Yagub Y. MAMMADOV

SOME EMBEDDINGS INTO THE MODIFIED MORREY SPACES ASSOCIATED WITH THE DUNKL OPERATOR ON THE REAL LINE

Abstract

On the real line, the Dunkl operators are differential-difference operators associated with the reflection group \mathbb{Z}_2 on \mathbb{R} . We consider the generalized shift operator, associated with the Dunkl operator

$$\Lambda_{\alpha}(f)(x) = \frac{d}{dx}f(x) + \frac{2\alpha + 1}{x} \left(\frac{f(x) - f(-x)}{2}\right).$$

We study some embeddings into the modified Morrey spaces associated with the Dunkl operator on \mathbb{R} .

1. Introduction

On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [3] and are denoted by Λ_{α} , where α is a real parameter > -1/2. These operators are associated with the reflection group \mathbb{Z}_2 on \mathbb{R} . The Dunkl kernel E_{α} is used to define the Dunkl transform \mathfrak{F}_{α} which was introduced by Dunkl in [4]. Rosler in [14] shows that the Dunkl kernels verify a product formula. This allows us to define the Dunkl translation τ_x , $x \in \mathbb{R}$. As a result, we have the Dunkl convolution.

In the present work, we study some embeddings into the modified Morrey spaces associated with the Dunkl operator on \mathbb{R} , so we fix $\alpha \geq -1/2$ and we define the *D*-Morrey space and modified *D*-Morrey space using the harmonic analysis associated with the Dunkl operator on \mathbb{R} . These operators are associated with the reflection group \mathbb{Z}_2 on \mathbb{R} .

2. Preliminaries

For a real parameter $\alpha \geq -1/2$, we consider the Dunkl operator, associated with the reflection group \mathbb{Z}_2 on \mathbb{R} :

$$\Lambda_{\alpha}(f)(x) = \frac{d}{dx}f(x) + \frac{2\alpha + 1}{x} \left(\frac{f(x) - f(-x)}{2}\right) \tag{1}$$

Note that $\Lambda_{-1/2} = d/dx$.

For $\alpha \geq -1/2$ and $\lambda \in \mathbb{C}$, the initial value problem :

$$\Lambda_{\alpha}(f)(x) = \lambda f(x), \quad f(0) = 1, \quad x \in \mathbb{R}$$

has a unique solution $E_{\alpha}(\lambda x)$ called Dunkl kernel [3, 10, 15] and given by

$$E_{\alpha}(\lambda x) = j_{\alpha}(i\lambda x) + \frac{\lambda x}{2(\alpha+1)} j_{\alpha+1}(i\lambda x), \quad x \in \mathbb{R},$$

where j_{α} is the normalized Bessel function of the first kind and order α [16], defined by

$$j_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha + 1) \frac{J_{\alpha}(z)}{z^{\alpha}} = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n + \alpha + 1)}, \quad z \in \mathbb{C}.$$

We can write for $x \in \mathbb{R}$ and $\lambda \in \mathbb{C}$ (see Rösler [14], p. 295)

$$E_{\alpha}(-i\lambda x) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} \int_{-1}^{1} (1-t^2)^{\alpha-1/2} (1-t) e^{i\lambda xt} dt.$$

Note that $E_{-1/2}(\lambda x) = e^{\lambda x}$.

Let $\alpha > -1/2$ be a fixed number and μ_{α} be the weighted Lebesgue measure on \mathbb{R} , given by

$$d\mu_{\alpha}(x) := (2^{\alpha+1}\Gamma(\alpha+1))^{-1} |x|^{2\alpha+1} dx.$$

For every $1 \leq p \leq \infty$, we denote by $L_p = L_p(d\mu_\alpha)$ the spaces of complex-valued functions f, measurable on \mathbb{R} such that

$$\|f\|_{p,\alpha} \equiv \|f\|_{L_{p,\alpha}} = \left(\int_{\mathbb{R}} |f(x)|^p d\mu_{\alpha}(x)\right)^{1/p} < \infty \quad \text{if} \quad p \in [1,\infty),$$

and

$$\|f\|_{L_{\infty,\alpha}} = \underset{x \in \mathbb{R}}{ess \sup} |f(x)| \quad \text{if} \quad p = \infty.$$

For $1 \leq p < \infty$ we denote by $WL_{p,\alpha}$, the weak $L_{p,\alpha}$ spaces defined as the set of locally integrable functions f(x), $f(x) \in \mathbb{R}$ with the finite norm

$$||f||_{WL_{p,\alpha}} = \sup_{r>0} r \left(\mu_{\alpha} \left\{ x \in \mathbb{R} : |f(x)| > r \right\} \right)^{1/p}.$$

Note that

$$L_{p,\alpha} \subset WL_{p,\alpha}$$
 and $||f||_{WL_{p,\alpha}} \leq ||f||_{L_{p,\alpha}}$ for all $f \in L_{p,\alpha}$.

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on \mathbb{R} , which was introduced and studied in [6].

The Dunkl transform \mathcal{F}_{α} of a function $f \in L_{1,\alpha}(\mathbb{R})$, is given by

$$\mathcal{F}_{\alpha}f(\lambda) := \int_{\mathbb{R}} E_{\alpha}(-i\lambda x) f(x) d\mu_{\alpha}(x), \quad \lambda \in \mathbb{R}.$$

Here the integral makes sense since $|E_{\alpha}(ix)| \leq 1$ for every $x \in \mathbb{R}$ [14], p. 295.

Notation. For all $x, y, z \in \mathbb{R}$, we put

$$W_{\alpha}(x,y,z) = (1 - \sigma_{x,y,z} + \sigma_{z,x,y} + \sigma_{z,y,x}) \Delta_{\alpha}(x,y,z)$$

 $\frac{113}{[\text{Some embeddings into the modified...}]}$

where

$$\sigma_{x,y,z} = \begin{cases} \frac{x^2 + y^2 - z^2}{2xy} & \text{if } x, y \in \mathbb{R} \setminus 0, \\ 0 & \text{otherwice} \end{cases}$$

and Δ_{α} is the Bessel kernel given by

$$\Delta_{\alpha}(x,y,z) = \begin{cases} d_{\alpha} \frac{([(|x|+|y|)^{2}-z^{2}][z^{2}-(|x|-|y|)^{2}])^{\alpha-1/2}}{|xyz|^{2\alpha}} & \text{if } |z| \in A_{x,y}, \\ 0 & \text{otherwice,} \end{cases}$$

where $d_{\alpha} = (\Gamma(\alpha+1))^2/(2^{\alpha-1}\sqrt{\pi}\Gamma(\alpha+\frac{1}{2}))$ and $A_{x,y} = [||x|-|y||, |x|+|y|].$

Properties 1. (see Rösler [14]) The signed kernel W_{α} is even and satisfies the following properties

$$W_{\alpha}(x, y, z) = W_{\alpha}(y, x, z) = W_{\alpha}(-x, z, y),$$

$$W_{\alpha}(x,y,z) = W_{\alpha}(-z,y,-x) = W_{\alpha}(-x,-y,-z)$$

and

$$\int_{\mathbb{R}} |W_{\alpha}(x, y, z)| \ d\mu_{\alpha}(z) \le 4.$$

In the sequel we consider the signed measure $\nu_{x,y}$, on \mathbb{R} , given by

$$\nu_{x,y} = \begin{cases} W_{\alpha}(x,y,z) d\mu_{\alpha}(z) & \text{if } x, y \in \mathbb{R} \setminus 0, \\ d\delta_{x}(z) & \text{if } y = 0, \\ d\delta_{y}(z) & \text{if } x = 0. \end{cases}$$

Theorem 1. (see Rösler [14]) (i) Let $\alpha > -1/2$ and $\lambda \in \mathbb{C}$. The Dunkl kernel E_{α} satisfies the following product formula:

$$E_{\alpha}(\lambda x)E_{\alpha}(\lambda y) = \int_{\mathbb{D}} E_{\alpha}(\lambda z) d\nu_{x,y}(z), \quad x, y \in \mathbb{R}.$$

(ii) The measures $\nu_{x,y}$ have the following properties:

$$\operatorname{supp}(\nu_{x,y}) = A_{x,y} \cup (-A_{x,y}), \quad \|\nu_{x,y}\| := \int_{\mathbb{R}} d|\nu_{x,y}|(z) \le 4.$$

Definition 1. For $x, y \in \mathbb{R}$ and f a continuous function on \mathbb{R} , we put

$$au_x f(y) = \int_{\mathbb{R}} f(z) \, d
u_{x,y}(z).$$

The operators τ_x , $x \in \mathbb{R}$, are called Dunkl translation operators on \mathbb{R} and it can be expressed in the following form (see ref. [14])

$$\tau_x f(y) = C_\alpha \int_0^\pi f_e \left(\sqrt{x^2 + y^2 - 2|xy| \cos \theta} \right) h_1(x, y, \theta) (\sin \theta)^{2\alpha} d\theta$$
$$+ C_\alpha \int_0^\pi f_o \left(\sqrt{x^2 + y^2 - 2|xy| \cos \theta} \right) h_2(x, y, \theta) (\sin \theta)^{2\alpha} d\theta,$$

Ya. Y.Mammadov

where $f = f_e + f_o$, f_o and f_e being respectively the odd and the even parts of f, with $C_{\alpha} = \Gamma(\alpha + 1)/(\sqrt{\pi} \Gamma(\alpha + 1/2))$,

$$h_1(x, y, \theta) = 1 - sgn(xy)\cos\theta \text{ and } h_2(x, y, \theta) = \begin{cases} \frac{(x+y)\left[1 - sgn(xy)\cos\theta\right]}{\sqrt{x^2 + y^2 - 2|xy|\cos\theta}} & \text{if } xy \neq 0, \\ 0 & \text{if } xy = 0. \end{cases}$$

Properties 2. (see Mourou [9]) (i) The operator τ_x , $x \in \mathbb{R}$, is a continuous linear operator from $\mathcal{E}(\mathbb{R})$ into itself.

(ii) For all $f \in \mathcal{E}(\mathbb{R})$ and $x, y \in \mathbb{R}$, we have

$$\tau_x f(y) = \tau_y f(x), \quad \tau_0 f(x) = f(x),$$

$$\tau_x \circ \tau_y = \tau_y \circ \tau_x, \quad \Lambda_\alpha \circ \tau_x = \tau_x \circ \Lambda_\alpha.$$

Proposition 1. (see Soltani [12]) (i) If f is an even positive continuous function, then $\tau_x f$ is positive.

(ii) For all $x \in \mathbb{R}$ the operator τ_x extends to $L_{p,\alpha}(\mathbb{R})$, $p \geq 1$ and we have for $f \in L_{p,\alpha}(\mathbb{R})$,

$$\|\tau_x f\|_{p,\alpha} \le 4\|f\|_{p,\alpha}.$$

(ii) For all $x, \lambda \in \mathbb{R}$ and $f \in L_{1,\alpha}(\mathbb{R})$, we have

$$\mathcal{F}_{\alpha}(\tau_x f)(\lambda) = E_{\alpha}(i\lambda x) \,\mathcal{F}_{\alpha} f(\lambda).$$

Let f and g be two continuous functions on \mathbb{R} with compact support. We define the generalized convolution $*_{\alpha}$ of f and g by

$$f *_{\alpha} g(x) := \int_{\mathbb{R}} \tau_x f(-y) g(y) d\mu_{\alpha}(y), \quad x \in \mathbb{R}.$$

The generalized convolution $*_{\alpha}$ is associative and commutative [14]. Note that $*_{-1/2}$ agrees with the standard convolution *.

Proposition 2. (see Soltani [12]) (i) If f is an even positive function and g a positive function with compact support, then $f *_{\alpha} g$ is positive.

(ii) Assume that $p, q, r \in [1, +\infty[$ satisfying 1/p + 1/q = 1 + 1/r (the Young condition). Then the map $(f, g) \mapsto f *_{\alpha} g$, defined on $\mathcal{E}_c \times \mathcal{E}_c$, extends to a continuous map from $L_{p,\alpha}(\mathbb{R}) \times L_{q,\alpha}(\mathbb{R})$ to $L_{r,\alpha}(\mathbb{R})$, and we have

$$||f *_{\alpha} g||_{r,\alpha} \le 4||f||_{p,\alpha} ||g||_{q,\alpha}.$$

(ii) For all $f \in L_{1,\alpha}(\mathbb{R})$ and $g \in L_{2,\alpha}(\mathbb{R})$, we have

$$\mathcal{F}_{\alpha}(f *_{\alpha} g) = (\mathcal{F}_{\alpha} f) (\mathcal{F}_{\alpha} g).$$

Proposition 3. Let $f \in L_{1,\alpha}(\mathbb{R})$ and $g \in L_{p,\alpha}(\mathbb{R})$, $1 \leq p < \infty$. Then we have

$$\tau_t(f *_{\alpha} q) = \tau_t f *_{\alpha} q = f *_{\alpha} \tau_t q.$$

Let $B(x,t) = \{y \in \mathbb{R} : |y| \in] \max\{0, |x| - t\}, |x| + t[] \}$ and t > 0. Then B(0,t) =]-t,t[and $\mu_{\alpha}(]-t,t[) = b_{\alpha}^{-1} t^{2\alpha+2},$ where $b_{\alpha} = 2^{\alpha+1} (\alpha+1) \Gamma(\alpha+1).$ We now consider the maximal function

$$Mf(x) = \sup_{r>0} \frac{1}{\mu_{\alpha}B(0,r)} \int_{B(0,r)} \tau_x |f|(y) d\mu_{\alpha}(y).$$

Theorem 2. [7] 1. If $f \in L_{1,\alpha}(\mathbb{R})$, then for every $\beta > 0$

$$\mu_{\alpha} \{ x \in \mathbb{R} : Mf(x) > \beta \} \le \frac{C}{\beta} \int_{\mathbb{R}} |f(x)| d\mu_{\alpha}(x),$$

where C > 0 is independent of f.

2. If $f \in L_{p,\alpha}(\mathbb{R})$, $1 , then <math>Mf \in L_{p,\alpha}(\mathbb{R})$ and

$$||Mf||_{L_{p,\alpha}} \le C_p ||f||_{L_{p,\alpha}},$$

where $C_p > 0$ is independent of f.

Corollary 1. If $f \in L_{1,\alpha}^{loc}(\mathbb{R})$, then

$$\lim_{r \to 0} \frac{1}{\mu_{\alpha} B(0, r)} \int_{B(0, r)} |\tau_x f(y) - f(x)| d\mu_{\alpha}(y) = 0$$

for a. e. $x \in \mathbb{R}$.

Corollary 2. If $f \in L_{1,\alpha}^{loc}(\mathbb{R})$, then

$$\lim_{r \to 0} \frac{1}{\mu_{\alpha} B(0, r)} \int_{B(0, r)} \tau_x f(y) d\mu_{\alpha}(y) = f(x)$$

for a. e. $x \in \mathbb{R}$.

3. Some embeddings into the modified D-Morrey spaces

Definition 2. Let $1 \leq p < \infty$. We denote by $WL_{p,\alpha}(\mathbb{R})$ the weak $L_{p,\alpha}(\mathbb{R})$ space defined as the set of locally integrable functions f(x), $x \in \mathbb{R}$ with the finite norms

$$||f||_{WL_{p,\alpha}} = \sup_{r>0} r \left(\mu_{\alpha} \left\{ x \in \mathbb{R} : |f(x)| > r \right\} \right)^{1/p}.$$

Note that

$$L_{p,\alpha}(\mathbb{R}) \subset WL_{p,\alpha}(\mathbb{R})$$
 and $||f||_{WL_{p,\alpha}} \leq ||f||_{L_{p,\alpha}}$ for all $f \in L_{p,\alpha}$.

Definition 3. [1] Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$. We denote by $L_{p,\lambda,\alpha}(\mathbb{R})$ Morrey space ($\equiv D$ -Morrey space), associated with the Dunkl operator as the set of locally integrable functions f(x), $x \in \mathbb{R}$, with the finite norm

$$||f||_{L_{p,\lambda,\alpha}} = \sup_{t>0,\,x\in\mathbb{R}} \left(t^{-\lambda}\int_{B(0,t)} \tau_x |f(y)|^p \,d\mu_\alpha(y)\right)^{1/p}.$$

[Ya. Y. Mammadov]

Definition 4 Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$, $[t]_1 = \min\{1, t\}$. We denote by $\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ modified Morrey space (\equiv modified D-Morrey space), associated with the Dunkl operator as the set of locally integrable functions f(x), $x \in \mathbb{R}$, with the finite norm

$$||f||_{L_{p,\lambda,\alpha}} = \sup_{t>0, x\in\mathbb{R}} \left([t]_1^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) \right)^{1/p}.$$

Note that

$$\widetilde{L}_{p,0,\alpha}(\mathbb{R}) = L_{p,0,\alpha}(\mathbb{R}) = L_{p,\alpha}(\mathbb{R}),$$

$$\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R}) \subset_{\succ} L_{p,\alpha}(\mathbb{R}) \quad \text{and} \quad \|f\|_{L_{p,\alpha}} \le \|f\|_{\widetilde{L}_{p,\lambda,\alpha}}$$
(2)

and if $\lambda < 0$ or $\lambda > 2\alpha + 2$, then $L_{p,\lambda,\alpha}(\mathbb{R}) = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R} .

Definition 5. [2] Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$. We denote by $WL_{p,\lambda,\alpha}(\mathbb{R})$ the weak D-Morrey space as the set of locally integrable functions f(x), $x \in \mathbb{R}$ with finite norm

$$\|f\|_{WL_{p,\lambda,\alpha}} = \sup_{r>0} r \sup_{t>0, \, x \in \mathbb{R}} \left(t^{-\lambda} \int_{\{y \in B(0,t): \, \tau_x | f(y)| > r\}} d\mu_\alpha(y) \right)^{1/p}.$$

Definition 6. [2] Let $1 \le p < \infty$, $0 \le \lambda \le 2\alpha + 2$, $[t]_1 = \min\{1, t\}$. We denote by $WL_{p,\lambda,\alpha}(\mathbb{R})$ the weak D-Morrey space as the set of locally integrable functions $f(x), x \in \mathbb{R}$ with finite norm

$$||f||_{WL_{p,\lambda,\alpha}} = \sup_{r>0} r \sup_{t>0, x \in \mathbb{R}} \left([t]_1^{-\lambda} \int_{\{y \in B(0,t): \tau_x | f(y)| > r\}} d\mu_\alpha(y) \right)^{1/p}.$$

We note that

$$L_{p,\lambda,\alpha}(\mathbb{R}) \subset WL_{p,\lambda,\alpha}(\mathbb{R}) \text{ and } \|f\|_{WL_{p,\lambda,\alpha}} \le \|f\|_{L_{p,\lambda,\alpha}}.$$

Lemma 1. Let $1 \le p < \infty$, $0 \le \lambda \le n$. Then

$$\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R}) = L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_p(\mathbb{R}) \subset_{\succ} L_{p,\lambda,\alpha}(\mathbb{R})$$

and for $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ $||f||_{L_{p,\lambda,\alpha}} = ||f||_{\widetilde{L}_{p,\lambda,\alpha}}$.

Proof. Let $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$. Then

$$||f||_{L_{p,\alpha}} = \sup_{x \in \mathbb{R}, t > 0} \left(\int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) dy \right)^{1/p}$$

$$\leq \sup_{x \in \mathbb{R}, t > 0} \left([t]_1^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) \right)^{1/p} = ||f||_{\widetilde{L}_{p,\lambda,\alpha}}$$

and

$$\begin{split} \|f\|_{L_{p,\lambda,\alpha}} &= \sup_{x \in \mathbb{R}, t > 0} \left(t^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p \, d\mu_{\alpha}(y) \right)^{1/p} \\ &\leq \max \left\{ \sup_{x \in \mathbb{R}, 0 < t \le 1} \left(t^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p \, d\mu_{\alpha}(y) \right)^{1/p}, \\ &\sup_{x \in \mathbb{R}, t \ge 1} \left(\int_{B(0,t)} \tau_x |f(y)|^p \, d\mu_{\alpha}(y) \right)^{1/p} \right\} = \max \left\{ \|f\|_{\widetilde{L}_{p,\lambda,\alpha}}, \|f\|_{L_{p,\alpha}} \right\}. \end{split}$$

Therefore, $f \in L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_{p,\alpha}(\mathbb{R})$ and the embedding

$$\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R}) \subset_{\succ} L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_{p,\alpha}(\mathbb{R})$$

is valid.

Let $f \in L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_p(\mathbb{R})$. Then

$$||f||_{\widetilde{L}_{p,\lambda,\alpha}} = \sup_{x \in \mathbb{R}, t > 0} \left([t]_{1}^{-\lambda} \int_{B(0,t)} \tau_{x} |f(y)|^{p} d\mu_{\alpha}(y) \right)^{1/p}$$

$$= \max \left\{ \sup_{x \in \mathbb{R}, 0 < t \le 1} \left(t^{-\lambda} \int_{B(0,t)} \tau_{x} |f(y)|^{p} d\mu_{\alpha}(y) \right)^{1/p}, \right.$$

$$\sup_{x \in \mathbb{R}, t > 1} \left(\int_{B(0,t)} \tau_{x} |f(y)|^{p} d\mu_{\alpha}(y) \right)^{1/p} \right\}$$

$$\leq \max \left\{ ||f||_{L_{p,\lambda,\alpha}}, ||f||_{L_{p,\alpha}} \right\}.$$

Therefore, $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ and the embedding $L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_p(\mathbb{R}) \subset_{\succ} \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ is valid. Thus $\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R}) = L_{p,\lambda,\alpha}(\mathbb{R}) \cap L_{p,\alpha}(\mathbb{R}) \subset_{\succ} L_{p,\lambda,\alpha}(\mathbb{R})$. Let now $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$. Then

$$||f||_{L_{p,\lambda,\alpha}} = \sup_{x \in \mathbb{R}, t > 0} \left(t^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) \right)^{1/p}$$

$$= \sup_{x \in \mathbb{R}, t > 0} \left(t^{-1}[t]_1 \right)^{\frac{\lambda}{p}} \left([t]_1^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) \right)^{1/p}$$

$$= \sup_{x \in \mathbb{R}, t > 0} \left([t]_1^{-\lambda} \int_{B(0,t)} \tau_x |f(y)|^p d\mu_{\alpha}(y) \right)^{1/p} = ||f||_{\widetilde{L}_{p,\lambda,\alpha}}.$$

It is known [8] that for $1 \le p < \infty$

$$L_{p,2\alpha+2,\alpha}(\mathbb{R}) = L_{\infty}(\mathbb{R}) \quad \text{and} \quad \|f\|_{L_{p,2\alpha+2,\alpha}} = b_{\alpha}^{1/p} \|f\|_{L_{\infty}}.$$
 (3)

From (??) and Lemma 1 for $1 \le p < \infty$ we have

$$\widetilde{L}_{p,2\alpha+2,\alpha}(\mathbb{R}) = L_{\infty}(\mathbb{R}) \cap L_{p,\alpha}(\mathbb{R}). \tag{4}$$

Ya. Y. Mammadov

In [8] the following embedding on the D-Morrey spaces was proved.

Lemma 2. [8] Let $1 \le p < \infty$, $0 \le \lambda < 2\alpha + 2$. Then for $\beta = \frac{2\alpha + 2 - \lambda}{p}$

$$L_{p,\lambda,\alpha}(\mathbb{R}) \subset L_{1,2\alpha+2-\beta,\alpha}(\mathbb{R})$$

and

$$||f||_{L_{1,2\alpha+2-\beta,\alpha}} \le b_{\alpha}^{-1/p} ||f||_{L_{p,\lambda,\alpha}},$$

where 1/p + 1/p' = 1.

On the modified D-Morrey spaces the following embedding is valid.

Lemma 3. Let $1 \le p < \infty$, $0 < \beta < 2\alpha + 2$, $0 \le \lambda < 2\alpha + 2$. Then for $\frac{2\alpha+2-\lambda}{\beta} \le p \le \frac{2\alpha+2}{\beta}$

$$\widetilde{L}_{p,\lambda,\alpha}(\mathbb{R}) \subset_{\succ} \widetilde{L}_{1,2\alpha+2-\beta}(\mathbb{R})$$

and for $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ the following inequality

$$||f||_{\widetilde{L}_{1,2\alpha+2-\beta}} \le b_{\alpha}^{1/p'} ||f||_{\widetilde{L}_{p,\lambda,\alpha}}.$$

is valid.

Proof. Let $0 < \beta < 2\alpha + 2$, $0 \le \lambda < 2\alpha + 2$, $f \in \widetilde{L}_{p,\lambda,\alpha}(\mathbb{R})$ and $\frac{2\alpha + 2 - \lambda}{\beta} \le p \le \frac{2\alpha + 2}{\beta}$. By the Hölder's inequality we have

$$\begin{split} \|f\|_{\widetilde{L}_{1,n-\alpha}} &= \sup_{x \in \mathbb{R}, \, t > 0} [t]_{1}^{\beta-2\alpha-2} \int_{B(0,t)} \tau_{x} |f(y)|^{p} \, d\mu_{\alpha}(y) \\ &\leq b_{\alpha}^{1/p'} \sup_{x \in \mathbb{R}, \, t > 0} \left([t]_{1} \, t^{-1} \right)^{-(2\alpha+2)/p'} [t]_{1}^{\beta-\frac{2\alpha+2-\lambda}{p}} \\ &\times \left([t]_{1}^{-\lambda} \int_{B(0,t)} \tau_{x} |f(y)|^{p} \, d\mu_{\alpha}(y) \right)^{1/p} \\ &= b_{\alpha}^{1/p'} \sup_{x \in \mathbb{R}, \, t > 0} \left([t]_{1} \, t^{-1} \right)^{2\alpha+2-\beta} \left([t]_{1} \, t^{-1} \right)^{-(2\alpha+2)/p'} [t]_{1}^{\beta-\frac{2\alpha+2-\lambda}{p}} \\ &\times \left([t]_{1}^{-\lambda} \int_{B(0,t)} \tau_{x} |f(y)|^{p} \, d\mu_{\alpha}(y) \right)^{1/p} \\ &\leq b_{\alpha}^{1/p'} \|f\|_{\widetilde{L}_{p,\lambda,\alpha}} \sup_{t > 0} \left([t]_{1} \, t^{-1} \right)^{\frac{2\alpha+2}{p}-\beta} [t]_{1}^{\beta-\frac{2\alpha+2-\lambda}{p}}. \end{split}$$

Note that

$$\begin{split} \sup_{t>0} \left([t]_1 \, t^{-1}\right)^{\frac{2\alpha+2}{p}-\beta} \left[t\right]_1^{\beta-\frac{2\alpha+2-\lambda}{p}} &= \max\{\sup_{0 < t \leq 1} t^{\beta-\frac{2\alpha+2-\lambda}{p}}, \sup_{t>1} t^{\beta-\frac{2\alpha+2}{p}}\} < \infty \\ &\iff \frac{2\alpha+2-\lambda}{\beta} \leq p \leq \frac{2\alpha+2}{\beta}. \end{split}$$

Therefore $f \in \widetilde{L}_{1,2\alpha+2-\beta}(\mathbb{R})$ and

$$||f||_{\widetilde{L}_{1,2\alpha+2-\beta}} \le b_{\alpha}^{1/p'} ||f||_{\widetilde{L}_{p,\lambda,\alpha}}.$$

Some embeddings into the modified...

References

- [1]. Guliyev V.S. Sobolev theorems for B-Riesz potentials, Dokl. Russian Academy Nauk, 1998, 358 (4), pp.450-451.
- [2]. Guliyev V.S. On maximal function and fractional integral, associated with the Bessel differential operator, Mathematical Inequalities and Applications, 2003, 6, 2, pp.317-330.
- [3]. Dunkl C.F. Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc. 1989, 311, pp. 167-183.
- [4]. Dunkl C.F. Hankel transforms associated to finite reflection groups, in Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, Fla, 1991), vol. 138 of Contemporary Mathematics, pp. 123-138, Amer. Math. Soc., Providence, RI, USA, 1992.
- [5]. Dunkl C.F. Integral kernels with reflection group invariance, Can. J. Math. 1991, 43, pp.1213-1227.
 - [6]. De Jeu M.F.E. The Dunkl transform, Inv. Math. 1993, 113, pp.147-162.
- [7]. Mammadov Ya.Y. On maximal operator associated with the Dunkl operator on \mathbb{R} , Khazar Journal of Mathematics, 2006, 2, 4, pp.3-15.
- [8]. Mammadov Ya.Y. Some embeddings into the Morrey spaces associated with the Dunkl operator on R. Proc. of NASA, Embedding theorems. Harmonic analysis. 2007, Issue XIII, pp.258-269.
- [9]. Mourou M.A. Transmutation operators associated with a Dunkl-type differential-difference operator on the real line and certain of their applications, Integral Transforms Spec. Funct. 2001, 12, 1, pp.7788.
- [10]. Sifi M., Soltani F. Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl. 2002, 270, pp.92-106.
- [11]. Soltani F. Generalized Fock spaces and Weyl communication relations for the Dunkl kernel, Pacific J. Math. 2004, 214, pp. 379-397.
- [12]. Soltani F. Lp-Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal. 2004, 209, pp. 16-35.
- [13]. Soltani F. Littlewood-Paley operators associated with the Dunkl operator on \mathbb{R} , J. Funct. Anal. 2005, 221, pp.205-225.
- [14]. Rösler M. Bessel-type signed hypergroups on \mathbb{R} , in Probability measures on groups and related structures, XI (Oberwolfach, 1994), H.Heyer and A.Mukherjea, Eds., 1995. pp. 292-304, World Scientific, River edge, NJ, USA.
- [15]. Trimeche K. Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Int. Trans. Spec. Funct. 2002, 13, pp. 17-38.
- [16]. Watson G.N. A treatise on theory of Bessel functions, Cambridge University Press, Cambridge, 1966.

Yagub Y. Mammadov

Institute of Mathematics and Mechanics, Baku, Azerbaijan, Nakhchivan Teacher-Training Institute, Azerbaijan E-mail: yagubmammadov@yahoo.com

Received September 02, 2008; Revised November 27, 2008.