ESTIMATIONS OF THE SMOOTHNESS MODULES OF DERIVATIVES OF CONVOLUTION OF TWO PERIODIC FUNCTIONS BY MEANS OF THEIR BEST APPROXIMATIONS IN $L_{p}(\mathbb{T})$

Abstract

In the paper the upper estimations of smoothness modules $\omega_{k}\left(h^{(s)} ; \delta\right)_{r}$ of derivative $h^{(s)}$ of order s of the convolution $h=f * g$ of two 2π periodic functions $f \in L_{p}(\mathbb{T})$ and $g \in L_{q}(\mathbb{T})$ are obtained by means of expression containing the product $E_{n-1}(f)_{p} E_{n-1}(g)_{q}$ of the best approximations of these functions in the metrics of $L_{p}(\mathbb{T})$ and $L_{q}(\mathbb{T})$ respectively, where $k, s \in \mathbb{N}, p, q \in[1, \infty]$, $1 / r=1 / p+1 / q-1 \geq 0, \mathbb{T}=(-\pi, \pi]$. It is proved in the case $p, q \in(1, \infty)$ that the obtained estimations are exact in the sense of order on classes of convolutions with given majorants of sequences of the best approximations of f and g under some regularity of these majorants.

