0 ∈ Lp (T) and ‖f0‖p �(∑∞

n=1 n
−1λp

n

)1/p.
(ii) Taking into account that λ ∈ B(p) and applying the Hardy-Littlewood The-

orem, we obtain that

En−1 (f0)p ≤ ‖f0 − Sn−1 (f0)‖p =
∥∥∥∑∞

ν=n
ν−1/p′

λνe
iνx
∥∥∥

p
�

�
(∑∞

ν=n
νp−2ν−p/p′

λp
ν

)1/p
=
(∑∞

ν=n
ν−1λp

ν

)1/p
= O (λn)

for every n ∈ N.

(iii) By inequality ωl (ψ;π/n)p ≤ C13 (l, p)n−l
(∑n

ν=1 ν
θl−1Eθ

ν−1 (ψ)p

)1/θ
, (see

[19; Lemma 1, p.502] for p = 2, l = 1; [20; Theorem 1, p.126] for p ∈ (1,∞) , l ∈ N)
where ψ ∈ Lp (T), p ∈ (1,∞), θ = min {2, p}, and taking into account that λ ∈
B(p) ∩B(θ)

l , we have

ωl (f0;π/n)p ≤ C13 (l, p)n−l
(∑n

ν=1
νθl−1Eθ

ν−1 (f0)p

)1/θ
=

= O

(
n−l

(∑n

ν=1
νθl−1λθ

ν

)1/θ
)

= O (λn)

for every n ∈ N. Lemma 2 is proved.
Lemma 3. Let p, q ∈ (1,∞), 1/r = 1/p + 1/q − 1 ≥ 0, l, k ∈ N, θ =

min {2, p}, γ = min {2, q}, and let ω ∈ Ωl, ϕ ∈ Ωk, {ω (π/n)}∞n=1 ∈ B(p) ∩ B(θ)
l

and {ϕ (π/n)}∞n=1 ∈ B(q)∩B(γ)
k . Then there exist functions f0 (x; p;ω) ∈ Lp (T) and

g0 (x; q;ϕ) ∈ Lq (T) such that
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(i) ωl (f0; δ)p ≤ C14 (l, p) ω (δ) , δ ∈ (0, π] ⇒ C−1
14 (l, p) f0 (·; p;ω) ∈ H l

p [ω],

ωk (g0; δ)q ≤ C15 (k, q)ϕ (δ) , δ ∈ (0, π] ⇒ C−1
15 (k, q) g0 (·; q;ϕ) ∈ Hk

q [ϕ].

(ii) En−1 (h0)r ≥ C16 (r, l, k)ω (π/n)ϕ (π/n) , n ∈ N, for h0 = f0 ∗ g0.

Proof. Put ωn = ω (π/n) and ϕn = ϕ (π/n) for every n ∈ N. Let f0 (x; p;ω) =∑∞
n=1 n

−1/p′
ωne

inx and g0 (x; q;ϕ) =
∑∞

n=1 n
−1/q′

ϕne
inx for every x ∈ T, where p′ =

p/ (p− 1) and q′ = q/ (q − 1). Then, by (i) of Lemma 2, taking into account that
{ωn} ∈ B(p) ⊂ D(p)and {ϕn} ∈ B(q) ⊂ D(q), and by (iii) of Lemma 2, taking into
account that {ωn} ∈ B(θ)

l ∩B(p) and {ϕn} ∈ B
(γ)
k ∩B(q), we obtain that f0 ∈ Lp (T),

g0 ∈ Lq (T), ωl (f0;π/n)p = O (ωn) and ωk (g0;π/n)q = O (ϕn) for every n ∈ N.
Hence ωl (f0; δ)p ≤ 2lC17 (l, p)ω (δ) and ωk (g0; δ)q ≤ 2kC18 (k, q)ϕ (δ) for every
δ ∈ (0, π].

Further, for the convolution, we have that

h0 (x; p; q;ω;ϕ) = (f0 (·; p;ω) ∗ g0 (·; q;ϕ))(x) =
∞∑

n=1

n−(1/p′+1/q′)ωnϕne
inx.

For r ∈ (1,∞), by inequality (3) and Hardy-Littlewood theorem, we have that

C5 (r)En−1 (h0)r ≥ ‖h0 − Sn−1 (h0)‖r =

∥∥∥∥∥
∞∑

ν=n

ν−(1/p′+1/q′)ωνϕνe
iνx

∥∥∥∥∥
r

≥

≥ C19 (r)

( ∞∑
ν=n

νr−2−(1/p′+1/q′)rωr
νϕ

r
ν

)1/r

= C19 (r)

( ∞∑
ν=n

ν−1ωr
νϕ

r
ν

)1/r

≥

≥ C19 (r)

(
2n∑

ν=n+1

ν−1ωr
νϕ

r
ν

)1/r

≥ C19 (r)ω2nϕ2n

(
2n∑

ν=n+1

ν−1

)1/r

≥

≥ C19 (r)ω
( π

2n

)
ϕ
( π

2n

)
(2n)−1/r n1/r ≥ C19 (r) 2−(l+k+1/r)ω

(π
n

)
ϕ
(π
n

)
,

whence En−1 (h0)r ≥ C16 (r, l, k)ω (π/n)ϕ (π/n) for every n ∈ N.
For r = ∞, by the N.K.Bary inequality [8; p.293], we obtain that

4En−1 (h0)∞ ≥ 4En (h0)∞ ≥ 4En (Reh0)∞ ≥
∞∑

ν=2n

ν−(1/p′+1/q′)ωνϕν =

=
∞∑

ν=2n

ν−1ωνϕν ≥
3n∑

ν=2n+1

ν−1ωνϕν ≥ ω3nϕ3n

3n∑
ν=2n+1

ν−1 ≥

≥ ω (π/3n)ϕ (π/3n) (3n)−1 n ≥ 3−(l+k+1)ω (π/n)ϕ (π/n) ,

whence En−1 (h0)∞ ≥ 4−13−(l+k+1)ω (π/n)ϕ (π/n) for every n ∈ N. Lemma 3 is
proved.

Remark 2. Theorem 2 holds also in the case p = 1 < q <∞ (⇒ r = q ∈ (1,∞))
or q = 1 < p < ∞ (⇒ r = p ∈ (1,∞)). Moreover, the last case does not require
a separate consideration by virtue of commutativity of convolution. The upper
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estimate follows from (i) of Theorem 1, and the lower estimate is realized by the
family {hn (x; 1; q;ω;ϕ)} ⊂ H l

1 [ω] ∗Hk
q [ϕ] (see Lemma 4 below).

Lemma 4. Let l, k ∈ N, ω ∈ Ωl, ϕ ∈ Ωk, 1 < q < ∞. There exist sequences
{fn (x; 1;ω)}∞n=1 ⊂ L1 (T) and {gn (x; q;ϕ)}∞n=1 ⊂ Lq (T) such that

(i) ωl (fn; δ)1 ≤ C20 (l)ω (δ) , δ ∈ (0, π] ⇒
{
C−1

20 (l) fn (x; 1;ω)
}
⊂ H l

1 [ω] ,

ωk (gn; δ)q ≤ C21 (k, q)ϕ (δ) , δ ∈ (0, π] ⇒
{
C−1

21 (k, q) gn (x; q;ϕ)
}
⊂ Hk

q [ϕ] .

(ii) En−1 (hn)r ≥ C22 (q)ω (π/n)ϕ (π/n) , n ∈ N, for hn = fn ∗ gn.

Proof. Put fn (x; 1;ω) = ω (π/n)F2n (x) for every n ∈ N, where F2n (x)
is a Fejer kernel of order 2n: F2n (x) = 1/2 +

∑2n
ν=1 (1− ν/ (2n+ 1)) cos νx. Put

gn (x; q;ϕ) = n1/q−1ϕ (π/n) Re d2n (x), where d2n (x) =
∑2n

ν=1 e
iνx. Since ‖F2n‖1 = 1

for every n ∈ N, then ‖fn (·; 1;ω)‖1 = ω (π/n) ‖F2n‖1 = ω (π/n) ≤ ω (π) < ∞,

whence {fn (·; 1;ω)} ⊂ L1 (T). Further, by estimation ‖Re d2n‖q ≤ C8 (q) (2n)1−1/q

(see the proof of Lemma 1), we have that

‖gn (·; q;ϕ)‖q = n1/q−1ϕ (π/n) ‖Re d2n‖q ≤

≤ n1/q−1ϕ (π/n)C8 (q) (2n)1−1/q ≤ 21−1/qC8 (q)ϕ (π) <∞,

and therefore {gn (x; q;ϕ)}∞n=1 ⊂ Lq (T).
(i) If δ ≤ π/n then, for arbitrary fixed n ∈ N and δ ∈ (0, π], by the condition

δ−lω (δ) ↓ (δ ↑), we have that

ωl (fn; δ)1 ≤ δl
∥∥∥f (l)

n

∥∥∥
1

= δlω (π/n)
∥∥∥F (l)

2n

∥∥∥
1
≤

≤ δlω (π/n) · (2n)l ‖F2n‖1 = 2lδlnlω (π/n) ≤ 2lπlω (δ) .

If δ > π/n then, by the condition ω (δ) ↑ (δ ↑), we obtain that

ωl (fn; δ)1 ≤ 2l ‖fn‖1 = 2lω (π/n) ‖F2n‖1 = 2lω (π/n) ≤ 2lω (δ) .

By the estimations obtained, we have that ωl (fn; δ)1 ≤ 2l
(
πl + 1

)
ω (δ) = C20 (l)ω (δ) , δ ∈

(0, π]. Hence it follows that
{
C−1

20 (l) fn (x; 1;ω)
}∞

n=1
⊂ H l

1 [ω]. The proof of the sec-
ond estimation in (i) for ωk (gn; δ)q repeats the corresponding arguments of Lemma
1, and we obtain that

ωk (gn; δ)q ≤ 2k+1−1/qC8 (q)
(
πk + 1

)
ϕ (δ) for every δ ∈ (0;π] .

(ii) According to Formula (1.9) of [1; v.1, p.65], we have that

hn (x; 1; q;ω;ϕ) = (fn (·; 1;ω) ∗ gn (·; q;ϕ))(x) = ω (π/n)n1/q−1ϕ (π/n)F2n (x) .

Hence, by (3), we obtain that (r = q ∈ (1,∞))

C5 (r)En−1 (hn)r = C5 (q)En−1 (hn)q ≥ C5 (q)En (hn)q ≥ ‖hn − Sn (hn)‖q =

= ω
(π
n

)
n1/q−1ϕ

(π
n

)
‖F2n − Sn (F2n)‖q ≥
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≥ ω
(π
n

)
n1/q−1ϕ

(π
n

)
C23 (q)n1−1/q,

whence En−1 (hn)r ≥ C22 (q)ω (π/n)ϕ (π/n) , n ∈ N, where C22 (q) = C23(q)
C5(q) .

To complete the proof, we establish the estimation ‖F2n − Sn (F2n)‖q ≥
≥ C23 (q)n1−1/q, n ∈ N, that was used above. Since

Fm (x) =
1
2

+
∑m

ν=1

(
1− ν

(m+ 1)

)
cos νx =

sin2 ((m+ 1)x/2)
2 (m+ 1) sin2 (x/2)

for every m ∈ N, we have that

F2n (x)− Sn (F2n;x) =
(2n+ 1)F2n (x)− (n+ 1)Fn (x)

(2n+ 1)
=

=
sin2 ((2n+ 1)x/2)− sin2 ((n+ 1)x/2)

2 (2n+ 1) sin2 (x/2)
=

=
(1/2) (cos (n+ 1)x− cos (2n+ 1)x)

2 (2n+ 1) sin2 (x/2)
=

sin (nx/2) · sin ((3n+ 2)x/2)
2 (2n+ 1) sin2 (x/2)

,

whence taking into account inequalities sin z ≥ (2/π) z for every z ∈ [0, π/2] and
|sin z| ≤ |z| , z ∈ R, we obtain that

‖F2n − Sn (F2n)‖q
q = (2π)−1

∫
T
|F2n (x)− Sn (F2n;x)|q dx =

=
∫ π

−π

|sin (n/2)x|q |sin ((3n+ 2) /2)x|q

2π(2 (2n+ 1) sin2 (x/2))q
dx ≥

≥
∫ π/(3n+2)

0

(sin (n/2)x)q(sin ((3n+ 2) /2)x)q

2π(2 (2n+ 1) sin2 (x/2))q
dx ≥

≥
∫ π/(3n+2)

0

(
π−1nx

)q (
π−1 (3n+ 2)x

)q 22q

2π(2 (2n+ 1))qx2q
dx =

= π−2q2q−1 (2n+ 1)−q nq (3n+ 2)q−1 ≥

≥ π−2q2q−1 (3n)−q nq (3n)q−1 = π−2q2q−13−1nq−1,

and therefore ‖F2n − Sn (F2n)‖q ≥ π−221−1/q3−1/qn1−1/q = C23 (q)n1−1/q. Lemma
4 is proved.
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