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SOME EMBEDDINGS INTO THE MODIFIED
MORREY SPACES ASSOCIATED WITH THE
DUNKL OPERATOR ON THE REAL LINE

Abstract

On the real line, the Dunkl operators are differential-difference operators
associated with the reflection group Zs on R. We consider the generalized shift
operator, associated with the Dunkl operator

L2041 (f(m)—f(—m)

Mol F)(&) = - pay + 22 ;

We study some embeddings into the modified Morrey spaces associated with the
Dunkl operator on R.

1. Introduction

On the real line, the Dunkl operators are differential-difference operators introduced
in 1989 by Dunkl [3] and are denoted by A,, where « is a real parameter > —1/2.
These operators are associated with the reflection group Zs on R. The Dunkl kernel
E, is used to define the Dunkl transform §, which was introduced by Dunkl in
[4]. Rosler in [14] shows that the Dunkl kernels verify a product formula. This
allows us to define the Dunkl translation 7., x € R. As a result, we have the Dunkl
convolution.

In the present work, we study some embeddings into the modified Morrey spaces
associated with the Dunkl operator on R, so we fix &« > —1/2 and we define the D-
Morrey space and modified D-Morrey space using the harmonic analysis associated
with the Dunkl operator on R. These operators are associated with the reflection
group Zs on R.

2. Preliminaries

For a real parameter o« > —1/2, we consider the Dunkl operator, associated with
the reflection group Zs on R :

(1)

Aal)(o) = o fla) + 2002 (HELSE)

x 2

Note that A_;/, = d/dx.
For @« > —1/2 and X € C, the initial value problem :

Aa(f)(x) = Af(2), f(0)=1, z€R
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has a unique solution E,(Ax) called Dunkl kernel [3, 10, 15] and given by

AL

Eo(Az) = ja(idz) + 2at1)

ja+1(i)\$), T € R)

where j, is the normalized Bessel function of the first kind and order « [16], defined
by

> o —1)(2 2n
ja(z):2af(a+1)J(Zi) :r(a+1)zn§&iifil), z€C.

n=0
We can write for x € R and A € C (see Rosler [14], p. 295)
Ia+1)

1
el = e v 1/2) /1(1 — )T (- 1) et

Note that E_;/(Az) = e**.
Let a > —1/2 be a fixed number and pu, be the weighted Lebesgue measure on
R, given by
dpg () == (2°T'T (a + 1))71 |z| 29 de.

For every 1 < p < oo, we denote by L, = Ly(dpu,,) the spaces of complex-valued
functions f, measurable on R such that

1/p
e = 161, = ( [15@Pduat@)) " <o it peltoo)

and

1fll.. . =esssup|f(z)] if p=oo.
’ z€R

For 1 < p < oo we denote by WL, ., the weak L, , spaces defined as the set of
locally integrable functions f(z), (x) € R with the finite norm

1w, . =supr (uo{z € R |f@)] > ).
T
Note that
L,o CWL,, and ||f||WLW < ||f||pra for all f € Ly q.

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on
R, which was introduced and studied in [6].
The Dunkl transform F, of a function f € L; o(R), is given by

Faf(N) iz/REa(—iAx)f(a:)dua(x), A ER.

Here the integral makes sense since |E, (ixz| < 1 for every x € R [14], p. 295.
Notation. For all z, y, z € R, we put

Wa(x, y? Z) - (1 - O—%%Z + JZ@,Z/ + UZ,%I)ACX(J;7 y’ z)
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where

2.2 2 |
” B % if z,yeR\DO,
R 0 otherwice

and A, is the Bessel kernel given by

{ R i i (I ) S Y PY P/

lzyz[>

An(z,y,2) =
“ 0 otherwice,

where do = (I(er +1))?/(2°7 /7 Do+ 5)) and Azy = [ll] = [yll, 2] + [y
Properties 1. (see Rdasler [14]) The signed kernel W, is even and satisfies the

following properties
Wa(xa Y, Z) - Wa(y; x, Z) - Wa(_x7 Z, y):

Woz(xvyvz) = Wa(—z,y, —CC) = Woc(_xa -Y, _Z)

and
/L|vva<x,y,zn djia () < 4.

In the sequel we consider the signed measure v, ,, on R, given by
Wa(z,y, 2) dpg(2) if z,y € R\0,
Vgy = do.(2) if y=0,
ddy(z) if z=0.

Theorem 1. (see Résler [14]) (i) Let « > —1/2 and X\ € C. The Dunkl kernel
E, satisfies the following product formula:

E.(A\x)Es(\y) = /IREQ(AZ) dvyy(2), z,y€eR.
(11) The measures vy, have the following properties:
DD (v2) = Ay U (~Ass), Wrall = [ dlvy|(2) < 4.
Definition 1. For z, y € R and f a continuous function on R, we put
maf0) = [ 1) dvay (o)

The operators 7, x € R, are called Dunkl translation operators on R and it can

be expressed in the following form (see ref. [14])

T2f(y) = Cy /07r fe (\/332 + 32 — 2|zy| cos 0) hl(x,y,ﬁ)(sin9)2a do

+ca/ £, <\/x2 42 — 2|zy| cos 9) ha(x, y, 0)(sin 0)2* d),
0
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where f = fo + fo, fo and f. being respectively the odd and the even parts of f,
with Cq =T(a+1)/(v/7T(a + 1/2)),

(z+y) [1—sgn(zy) cos f] if 0
hi(z,y,0) =1 —sgn(xy)cosd and ho(z,y,0) = Va2 +y?=2|zy|cos 6 y#0,
0 if xzy=0.

Properties 2. (see Mourou [9]) (i) The operator 7, x € R, is a continuous
linear operator from E(R) into itself.
(ii) For all f € E(R) and z, y € R, we have

Tof(y) =1y f (@), Tof(x) = f(2),
TpOTy =TyOTy, NgoTy=7,0Aq4.

Proposition 1. (see Soltani [12]) (i) If f is an even positive continuous func-
tion, then T, f is positive.
(ii) For all x € R the operator T, extends to Lyo(R), p > 1 and we have for
f € Lpa(R),
172 fllp.a < 4l fllp.a-

(ii) For all z, A € R and f € L o(R), we have
Fo (Tf) (N) = Eq(idx) Faf(N).

Let f and g be two continuous functions on R with compact support. We define
the generalized convolution *, of f and g by

f 50 9(z) = /R ref (~1) 00) dpa(y),  €R.

The generalized convolution *, is associative and commutative [14]. Note that *_; /
agrees with the standard convolution .

Proposition 2. (see Soltani [12]) (i) If f is an even positive function and g a
positive function with compact support, then f *, g is positive.

(ii) Assume that p, q, v € [1,400| satisfying 1/p+ 1/q = 1+ 1/r (the Young
condition). Then the map (f,g) — f*ag, defined on E. x E., extends to a continuous
map from Ly o(R) X Ly o(R) to Ly o(R), and we have

1S *a gllra < 4l fllp.o l9llg.a-

(i) For all f € L1 (R) and g € Ly o(R), we have

Fo(f *a 9) = (Faf) (Fag) -

Proposition 3. Let f € L1 o(R) and g € L, «(R), 1 <p < co. Then we have

Tt(f*ag) :th*ag:f*aTtg-
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Let B(z,t) = {y € R : |y| €]max{0,|z| — t},|z] +¢[ } and ¢ > 0. Then
B(0,t) =] —t,t[ and (] — t,t]) = b3 2272, where by = 2T (a + 1) (o + 1). We
now consider the maximal function

1
M f(x) =su /
f() 7‘>Ig :U'aB(Ovr) B(0,r)

Theorem 2. [7] 1. If f € L1 o(R), then for every 3 >0

Tz|f| (y) dua(y)

po {2 € R: Mf(x) > B} < (ﬁ’ /R (@) i),

where C' > 0 is independent of f.
2. If fe Lpo(R), 1<p<oo,then Mf e Lyy(R) and

HMfHLp,oc S OprHLp,a7

where C, > 0 is independent of f.
Corollary 1. If f € LY (R), then

l,a

, 1
liy o /B o Tl @ = @] ditalw) = 0

for a. e. x €R.
Corollary 2. If f € LY (R), then

e’

. 1
lli% m /B((],r) T:r:f(y)d:ua(y) = f(x)

for a. e. z € R.

3. Some embeddings into the modified D-Morrey spaces

Definition 2. Let 1 < p < co. We denote by WL, o(R) the weak L, o(R) space
defined as the set of locally integrable functions f(x), x € R with the finite norms

1 ls,. =sp 7 (o o €R = |f(@)] > rh'P.
Note that
Lpa(R) CWLpa(R) and | fllyy,, < [f],, forall f€ Lya.

Definition 3. [1] Let 1 < p < 00, 0 < XA < 2a0+ 2. We denote by Ly » o(R)
Morrey space (= D-Morrey space), associated with the Dunkl operator as the set of
locally integrable functions f(x), x € R, with the finite norm

1/p
£, .= sup (t‘A/ Tz\f(y)\pdua(y)> :
” B(0,t)

t>0,z€R
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Definition 4 Let 1 < p < 00, 0 < A < 2a+ 2, [t]y = min{l,t}. We denote by
Ly »o(R) modified Morrey space (= modified D-Morrey space), associated with the
Dunkl operator as the set of locally integrable functions f(x), x € R, with the finite
norm

1/p
1l = swp (7 / ol F P dualy) ) -
L t>0, z€R B(0,t

)

Note that

Lpo.a(R) = Lpoa(R) = Lya(R),

LPJ\,a(R) C- LP,Q(R) and Hf”Lp,a < ”fo/p)na (2)

and if A <0 or A > 2o + 2, then L, 5 o(R) = ©, where © is the set of all functions
equivalent to 0 on R.

Definition 5. [2/ Let 1 <p < 00, 0 < A < 2a+ 2. We denote by WL, » o(R)
the weak D-Morrey space as the set of locally integrable functions f(x), x € R with
finite norm

1/p
|Fllwe, . =supr sup (t‘A/ d%(l/)) :
A r>0 t>0,z€R {yeB(0,t): T2|f(y)|>r}

Definition 6. /2] Let 1 <p < o0, 0 < X <2a+ 2, [t}; = min{l,t}. We denote
by WL,z o(R) the weak D-Morrey space as the set of locally integrable functions
f(z), x € R with finite norm

1/p
||f”WLp xa —SUp 7T sup ([th_)\/ dﬂa(ﬂ)) :
” r>0 t>0,z€R {yeB(0,t): 7z|f(y)|>r}

‘We note that

Lypra(R) CWIpra(R) and |fllwy,, . < £z

Py P Ao

Lemma 1. Let 1 <p<oo, 0 <A <n. Then
Lyra(R) = Lpxa(R) N Ly(R) Cr Ly a(R)

and for € pra(®) £y, = Ifllz,, .-
Proof. Let f € Zp,)\,oc(R)' Then

1/p
11z, = sup ( /B . Txlf(y)lpdﬂa(y)dy>

z€R,t>0

z€R,t>0

1/p
< sup ([t]IA/B(Ot)m\f(y)pdua(y)> =1z, .
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and

1/p
1fll,, .= sup (t‘*/ Tm\f(y)\pdua(y)>
” B(0,t)

z€R,t>0

1/p
< max sup (75—A / 2| f ()P d#a(?/)) )
B(0,t)

z€R,0<t<1

1/p
su Ty Pdu, = max = , .
m&KLW|MNM@> {171z, . WAl

Therefore, f € Ly xo(R) N Ly (R) and the embedding

Lpra(R) Cr Lpra(R) N Lya(R)

is valid.
Let f € Ly a(R) N Ly(R). Then

1/p
1fllz . = sup ([t]IA/B(Ot)m\f(y)\pdua(y)>

PAa RS0

1/p
= max sup (t_)\/ 2| f(y)P d#a(?J)) )
zeR,0<t<1 B(0,t)

1/p
sw(/ mmwmm)
zeRt>1 \ JB(0,t)

< maX{HfHLp!A,a ) HfHLpa} )

Therefore, f € EP7A7Q(R) and the embedding Ly » o(R)NL,(R) C Ep,,\,a(R) is valid.
Thus Lpxa(R) = Lpxa(R) N Lpa(R) Cr Ly a(R).

Let now f € L\ o(R). Then

z€R,t>0

1/p
mmm=pr*/ mmwwmﬂ
A B(0,t)

1/p
= sup (t7Yth)*¥ ([t];A/ Txlf(y)lpdua(y)>
B(0,t)

z€Rt>0

1/p
= sup ([th”/ Tm\f(y)\”dua(y)> =7z .-
TER>0 B(0,t) Pt

It is known [8] that for 1 <p < o0

Lpsas2a®) = Loo(®) and £l . . =87 IIf],. . (3)

From (7?7) and Lemma 1 for 1 < p < oo we have

LP72a+2,a(R) = LOO(R) n L/p,a(R)- (4)
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In [8] the following embedding on the D-Morrey spaces was proved.

Lemma 2. [8] Let 1 <p <00, 0 <A < 2a+2. Then for § = 2042=2

Lp,)\,a (R) C L1,20¢+27ﬂ,a (R)

and
Wl a s <22 1IFL

Ao’

where 1/p+1/p' = 1.
On the modified D-Morrey spaces the following embedding is valid.

Lemma 3. Letl < p<o0,0< B <2a0+2,0< X< 2a+ 2. Then for
2a+62—/\ < p< 2042
SP=75

Lpra(R) Cr Ligata-5(R)
and for f € zp,A,a(R) the following inequality

1 /
1£llz, o0, <O AL -

1s valid.
Proof. Let 0 < 3 <2a+2,0<A<2a+2, f € Lyra(R) and 222 < p <

20“%2. By the Holder’s inequality we have

11, = swp (077272 [ f)P di (o)
, i

z€R,t>0 ,t
, . , _ 2a42-X
< b})/P sup ([t]l t_l) (2a+2)/p [t]f P

z€R,t>0

1/p
X ([ﬂfA /B(O ) Txlf(y)l”dua(y)>

, B B , 20422
=B sup ([ () T g
z€R, t>0
1/p
x ([t]?/ Tal ()P dua(y)>
B(0,t)
, 2042 [—2at2=2
< l/p - —1 ﬁ P
<Pz, , o 0 () 7l
Note that
2042 _ _2a+2-X _ 2042-) 2042
sup ([tlit™") » g [t]f P = max{ sup 7 supt? } < oo
>0 0<t<1 t>1

2a+2—A§pS 20 +2
B g

Therefore f € ZLQQH,g(R) and

- 1/p -
11z, 0y <OV IFIZ,
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