Rovshan Z. HUMBATALIYEV

ON THE EXISTENCE OF REGULAR SOLUTIONS OF A BOUNDARY VALUE PROBLEM FOR A CLASS OF HIGHER ORDER OPERATOR-DIFFERENTIAL EQUATIONS IN WEIGHT SPACE

Abstract

In this paper the regular solvability of a boundary value problem for a higher order operator-differential equations in weight space, when leading part of the equation has multiple characteristic, has been investigated.

In separable Hilbert space H consider the operator-differential equation of $2 n$-th order such that

$$
\begin{equation*}
\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{n} u(t)+\sum_{j=0}^{2 n-1} A_{2 n-j} u^{(j)}(t)=f(t), \quad t \in R_{+}=(0,+\infty) \tag{1}
\end{equation*}
$$

Here A is a positive definite self-adjoint operator, $A_{j}(j=\overline{0,2 n-1})$ are linear, generally speaking, unbounded operators.

Connect equation (1) with the initial boundary conditions

$$
\begin{equation*}
u^{\left(S_{v}\right)}(0)=0, \quad \nu=\overline{0, n-1} \tag{2}
\end{equation*}
$$

where $0 \leq S_{0}<S_{1}<\ldots<S_{n-1} \leq 2 n-1, S_{\nu}$ are integers.
Let $f(t) \in L_{2, \gamma}\left(R_{+}: H\right), u(t) \in W_{2, \gamma}^{2 n}\left(R_{+}: H\right)$, where the spaces $L_{2, \gamma}\left(R_{+}: H\right)$ and $W_{2, \gamma}^{2 n}\left(R_{+}: H\right)$ are defined as [1]

$$
\begin{gathered}
L_{2, \gamma}\left(R_{+}: H\right)=\left\{f(t):\left(\int_{0}^{\infty}\|f(t)\|_{H}^{2} e^{-2 \gamma t} d t\right)^{1 / 2}=\|f\|_{L_{2, \gamma}}<\infty\right\}, \\
W_{2, \gamma}^{2 n}\left(R_{+}: H\right)=\left\{u(t): u^{(2 n)} \in L_{2, \gamma}\left(R_{+}: H\right), A^{2 n} u \in L_{2, \gamma}\left(R_{+}: H\right),\right. \\
\left.\|u\|_{W_{2, \gamma}^{2 n}\left(R_{+}: H\right)}=\left(\left\|u^{(2 n)}\right\|_{L_{2, \gamma}\left(R_{+}: H\right)}^{2}+\left\|A^{2 n} u\right\|_{L_{2, \gamma}\left(R_{+}: H\right)}^{2}\right)^{1 / 2}\right\},
\end{gathered}
$$

Then denote

$$
W_{2, \gamma}^{2 n}\left(R_{+}: H ;\left\{S_{\nu}\right\}\right)=\left\{u(t): u \in W_{2, \gamma}^{2 n}\left(R_{+}: H\right), u^{\left(S_{\nu}\right)}(0)=0, \nu=\overline{0, n-1}\right\}
$$

Definition 1. If the vector-function $u(t) \in W_{2, \gamma}^{2 n}\left(R_{+}: H\right)$ satisfies equation (1) almost everywhere in R_{+}, it said to be the regular solution of equation (1).

Definition 2. If the regular solution of equation (1) $u(t)$ satisfies boundary conditions (2) in the sense of $\lim _{t \rightarrow 0}\left\|u^{\left(S_{v}\right)}(t)\right\|_{H_{2 n-S_{v}-1 / 2}}=0$, where H_{α} is Hilbert

[R.Z.Humbataliyev]

space scale generated by the operator A, i.e. $H_{\alpha}=D\left(A^{\alpha}\right),(x, y)_{\alpha}=\left(A^{\alpha} x, A^{\alpha} y\right)$ and the inequality

$$
\|u\|_{W_{2, \gamma}^{2 n}\left(R_{+}: H\right)} \leq \mathrm{const}\|f\|_{L_{2, \gamma}\left(R_{+}: H\right)}
$$

holds, then problem (1), (2) will be called regularly solvable.
Note, that in the papers $[2,3]$ regular solvability of problem (1), (2) has been investigated in special cases, for example, at $n=1$ and $n=2$. In this paper we'll show some conditions providing regular solvability of problem (1), (2).

Firstly, we study the simple problem

$$
\begin{gather*}
P_{0} u_{0}(t)=\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{n} u_{0}(t)=f(t), t \in R_{+}=(0,+\infty) e^{\gamma t} \tag{3}\\
u_{0}^{\left(S_{\nu}\right)}(0)=0, \quad \nu=\overline{0, n-1} \tag{4}
\end{gather*}
$$

where S_{ν} are integers and $0 \leq S_{0}<S_{1}<\ldots<S_{n-1} \leq 2 n-1$. To investigate solvability of problem (3), (4) we denote by $\hat{f}(\xi)$ and $\hat{u}_{0}(\xi)$ the transformations of the vector-functions $f(t)$ and $u_{0}(t)$. After substitution $u_{0}(t)=v_{0}(t) e^{\gamma t}$ we have

$$
\left(-\left(\frac{d}{d t}+\gamma\right)^{2}+A^{2}\right)^{n} v_{0}(t) e^{\gamma t}=f(t)
$$

or

$$
\begin{equation*}
\left(-\left(\frac{d}{d t}+\gamma\right)^{2}+A^{2}\right)^{n} v_{0}(t)=f(t) \cdot e^{-\gamma t}=g(t) \tag{5}
\end{equation*}
$$

Denote by $g(t)=f(t) \cdot e^{-\gamma t} \in L_{2}\left(R_{+}: H\right)$. Then boundary conditions (4) will have the form

$$
\begin{equation*}
\left(\frac{d}{d t}+\gamma\right)^{\left(S_{\nu}\right)} v_{0 / t=0}=0 \tag{6}
\end{equation*}
$$

It is obvious that regular solvability of problem (5), (6) in $L_{2}\left(R_{+}: H\right)$ is equivalent to regular solvability of problem (3), (4) in $L_{2 \gamma}\left(R_{+}: H\right)$. Let's solve problem (5), (6) in $L_{2}\left(R_{+}: H\right)$, i.e. $g(t) \in L_{2}\left(R_{+}: H\right), v_{0}(t) \in W_{2}^{2 n}\left(R_{+}: H\right)$. At first, we investigate the equation

$$
\begin{equation*}
\left(-\left(\frac{d}{d t}+\gamma\right)^{2}+A^{2}\right)^{n} v_{0}(t)=g(t) \tag{7}
\end{equation*}
$$

After Fourier transformation we find $\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{n} v_{0}(\xi)=\hat{g}(\xi)$ or

$$
\hat{v}_{0}(\xi)=\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n} \hat{g}(\xi)
$$

Show that the vector-function

$$
v_{0}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n} \hat{g}(\xi) e^{i \xi t} d \xi, \quad t \in R
$$

\qquad
[On the existence of regular solutions]
satisfies equation (7) almost everywhere in R and belongs to the space $W_{2}^{2 n}(R: H)$. It is obvious that at $|\gamma|<\mu_{0}$, where μ_{0} is a lower boundary of the operator spectrum $A, v_{0}(t) \in W_{2}^{2 n}(R: H)$. For that using Plansherel's theorem, show that $\xi^{2 n} \hat{v}(\xi) \in L_{2}(R: H)$ and $A^{2 n} \hat{v}_{0}(\xi) \in L_{2}(R: H)$. Since

$$
\begin{gathered}
\left\|\xi^{2 n} \hat{v}_{0}(\xi)\right\|_{L_{2}(R: H)}=\left\|\xi^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n} \hat{g}(\xi)\right\|_{L_{2}(R: H)} \leq \\
\leq \sup _{\xi}\left\|\xi^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n}\right\| \cdot\|\hat{g}(\xi)\|_{L_{2}(R: H)}
\end{gathered}
$$

let's estimate the norm $\left\|\xi^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n}\right\|$ at $\xi \in R$. Since at $\xi \in R$,

$$
\begin{aligned}
& |\gamma|<\left\|\xi^{2 n}\left(-\left(-i \xi+\gamma^{2}\right) E+A^{2}\right)^{-n}\right\|= \\
= & \left\|\xi^{2 n}\left(-\left(-\xi^{2}-2 i \xi \gamma+\gamma^{2}\right) E+A^{2}\right)^{-n}\right\|= \\
= & \left\|\left[\xi^{2}\left(\left(\xi^{2}+2 i \xi \gamma-\gamma^{2}\right) E+A^{2}\right)^{-1}\right]^{n}\right\|,
\end{aligned}
$$

then using spectral expansion of the operator A, we have:

$$
\begin{gathered}
\left\|\left[\xi^{2}\left(\left(\xi^{2}+2 i \xi \gamma-\gamma^{2}\right) E+A^{2}\right)^{-1}\right]^{n}\right\|= \\
=\sup _{\mu \in \sigma(A)}\left|\left[\xi^{2}\left(\left(\xi^{2}+2 i \xi \gamma-\gamma^{2}\right)+\mu^{2}\right)^{-1}\right]^{n}\right| \leq \\
\leq \sup _{\mu \geq \mu_{0}}\left(\frac{\xi^{2}}{\left|\left(\xi^{2}+2 i \xi \gamma-\gamma^{2}+\mu^{2}\right)\right|}\right)^{n} \leq\left(\frac{\xi^{2}}{\xi^{2}+\mu^{2}-\gamma^{2}}\right)^{n} \leq 1 .
\end{gathered}
$$

Thus

$$
\left\|v_{0}^{(2 n)}\right\|_{L_{2}}=\left\|\xi^{2 n} \hat{v}_{0}(\xi)\right\|_{L_{2}} \leq\|g(t)\|_{L_{2}(R: H)}, \text { i.e. } v_{0}^{(2 n)} \in L_{2}(R: H)
$$

On the other hand,

$$
\begin{aligned}
& \left\|A^{2 n} \hat{v}_{0}(\xi)\right\|_{L_{2}(R: H)}=\left\|A^{2}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n} \hat{g}(\xi)\right\|_{L_{2}(R: H)} \leq \\
& \quad \leq \sup _{\xi}\left\|A^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n}\right\| \cdot\|\hat{g}(\xi)\|_{L_{2}(R: H)}
\end{aligned}
$$

Therefore we estimate the norm $\left\|A^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n}\right\|$ at any $\xi \in R$.
Since at any $\xi \in R$ and $|\gamma|<\mu_{0}$,

$$
\begin{gathered}
\left\|A^{2 n}\left(-(-i \xi+\gamma)^{2} E+A^{2}\right)^{-n}\right\|=\sup _{\mu \geq \mu_{0}} \frac{\mu^{2 n}}{\left|\left(\xi^{2}+2 i \xi \gamma-\gamma^{2}+\mu^{2}\right)\right|^{n}} \leq \\
\quad \leq \sup _{\mu \geq \mu_{0}}\left(\frac{\mu^{2}}{\xi^{2}-\gamma^{2}+\mu^{2}}\right)^{n} \leq \sup _{\mu \geq \mu_{0}}\left(\frac{\mu^{2}}{\mu^{2}-\gamma^{2}}\right)^{n} \leq\left(\frac{\mu^{2}}{\mu^{2}-\gamma^{2}}\right)^{n}
\end{gathered}
$$

and the function $\varphi(\mu)=\frac{\mu^{2}}{\mu^{2}-\gamma^{2}}$ monotonically decreases on $\left[\mu_{0} ;+\infty\right)$,

$$
\left\|A^{2 n} v_{0}\right\|_{L_{2}}=\left\|A^{2 n} \hat{v}_{0}(\xi)\right\|_{L_{2}} \leq\left(\frac{\mu_{0}^{2}}{\mu_{0}^{2}-\gamma^{2}}\right)^{n}\|g(t)\|_{L_{2}} \text {, i.e. } A^{2 n} v_{0} \in L_{2}(R: H)
$$

Denote by $\overline{v_{0}(t)}$ the contraction of the vector-function on the semi-axis $[0,+\infty)$, i.e. $\overline{v_{0}(t)}=v_{0}(t) / t \in[0,+\infty)$. Then from the trace theorem it follows that

$$
{\overline{v_{0}}}^{\left(s_{i}\right)}(0) \in H_{2 m-s_{i}-1 / 2}, i=\overline{0, n-1} .
$$

We'll search a solution of problem (5), (6) in the form of $v(t)=\overline{v_{0}(t)}+\sum_{q=0}^{n-1} e^{\omega_{q} \cdot t A} \varphi_{q}$, where ω_{q} are the roots of the equation $\left(\omega_{q}^{2}+1\right)^{n}=0$ from the left half-plane, i.e. $\operatorname{Re} \omega_{q}<0$, and $\varphi_{q} \in H_{2 n-1 / 2}$. Then to determine the vectors φ_{q} we have the following system of equations

$$
0=v^{\left(s_{v}\right)}(0)={\overline{v_{0}}}^{\left(s_{v}\right)}(0)+\sum_{q=0}^{n-1} A^{s_{\nu}} \omega_{q}^{s_{\nu}} \varphi_{q}, \quad \nu=\overline{0,1}
$$

or

$$
\sum_{q=0}^{n-1} A^{s_{\nu}} \omega_{q}^{s_{\nu}} \varphi_{q}=-{\overline{v_{0}}}^{\left(s_{\nu}\right)}(0), \nu=\overline{0, n-1}
$$

Whence it follows that

$$
\sum_{q=0}^{n-1} \omega_{q}^{s_{\nu}} \varphi_{q}=-A^{-s_{\nu}}{\overline{v_{0}}}^{\left(s_{\nu}\right)}(0), \nu=\overline{0, n-1}
$$

Since $\operatorname{det}\left(\omega_{q}^{s_{\nu}}\right)_{\substack{n=0 \\ \nu=0 \\ q-1}}^{n-1} 0$, we determine the vectors φ_{q}. From the inverse matrix expression $\left(\omega_{q}^{s_{\nu}}\right)_{\substack{n=0 \\ \nu=0}}^{n-1}$ and from $-A^{-s_{\nu}}{\overline{v_{0}}}^{\left(s_{\nu}\right)}(0) \in H_{2 n-s_{\nu}-q-1 / 2}$ it follows that $\varphi_{q} \in$ $H_{2 n-1 / 2}$, i.e. we define φ_{q}. But when $\varphi_{q} \in H_{2 n-1 / 2}$, it is obvious that $e^{\omega_{q} t A} \varphi_{q} \in$ $W_{2}^{2 n}\left(R_{+}: H\right)$. Thus the regular solution of problem (5), (6) has the form

$$
v(t)=\overline{v_{0}}(t)+\sum_{q=0}^{n-1} e^{\omega_{q} t A} \varphi_{q},
$$

where φ_{q} is defined as above. Now, let's show that the homogeneous equation

$$
\begin{equation*}
\left(-\left(\frac{d}{d t}+\gamma^{2}\right)^{2}+A^{2}\right) v(t)=0 \tag{8}
\end{equation*}
$$

has nonzero solution from the space $W_{2}^{2 n}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right)$. General solution of equation (8) from $W_{2}^{2 n}\left(R_{+}: H ;\right)$ takes the form $v(t)=\sum_{q=0}^{n-1} e^{\omega_{q} t A} \varphi_{q}$, where $\varphi_{q} \in H_{2 n-1 / 2}$, $\left(\omega_{q}\right)^{n}=1, \operatorname{Re} \omega_{q}<0, q=\overline{0, n-1}$. Hence from the condition $v^{\left(s_{\nu}\right)}(0)=0$ we obtain
[On the existence of regular solutions]
$\sum_{q=0}^{n-1} A^{s_{\nu}} \omega_{q}^{s_{\nu}} \varphi_{q}=0$ or $\sum_{q=0}^{n-1} \omega_{q}^{s_{\nu}} \varphi_{q}=0$. Since $\operatorname{det}\left(\omega_{q}^{s_{\nu}}\right) \neq 0$, then $\varphi_{q}=0$. Hence we get that $v(t)=0$. Thus, the operator $P_{0, \gamma}$ generated by equation (5) and by boundary conditions (6), one-to-one maps the space $W_{2}^{2 n}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right)$ onto $L_{2}\left(R_{+}: H\right)$. Since

$$
\left\|P_{0, \gamma} v\right\|_{L_{2}\left(R_{+}: H\right)}=\left\|\left(-\left(\frac{d}{d t}+\gamma^{2}\right)^{2}+A^{2}\right) v\right\|_{L_{2}\left(R_{+}: H\right)}
$$

using a theorem on intermediate derivatives, we obtain

$$
\left\|P_{0, \gamma} v\right\|_{L_{2}} \leq \text { const }\|v\|_{W_{2}^{2 n}} .
$$

Thus, the operator $P_{0, \gamma}$ is continuously maps the space $W_{2}^{2 n}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right)$ onto $L_{2}\left(R_{+}: H\right)$ Then by the Banach theorem on the inverse operator, $P_{0, \gamma}$ is an isomorphism. Thereby we proved

Theorem 1. Let A be a self-adjoint positive definite operator, with $A \geq \mu_{0} E\left(\mu_{0}>0\right)$. Then at $|\gamma|<\mu_{0}$ problem (5) has a unique regular solution.

Theorem 2. Let the conditions of theorem 1 be hold and the operators $B_{j}=A_{j} \cdot A^{-j}$ be bounded in H, then when the conditions

$$
\alpha\left(\gamma ; \mu_{0}\right)=\sum_{j=0}^{2 n-1}\left(C_{j}\left(\gamma ; \mu_{0}\right)\right)\left\|B_{j}\right\| \leq 1
$$

are fulfilled, problem (1), (2) is regular solvable. Here the numbers $C_{j}\left(\gamma ; \mu_{0}\right)$ are defined in the following way

$$
\begin{gathered}
C_{j}\left(\gamma ; \mu_{0}\right)=\sup _{0 \neq u \in W_{2, \gamma}^{2,}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right)}\left\|A^{2 n-j} u^{(j)}\right\|_{L_{2, \gamma}\left(R_{+}: H\right)} \cdot\left\|P_{0} u\right\|_{L_{2, \gamma}\left(R_{+}: H\right)}^{-1}, \\
j=\overline{0,2 n-1} .
\end{gathered}
$$

Proof. From theorem 1 it follows that the operator P_{0} generated by main part of problem (1), (2) isomorphically maps the space $W_{2, \gamma}^{2 n}\left(R_{+}: H ;\left\{s_{v}\right\}\right)$ onto $L_{2}\left(R_{+}: H\right)$. Then let's write problem (1), (2) in the form of $P_{0} u+P_{1} u=f$, where

$$
\begin{aligned}
P_{0} u & =\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{n} u, u \in W_{2, \gamma}^{2 n}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right), \\
P_{1} u & =\sum_{j=0}^{2 n-1} A_{2 n-j} u^{(j)}, u \in W_{2, \gamma}^{2 n}\left(R_{+}: H ;\left\{s_{\nu}\right\}\right) .
\end{aligned}
$$

Substituting $u=P_{0}^{-1} \omega$ we get $\omega+P_{1} P_{0}^{-1} \omega=f$ or $\left(E+P_{1} P_{0}^{1}\right) \omega=f$.
Since for any $w \in L_{2, \gamma}\left(R_{+}: H\right)$

$$
\begin{gathered}
\left\|P_{1} P \omega\right\|_{L_{2, \gamma}}=\left\|P_{1} u\right\|_{L_{2, \gamma}}=\left\|\sum_{j=0}^{2 n-1} A_{2 n-j} u^{(j)}\right\| \leq \\
\leq \sum_{j=0}^{2 n-1}\left\|A_{2 n-j} A^{-(2 n-j)} A^{2 n-j} u^{(j)}\right\| \leq
\end{gathered}
$$

[R.Z.Humbataliyev]

$$
\leq \sum_{j=0}^{2 n-1}\left(C_{j}\left(\gamma ; \mu_{0}\right)\right)\left\|B_{2 n-j}\right\|\|\omega\|_{L_{2, \gamma}}=\alpha\left(\gamma ; \mu_{0}\right)\|\omega\|_{L_{2, \gamma}}
$$

then in view of the fact that $\alpha\left(\gamma ; \mu_{0}\right)<1$ the operator $E+P_{1} P_{0}^{-1}$ is reversible in $L_{2, \gamma}\left(R_{+}: H\right)$. Then $\omega=\left(E+p_{1} p_{0}^{-1}\right)^{-1} f$, and $u=P_{0}^{-1}\left(E+P_{1} P_{0}^{-1}\right)^{-1} f$. Hence we have

$$
\|u\|_{W_{2, \gamma}^{2 n}\left(R_{+}: H\right)} \leq \mathrm{const}\|f\|_{L_{2, \gamma}\left(R_{+}: H\right)}
$$

The theorem is proved.

References

[1]. Lions J.-L., Majenes E. Nonhomogeneous boundary value problems and their applications. Moscow, "Mir", 1971, 371p. (Russian)
[2]. Humbataliyev R.Z., Aliyev A.R. On solvability of a boundary value problem in weight space. Vestnik Bakinskii Universitet, 2, 2003, pp.46-56. (Russian)
[3]. Humbataliyev R.Z. On regular solvability of boundary value problems for a class of operator-differential equations in weight space. Mathematics Inter. Ecoener. Academ., 3, 2005, pp. 41-48.

Rovshan Z. Humbataliyev

Institute of Mathematics and Mechanics of NAS of Azerbaijan
9, F.Agayev str., Az1141, Baku, Azerbaijan
Tel.: 4394720 (off.)
Received July 24, 2006; Revised September 19, 2006.

