Abstract

Let $\hat{u}_n = (u_n, a_n)$, n = 1, 2, ... be some complete and minimal system of vectors in $\mathcal{X} = \mathcal{X}_0 \oplus C^m$ and let $\hat{\vartheta}_n = (\vartheta_n, b_n)$, n = 1, 2, ... be corresponding biorthogonal system. N is a set of natural numbers, $J = \{n_1, ..., n_m\} \subset N$ is some set of different and natural numbers, $n_0 = N \setminus J$, $b_n = (\beta_{n1}, ..., \beta_{nm})$, $\delta =$ $\det \|\beta_{n_{k,i}}\|_{k,i=1}^m$. In the present paper it is shown that in case of $\delta = 0$ statement

on non-minimality of the system $\{u_n\}_{n\in\mathbb{N}_0}$ in the space \mathcal{X}_0 , in generally, is not true, and sufficient conditions are cited when this statement becomes true.