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TORSION OF PRISMATIC PHYSICALLY
LINEARLY VISCOELASTIC BODY OF ARBITRARY

CROSS-SECTION

Abstract

The problem statement of linear torsion of prismatic viscoelastic body of ar-
bitrary cross-section is given. The solution of the stated problem is submitted by
solutions of the corresponding elastic torsion problem. Examples are considered.

Let the forces resulted to torsional pairs, are imposed to the bases of prismatic
body. We shall consider, that the lateral surface of the body is free from external
forces and body forces are absent. Mechanical properties of prismatic body material
are described by ratios of physically linear theory of viscoelasticity [1]:

2G0eij = sij +

t∫
0

Γ (t− τ) sij (τ) dτ ; θ = σ/K; (1)

or

sij/2G0 = eij −
t∫

0

R (t− τ) eij (τ) dτ ; σ = kθ. (2)

Here i = 1, 2, 3; t is time; sij = σij−σδij is deviator of stresses tensor; σij ; eij =
εij − εδij is deformation deviator εij ; σ = σijδij/ 3 is average stress; ε = εijδij/ 3
is average deformation; G0 is the instant modulus of shear; K is modulus of volume
elasticity; θ = 3ε is volumetric deformation; Γ (t) and R (t) are interreciprocal
kernels of heredity. There is a ratio between the functions Γ (t) and R (t):

Γ (t) = R (t) +

t∫
0

Γ (τ)R (t− τ) dτ (3)

The equations (1) and (2) are equivalent ratios.
We shall accept Cartesian rectangular coordinates x1, x2, x3. We shall direct

an axis x3 parallel to the axis of prismatic body. At the constrained torsion of
viscoelastic prismatic body of arbitrary cross-section we count, that during the fixed
time interval: 1) the cross-sections situated at equal distances from each other, twist
for equal angles; 2) the cross-sections are distorted and moreover all sections are
identical; the deplanation appears as proportional to time-dependent twist angle that
is allowable at linear torsion. Mathematically we shall write the marked assumptions
as:

u1 = −χ (t)x2x3, u2 = −χ (t)x1x3, u3 = −χ (t)ϕ (x1, x2) . (4)

Here ϕ (x1, x2) is deplanation function, χ = χ (t) is relative twist angle at the mo-
ment t. At χ (t) ≡ const relation (4) coincides with corresponding ratios of Saint-
Venant. It indicates that formulas (4) were written on the basis of Saint-Venant
relations.
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Proceeding from properties of heredity which are inherent to viscoelastic bodies
we shall present function χ (t) as

χ (t) = ϑ (t) +

t∫
0

Γ (t− τ)ϑ (τ) dτ (5)

where ϑ (t) is some time function to be defined.
The components of small deformation tensor are represented through compo-

nents of displacement vector ui by Cauchy relations

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(6)

Allowing (4) in (6) we shall have:

ε11 = 0; ε22 = 0; ε33 = 0; ε12 = 0 (7)

ε13 =
χ (t)

2

(
∂ϕ

∂x1
− x2

)
; ε23 =

χ (t)
2

(
∂ϕ

∂x2
+ x1

)
(8)

Using formulas (7), (8) in equations (2) we shall define quantities σij :

σ11 = 0; σ22 = 0; σ33 = 0; σ12 = 0 (9)

σ13 = G0

(
∂ϕ

∂x1
− x2

) χ (t)−
t∫

0

R (t− τ)χ (τ) dτ

 (10)

σ23 = G0

(
∂ϕ

∂x2
+ x1

) χ (t)−
t∫

0

R (t− τ)χ (τ) dτ

 (11)

Allowing for (5) and (3) relations (10) and (11) are transformed to the form

σ13 = G0

(
∂ϕ

∂x1
− x2

)
ϑ (t) , σ23 = G0

(
∂ϕ

∂x2
+ x1

)
ϑ (t) (12)

From the equations of equilibrium there remain only the followings:

∂σ13

∂x3
= 0;

∂σ23

∂x3
= 0;

∂σ13

∂x1
+
∂σ23

∂x2
= 0 (13)

The first two equations of (13) are satisfied identically, and the third equation
with regard to (12) gives

∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

≡ ∇ϕ = 0. (14)

Formula (14) shows, that deplanation function, which else is called Saint-Venant
torsion function, should be harmonic function of variables x1 and x2 in the area
occupied by cross-section of body. From here it follows, that deplanation itself also
is harmonic function.
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In the considered case as in the theory of elastic torsion, we can show, that
deplanation function ϕ on a contour L of cross-section satisfies the condition:

∂ϕ

dn
= [x2 cos (n, x1)− x1 cos (n, x2)]L

or
∂ϕ

dn
=

d

ds

(
x2 + y2

2

)∣∣∣∣
L

(15)

where
d

dn
,
d

ds
are derivatives in normal n and on arch s of contour L.

Hence, the problem of viscoelastic prismatic bodies torsion, similarly to the
torsion problem in the case of elastic body, is reduced to Neumann’s problem (14),
(15) for Laplace equation. Thus we can show, that the condition of existence of the

Neumann’s problem solution
∮
L

∂Φ
∂n

ds = 0 is satisfied.

For resultant stresses on a face surface we have∫
ω

σ13dω = 0,
∫
ω

σ23dω = 0, (16)

where ω is the area of cross-section of prismatic body.
Taking in the account (16), we conclude, that the shearing stresses applied to

cross-section, are reduced to force couple, whose moment equals

M (t) =
∫
ω

(x1σ23 − x2σ13) dω. (17)

The equilibrium condition at end faces gives M (t) = MT (t), where MT (t) is
the assigned torque. Taking this into account, and also formulas (12) in relation
(17), we shall receive:

θ (t) =
MT (t)
D

, (18)

where D = G0

∫
ω

(
x2

1 + x2
2 + x1

∂ϕ

∂x2
− x2

∂ϕ

∂x1

)
dω is torsion rigidity. We can show,

that always D > 0.
Hence, the problem of physically linear torsion of viscoelastic prismatic body of

arbitrary cross-section is completely solved, if the deplanation function ϕ (x1, x2)
will be found.

Now, following [3], we’ll present the solution of the problem of linear torsion of
viscoelastic prismatic body as:

ui = u′
i +

t∫
0

Γ (t− τ)u′
idτ ; σij = σ′

ij (19)

Using relations (6) and the first formula of (19), we shall receive:

εij = ε′ij +

t∫
0

Γ (t− τ) ε′ijdτ (20)
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where

ε′ij =
1
2

(
∂u′

i

∂xj
+
∂u′

j

∂xi

)
(21)

The equilibrium equations (13) with taking into account the second formula (19)
are kept:

∂σ′
13

∂x3
= 0;

∂σ′
23

∂x3
= 0;

∂σ′
13

∂x1
+
∂σ′

23

∂x2
= 0 (22)

Besides with taking into account (9) and (12) we have:

σ′
11 = 0; σ′

22 = 0; σ′
33 = 0; σ′

12 = 0

σ′
13 = G0

(
∂ϕ

∂x1
− x2

)
ϑ (t) , σ′

23 = G0

(
∂ϕ

∂x2
+ x1

)
ϑ (t) . (23)

Formulas (7) and (8) using (20), (5) will be transformed to the form:

ε′11 = 0; ε′22 = 0; ε′33 = 0; ε′12 = 0

ε′13 =
ϑ (t)

2

(
∂ϕ

∂x1
− x2

)
; ε′23 =

ϑ (t)
2

(
∂ϕ

∂x2
+ x1

)
(24)

From formulas (4) for components of displacement vector subject to the first
formula of (19), and also the formula (5), it follows:

u′
1 = −ϑ (t)x2x3; u′

2 = ϑ (t)x1x3, u′
3 = ϑ (t)ϕ (x1, x2) . (25)

At using the second formula of (19) the relation (17) will be rewritten as:

MT (t) = M (t) =
∫
ω

(
x1σ

′
23 − x2σ

′
13

)
dω. (26)

Relation (18) keeps its form.
As we see, relations (21) - (26) with addition (18) are relations of the elastic

quasi-static torsion theory. It means, that the quantities u′
i, σ

′
ij , ε

′
ij included in

formulas (19), (20) are components of displacement vector, stress and deformation
tensors which arise in the considered prismatic body at its quasi-static elastic torsion
by the torsion torque MT (t). In this case time t plays only a role of a parameter.

Hence, if any existing method solves the problem of elastic torsion of prismatic
body with the given cross-section at the known shear modulus G and torque M ,
i.e. elastic displacements ue

i , deformations εeij , stresses σe
ij have been found, then

having replaced in expressions the last G by G0, M by MT (t), we find quantities
u′

i, σ
′
ij , ε

′
ij . After that, according to formulas (19) and (20) we determine the

required solution of the corresponding viscoelastic problem. Here we notice, that at
the solution of the considered elastic and viscoelastic torsion problems instead the
deplanation function ϕ we can use, according [2], the harmonic function ψ adjoint
to function ϕ, or the torsion function of Prandtl Φ. connected with function ψ
by the relation:Φ (x1, x2) = ψ (x1, x2) −

(
x2

1 + x2
2

)/
2. Thus, as is known from [2],

the problems on definitionof functions ψ (x1, x2) and Φ (x1, x2) are also Dirichlet
problems for Laplace equation. At solution of the noted problems the complex
torsion function [2] can be also applied.
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Examples. 1. Elliptic cross-section. Let a and b be semi-axes of an ellipse.
Let’s use solution of the corresponding elastic problem [2]:

u1 = −
M

(
a2 + b2

)
x2x3

Gπa3b3
; u2 =

M
(
a2 + b2

)
x1x3

Gπa3b3
; u3 = M

(
b2 − a2

)
x1x2

Gπa3b3
;

σe
13 = − 2M

πab3
x2, σe

23 = − 2M
πa3b

x1,

where G is the shear modulus of body’s material, M is the torque.
Having replaced G by G0, M by MT (t) in the last expressions, we shall have

expressions for quantities u′
1, u

′
2, u

′
3, σ

′
13, σ

′
23. Taking into account the received

expressions in transition formulas (19) we shall write down the solution problem of
the viscoelastic prismatic torsion body with elliptic cross-section:

u1 = −
(
a2 + b2

)
x2x3

G0πa3b3
M∗

T (t) ; u2 =

(
a2 + b2

)
x1x3

G0πa3b3
M∗

T (t) ;

u3 =

(
b2 − a2

)
x1x2

G0πa3b3
M∗

T (t) ; σ13 = −2MT (t)
πab3

x2, σ23 = −2MT (t)
πa3b

x1.

Here

M∗
T (t) = MT (t) +

t∫
0

Γ (t− τ)MT (τ) dτ . (26)

For a = b the received solution corresponds to the solution problem on vis-
coelastic prismatic body’s torsion with circular cross-section. In this case u3 = 0,
that testifies to deplanation absence.

2. Circular prismatic bar with half-round limiting recess. According to
[2, 4] the solution of the elastic problem is represented as:

ue
1 = −Mx2x3

2GDa4
; ue

2 =
Mx1x3

2GDa4
; ue

3 = − Mb2x2

2GDa3
(
x2

1 + x2
2

) ;

σe
13 =

M

2Da4

[
2ab2x1x2(
x2

1 + x2
2

)2 − x2

]
, σe

23 =
M

2Da4

[
−
ab2

(
x2

1 − x2
2

)(
x2

1 + x2
2

)2 + x1 − a

]
.

Here, as in the previous problem, G is the shear modulus of material, M is the
torque; a is radius of a bar’s circle , b is radius of recesses circle. Besides

D =
1
24

(sin 4α+ 8 sin 2α+ 12α)− 1
2

(
b

a

)2

(sin 2α+ 2α) +

+
4
3

(
b

a

)3

sinα− 1
4

(
b

a

)4

α,

where
α = arccos

b

2a
. (27)

Now, to receive the problem’s solution of torsion of the round viscoelastic
bar with semicircular longitudinal recess in the represented solution of the elastic
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problem we shall replace G by G0, M by MT (t) and we shall use formulas (19).
Thus we shall receive:

u1 = − x2x3

2G0Da4
M∗

T ; u2 =
x1x3

2G0Da4
M∗

T ;

u3 = − b2x2

2G0Da3
(
x2

1 + x2
2

)M∗
T ;

σ13 =
MT (t)
2Da4

[
2ab2x1x2(
x2

1 + x2
2

)2 − x2

]
, σ23 =

MT (t)
2Da4

[
−
ab2

(
x2

1 − x2
2

)(
x2

1 + x2
2

)2 + x1 − a

]
.

Quantity D included in these relations is expressed by formula (27), the operator
M∗

T is of the form (26).
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