
Transactions of NAS of Azerbaijan, 2010, vol. XXX, No 4, pp. 75-88. 75

Niyazi A. ILYASOV

ESTIMATIONS OF THE SMOOTHNESS MODULES
OF CONVOLUTION OF TWO PERIODIC

FUNCTIONS BY MEANS OF THEIR BEST
APPROXIMATIONS IN Lp (T) (THE CASE OF

DIFFERENT METRICS)

Abstract

In the paper the upper estimations of smoothess modules ωk

(
h(s); δ

)
γ

of

derivative h(s) of order s(h(0) ≡ h) of the convolution h = f ∗ g of two 2π peri-
odic functions f ∈ Lp (T) and g ∈ Lq (T) are obtained by means of expression
containing the product En−1 (f)p En−1 (g)q of the best approximations of these
functions in the metrics of Lp (T) and Lq (T) respectively, where k ∈ N, s ∈ Z+,
p, q ∈ [1,∞), 1/r = 1/p + 1/q − 1 > 0, γ ∈ (r,∞], T = (−π, π]. It is proved
in the case p, q ∈ (1,∞) that the obtained estimations are exact in the sense of
order on classes of convolutions with given majorants of sequences of the best
approximations of f and g under some regularity of these majorants.

In what follows we use the following notation.

• Lp (T) , 1 ≤ p < ∞, is the space of all measurable 2π periodic functions

f : R→ C with finite Lp-norm ‖f‖p =
(
(2π)−1 ∫

T |f (x)|p dx
)1/p

< ∞.

• C (T) ≡ L∞ (T) is the space of all continuous 2π periodic functions with uni-
form norm ‖f‖∞ ≡ max {|f (x)| : x ∈ T}.

• W s
p (T), s ∈ N, p ∈ [1,∞), is the class of functions f ∈ Lp(T) having an

absolutely continuous derivative of order s− 1 and f (s) ∈ Lp(T).

• Cs (T) ≡ W s∞ (T), s ∈ N, is the class of functions f ∈ C(T) having an ordinary
derivative f (s) ∈ C(T).

• En (f)p is the best approximation of a function f in the metric of Lp (T) by
the trigonometric polynomials of order ≤ n ∈ Z+.

• Sn (f ; ·) is the partial sum of order n ∈ Z+ of the Fourier-Lebesgue series of a
function f ∈ L1 (T) : Sn (f ; x) =

∑n
|ν|=0 cν (f) eiνx, x ∈ T.

• ωk (f ; δ)p is the smoothness module of order k of a function f ∈ Lp (T) :

ωk (f ; δ)p = sup
{∥∥∆k

t f
∥∥

p
: t ∈ R, |t| ≤ δ

}
, k ∈ N, δ ∈ [0,∞), where

∆k
t f (x) =

∑k
ν=0 (−1)k−ν

(
k
ν

)
f (x + νt) , x ∈ R.

• M0 is the class of all sequences λ = {λn}∞n=1 ⊂ R such that 0 < λn ↓ 0 (n ↑ ∞).

• Ep[λ] = {f ∈ Lp(T) : En−1(f)p ≤ λn, n ∈ N} for p ∈ [1,∞] and λ ∈ M0.
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The convolution h = f ∗g of f ∈ L1 (T) and g ∈ L1 (T) is defined by the formula:
h (x) = (f ∗ g) (x) = (1/2π)

∫
T f (x− y) g (y) dy; it is known (see f.e. [1], v.1, § 2.1,

pp.64-65, [2], v.1, § 3.1, pp.65-66) that the function h is defined almost everywhere,
2π periodic, measurable and ‖h‖1 ≤ ‖f‖1 ‖g‖1 (whence it follows in particular that
h = f ∗ g ∈ L1 (T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see, f.e. [1], v.1, Theorem (1.15), pp.67-68;
[2], v.2, Theorem 13.6.1, pp.176-177; [2], v.1, Theorem 3.1.4, p.70, Theorem 3.1.6,
p.72). Given p ∈ [1,∞], let p′ = p/(p − 1) be the exponent conjugate to p. As
usual, we assume that p′ = 1 for p = ∞ and p′ = ∞ for p = 1. If p, q ∈ [1,∞] and
1/r = 1/p + 1/q − 1 ≥ 0, then r = pq/(p + q − pq) and r ∈ [1,∞) for 1/r > 0 and
r = ∞ for 1/r = 0 (in this case 1/p + 1/q = 1, so that q = p′).

Theorem A. Let p, q ∈ [1,∞], f ∈ Lp (T) and g ∈ Lq (T), h = f ∗ g, 1/r =
1/p + 1/q − 1 ≥ 0. Then

• If 1/r > 0 then h belongs to Lr (T) and ‖h‖r ≤ ‖f‖p ‖g‖q.

• If 1/r = 0 then h belongs to C (T) ≡ L∞ (T) and ‖h‖∞ ≤ ‖f‖p · ‖g‖p′.

Recall that the Fourier coefficients cn (h) of h = f ∗ g of two arbitrary functions
f ∈ L1 (T) and g ∈ L1 (T) are calculated by the formula (see [1], v.1, Theorem
(1.5), p.64; [2], v.1, p.66, formula (3.1.5)) cn (h) = cn (f ∗ g) = cn (f) · cn (g) for
every n ∈ Z.

We use also the following obvious inequalities (see f.e. [3], Lemma 1, pp. 18-19):
let f ∈ Lp (T), p ∈ [1,∞], k ∈ N and f = Re f + iImf ; then

(i) max{En(Re f)p, En(Im f)p} ≤ En(f)p ≤

≤ En(Re f)p + En(Im f)p ≤ 2En(f)p, n ∈ Z+.

(ii) max{ωk(Re f ; δ)p, ωk(Im f ; δ)p} ≤ ωk(f ; δ)p ≤

≤ ωk(Re f ; δ)p + ωk(Imf ; δ)p ≤ 2ωk(f ; δ)p, δ ∈ [0,∞).

The following statement be so called the inverse theorem of the approximation
theory of 2π periodic functions in different metrics of Lp(T).

Theorem B. Let 1 ≤ p < q ≤ ∞, f ∈ Lp (T), τ = τ(q) = q for q < ∞ and
τ(∞) = 1, s ∈ Z+, k ∈ N, σ = s + 1/p− 1/q and

∞∑

n=1

nτσ−1Eτ
n−1 (f)p < ∞. (1)

Then f ∈ W s
q (T) (more precisely, f almost everywhere equal to some function

from W s
q (T) for q < ∞ and Cs(T) for q = ∞) and the following estimation holds:

ωk

(
f (s); π/n

)
q
≤ C1(k, s, p, q)





( ∞∑

ν=n+1

ντσ−1Eτ
ν−1(f)p

)1/τ

+

+ n−k

(
n∑

ν=1

ντ(k+σ)−1Eτ
ν−1(f)p

)1/τ


 , n ∈ N, (2)

where C1(k, s, p, q) is a positive constant depending only on parameters k, s, p and q.
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Theorem B was proved by A.A.Konyushkov [4], Theorem 2, pp.56-57, in the case
s = 0, q = ∞, and by A.F.Timan [5], Theorem 6.4.1, p.378, in the case s ∈ Z+, q = ∞
(more precisely, in these cited works was given weak version of formulated theorem
with exponent τ = τ(q) = 1 < q for all q ∈ (1,∞)).

The implication (1)=⇒ f ∈ W s
q (T) was proved by P.L.Ul’yanov [6], Theorem

4, p.121, inequality (4.2), for s = 0, q < ∞ (see also [7], Remark 6, pp. 671-672,
inequalities (3.6′); [8], Theorem 4, p.1045, inequality (8); [9], pp. 1251-1253; [10],
Theorem A, pp. 62-65) and by M.F.Timan [10], Theorem 8, p.73, for s ∈ Z+, q < ∞.

The inequality (2) was proved by the author [11], Proposition 2.7, pp.27-41, in
the case s ∈ Z+ and 1 ≤ p < q ≤ 2, s ∈ Z+ and p = 1, 2 < q < ∞, s ∈ Z+ and
1 ≤ p < q = ∞; [12], Proposition 1, (2), p.49-50 (see also [13], Proposition 1, (3), pp.
4-5) in the case s ∈ Z+, q ≤ 2; [14], Theorem 1, pp. 57-61 (see also [15], Proposition
1, pp. 3-9) in the case s ∈ Z+, 2 < q < ∞.

We note also that in the case s = 0, 1 < p < q < ∞ the inequality (2) was
formulated without proof by M.B.Sikhov [16], Theorem 1, p. 46, inequality (2).

The estimation (2) is exact in the sense of order on the class Ep[λ] for all
values 1 ≤ p < q ≤ ∞, namely

sup
{

ωk

(
f (s); π/n

)
q

: f ∈ Ep[λ]
}
³

³
( ∞∑

ν=n+1

ντσ−1λτ
ν

)1/τ

+ n−k

(
n∑

ν=1

ντ(k+σ)−1λτ
ν

)1/τ

, n ∈ N. (3)

under condition that
∞∑

n=1
nτσ−1λτ

n < ∞ ⇐⇒ Ep[λ] ⊂ W s
q (T). The sufficiency of

denote condition follows from implication (1) =⇒ f ∈ W s
q (T) (see Theorem B). The

necessity in the case s = 0 was proved by N.T.Temirqaliev [17], Theorem 2, pp.
840-841, for p = 1, q < ∞, V.I.Kolyada [18], Theorems 3 and 4, pp. 212-215, for
1 ≤ p < q ≤ ∞, M.F.Timan [19], Theorem 1, pp. 76-79, for 1 ≤ p < q < ∞ (see also
[9], p.1253; [10], Theorem 6, pp. 70-72), author [11], p.135, Theorem 3, point (3.1),
in the case s ∈ Z+, 1 ≤ p < q ≤ ∞, [12], Remark after theorem on the page 49 (see
also [13], point (1) of theorem on the page 3), the case s ∈ Z+, 1 ≤ p < q ≤ 2, [14],
Theorem 2, p.61 (see also [15], the point (1) of theorem on the page 3), the case
r ∈ Z+, 2 < q < ∞.

The upper estimation in (3) immediately follows from inequality (2). The lower
estimation in (3) is realized by means of individual functions in Ep[λ]; more precisely,
for every p ∈ [1,∞) and for arbitrary λ ∈ M0 there exists a function f0(·; p; λ) ∈
Lp(T) with En−1(f0) ≤ λn, n ∈ N, such that

(i) f0 ∈ W s
q (T) ⇔

∞∑

n=1

nτσ−1λτ
n < ∞;

(ii) if the series in (i) converge, then ωk

(
f

(s)
0 ; π/n

)
q
≥

≥ C2(k, s, p, q)





( ∞∑

ν=n+1

ντσ−1λτ
ν

)1/τ

+ n−k

(
n∑

ν=1

ντ(k+σ)−1λτ
ν

)1/τ


 , n ∈ N.

The statement (i) and estimation (ii) was proved by the author [11], Lemma
3.13, p.98, for s ∈ Z+, 1 ≤ p < q ≤ 2, Lemma 3.14, p.101, for s ∈ Z+, 1 ≤ p <
q < ∞ and q > 2; [12]; Lemma 2, pp. 54-56 (see also [13], Lemma 3, pp.7-9), for
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s ∈ Z+, 1 ≤ p < q ≤ 2; [14], Lemma 3, pp.62-63 (see also [15], Lemma 1, pp. 12-14),
for s ∈ Z+, 1 ≤ p < q < ∞ and q > 2; [20], Lemma 5, pp.57-60, for 1 ≤ p < q = ∞.

Theorem 1. Let p, q ∈ [1,∞), 1/r = 1/p + 1/q − 1 > 0, γ ∈ (r,∞], k ∈ N, s ∈
Z+, σ = s+1/r−1/γ, τ = τ(γ) = γ for γ < ∞ and τ(∞) = 1, f ∈ Lp(T), g ∈ Lq(T),
h = f ∗ g and

∞∑

n=1

nτσ−1Eτ
n−1(f)pE

τ
n−1(g)q < ∞. (4)

Then h ∈ W s
γ (T) and the following estimation holds:

ωk

(
h(s); π/n

)
γ
≤ C3 (k, s, r, γ)





( ∞∑

ν=n+1

ντσ−1Eτ
ν−1 (f)p Eτ

ν−1 (g)q

)1/τ

+

+n−k

(
n∑

ν=1

ντ(k+σ)−1Eτ
ν−1 (f)p Eτ

ν−1 (g)q

)1/τ


 , n ∈ N. (5)

Proof. Since f ∈ Lp(T) and g ∈ Lq(T) we have that h ∈ Lr(T) for 1/r > 0 (=⇒
r ∈ [1,∞)) by Theorem A. We need the following estimation (see [21], the inequality
(2) in the proof of Theorem 1, p.41)

En−1(f ∗ g)r ≤ En−1(f)p · En−1(g)q, n ∈ N, r ∈ [1,∞]. (6)

Taking into account (4) and by inequality (6) we have that

∞∑

n=1

nτσ−1Eτ
n−1(h)r ≤

∞∑

n=1

nτσ−1Eτ
n−1(f)pE

τ
n−1(g)q < ∞,

whence it follows that (1) hold for h. Therefore h ∈ W s
γ (T) by Theorem B and

applying the inequalities (2) for h and (6), we obtain (5). Theorem 1 is proved.
For further exposition we need preliminary lemmas.
Lemma 1. Let 1 < γ ≤ 2, s ∈ Z+, k ∈ N,ψ ∈ W s

γ (T) and have the Fourier series
ψ(x) ∼ ∑

n∈Z cn(ψ)einx, x ∈ T. Then

(i) n−k

(
n∑

ν=1
νγk+γ−2 |cν(ψ)|γ

)1/γ

≤ C4(k, γ)ωk (ψ; π/n)γ , n ∈ N;

(ii)
( ∞∑

n=1
nγs+γ−2 |cn(ψ)|γ

)1/γ

≤ C5(γ)
∥∥∥ψ(s)

∥∥∥
γ
;

(iii)
( ∞∑

ν=n+1
νγs+γ−2 |cν(ψ)|γ

)1/γ

≤ C6(k, γ)ωk

(
ψ(s); π/n

)
γ
, n ∈ N.

Lemma 1 was proved in [3], Lemma 2 (point (i)) and in [22], Lemma 1 (points
(ii) and (iii)).

Lemma 2. Let s ∈ Z+, k ∈ N,ψ ∈ Cs(T) and have the Fourier series ψ(x) ∼∑∞
n=1 cn(ψ)einx, x ∈ T, with cn(ψ) > 0 for every n ∈ N. Then

(i) n−æ
n∑

ν=1
νæcν(ψ) ≤ 2−kωk (Re ψ; π/n)∞ , n ∈ N,

where æ= k + (1− (−1)k)/2 = {k for even k; k + 1 for odd k} .

(ii) n−æ
n∑

ν=1
νæcν(ψ) ≤ 2−(k+1)πωk (Imψ; π/n)∞ , n ∈ N,

where æ= k + (1 + (−1)k)/2 = {k + 1 for even k; k for odd k} .
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(iii)
∞∑

n=1
nscn(ψ) ≤





∥∥∥Reψ(s)
∥∥∥
∞

for s = 0, 2, 4, · · · ;

∥∥∥Im ψ(s)
∥∥∥
∞

for s = 1, 3, · · · .

(iv)
∞∑

ν=n+1
νscν(ψ) ≤ 2k+2C7(k)





ωk

(
Reψ(s);π/n

)
∞

for s = 0, 2, 4, · · · ;

ωk

(
Imψ(s); π/n

)
∞

for s = 1, 3, · · · .

Lemma 2 was proved in [3], Lemma 4 (points (i) and (ii)) and in [22], Lemma 3
(points (iii) and (iv)).

Lemma 3. Let γ ∈ (1,∞), ψ ∈ Lγ(T) and have the Fourier series ψ(x) ∼
(1/2)a0(ψ) +

∑∞
n=1 (an(ψ) cos nx + bn(ψ) sin nx) , x ∈ T, where a0(ψ) ≥ 0, an(ψ) ≥

0, bn(ψ) ≥ 0 for every n ∈ N. Then

(i)
2n∑

ν=n
(aν(ψ) + bν(ψ)) ≤ C8(γ)n1/γEn(ψ)γ , n ∈ N;

Furthermore, if an(ψ) ↓, bn(ψ) ↓ for n ↑, then
(ii) (a2n(ψ) + b2n(ψ))n1−1/γ ≤ C8(γ)En(ψ)γ , n ∈ N;

(iii)
( ∞∑

ν=n+1
νγ−2 (aν(ψ) + bν(ψ))γ

)1/γ

≤ C9(γ)E[(n+1)/2](ψ)γ , n ∈ N.

Lemma 3 was proved by A.A.Konyushkov [23], Theorem 5, inequalities (17) and
(19), p.73; Theorem 6, inequality (20), p.74. In the inequality (iii) for 2 < γ < ∞,
in general, dos not exchange E[(n+1)/2](ψ)γ by means En(ψ)γ (see [23], p.75); in the
case 1 < γ ≤ 2 it is possible without denote assumption an(ψ) ↓, bn(ψ) ↓ (n ↑) (see
the proof (iii) of Lemma 1 for s = 0).

Lemma 4. Let γ ∈ (1,∞), l, k ∈ N, s ∈ Z+, ψ ∈ W s
γ (T), η = max {2, γ} . Then

(n ∈ N)

(i) n−k

(
n∑

ν=1

νη(k+s)−1ωη
l (ψ; π/ν)γ

)1/η

≤ C10 (l, k + s, γ) πsωk

(
ψ(s);π/n

)
γ

(s ∈ Z+, l > k + s) ;

(ii)

( ∞∑

n=1

nηs−1ωη
l (ψ; π/n)γ

)1/η

≤ C11 (l, s, γ)
∥∥∥ψ(s)

∥∥∥
γ

(s ∈ N, l > s) ;

(iii)

( ∞∑

ν=n+1

νηs−1ωη
l (ψ;π/ν)γ

)1/η

≤ C12 (l, k, s, γ) ωk

(
ψ(s); π/n

)
γ

(s ∈ N, l ≥ k + s) .
Proof. We need the following known inequalities (θ = min {2, γ} , ψ ∈ Lγ(T))

ωl (ψ; π/n)γ ≤ C13 (l, γ) n−l

(
n∑

ν=1

νθ l−1Eθ
ν−1 (ψ)γ

)1/θ

, n ∈ N, (7)

n−l

(
n∑

ν=1

νη l−1Eη
ν−1 (ψ)γ

)1/η

≤ C14 (l, γ) ωl (ψ; π/n)γ , n ∈ N. (8)

The inequality (7) was proved by S.B.Stechkin [24], p. 502, Lemma 1, for l = 1,
γ = 2, and by M.F.Timan [25], Theorem 1, p. 126, inequalities (7), for l ∈ N,
γ ∈ (1,∞) (see also [5], §6.1.5; [26], §7.3, Theorem 3.4, p. 210, inequality (3.9)).
The inequality (8) was proved by M.F. Timan [27], pp. 135-137.
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First we proof the estimation (m ∈ N, m < l)

n∑

ν=1

νη m−1ωη
l (ψ; π/ν)γ ≤ C15 (l, m, γ)

n∑

ν=1

νη m−1Eη
ν−1 (ψ)γ , n ∈ N. (9)

In virtue of inequality (7) we have that

n∑

ν=1

νη m−1ωη
l (ψ;π/ν)γ ≤ (C13 (l, γ))η

n∑

ν=1

ν−η (l−m)−1




ν∑

µ=1

µθ l−1Eθ
µ−1 (ψ)γ




η/θ

,

whence in the case γ 6= 2 by Hardy’s inequality [28], p. 308, Theorem 346, we obtain
that ( η/θ > 1, η (l −m) + 1 > 1 )

n∑

ν=1

νη m−1ωη
l (ψ;π/ν)γ ≤ (C13 (l, γ))η C16 (l,m, θ, η)

n∑

ν=1

νη m−1Eη
ν−1 (ψ)γ ,

and in the case γ = 2 (⇒ η = θ = 2 ) we have that

(C13 (l, 2))−2
n∑

ν=1

ν2 m−1ω2
l (ψ;π/ν)2 ≤

n∑

ν=1

ν−2 (l−m)−1
ν∑

µ=1

µ2 l−1E2
µ−1 (ψ)2 =

=
n∑

µ=1

µ2 l−1E2
µ−1 (ψ)2

n∑
ν=µ

ν−2 (l−m)−1 ≤
(

1 +
1

2 (l −m)

) n∑

µ=1

µ2 m−1E2
µ−1 (ψ)2 .

If we put m = k + s < l, s ∈ Z+, in (9), then by (8) and known inequality
ωk+s (ψ; δ)γ ≤ 2δsωk

(
ψ(s); δ

)
γ

for s ∈ N, we obtain that (C15 = C15 (l, k + s, γ),

C14 = C14 (k + s, γ))

n−k

(
n∑

ν=1

νη(k+s)−1ωη
l (ψ; π/ν)γ

)1/η

≤ C
1/η
15 n−k

(
n∑

ν=1

νη(k+s)−1Eη
ν−1 (ψ)γ

)1/η

≤

≤ C
1/η
15 C14n

sωk+s (ψ; π/n)γ ≤ C
1/η
15 · C14 · 2πsωk

(
ψ(s);π/n

)
γ
,

whence if follows the estimation (i) with C10(l, k + s, γ) = 2πsC
1/η
15 C14.

Furthermore, putting m = s < l, s ∈ N, in (9), by inequality (8) and known
inequality ωs (ψ; δ)γ ≤ 2δs

∥∥∥ ψ(s)
∥∥∥

γ
, ψ ∈ W s

γ (T), we have that

(
n∑

ν=1

νηs−1ωη
l (ψ;π/ν)γ

)1/η

≤ (C15 (l, s, γ))1/η

(
n∑

ν=1

νηs−1Eη
ν−1 (ψ)γ

)1/η

≤

≤ (C15 (l, s, γ))1/η C14 (s, γ)nsωs (ψ; π/n)γ ≤ C
1/η
15 · C14 · 2πs

∥∥∥ ψ(s)
∥∥∥

γ
,

whence it follows the estimation (ii) as n →∞.
We note that in virtue of (9) for m = s ∈ N the inequality (ii) follows also

from the lower estimations of Lγ - norm
∥∥∥ ψ(s)

∥∥∥
γ

by means of expression containing
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En (ψ)γ , which was obtained by O.V.Besov in [29], p. 15, inequalities (5) and (7)
(see also [30], p. 224).

For proof the estimation (iii) we use the following inequalities (θ = min {2, γ} ,
ψ ∈ W s

γ (T) , l ∈ N, s ∈ Z+, l > s)

ωl (ψ; π/n)γ ≤ C17 (l, γ)

( ∞∑

ν=n+1

ν−θ l−1
∥∥∥ S(l)

ν (ψ; · )
∥∥∥

θ

γ

)1/θ

, n ∈ N, (10)

( ∞∑

ν=n+1

ν−(l−s)η−1
∥∥∥ S(l)

ν (ψ; · )
∥∥∥

η

γ

)1/η

≤C18 (l − s, γ) ωl−s

(
ψ(s);π/n

)
γ
, n ∈ N. (11)

The inequality (10) was proved by V.V.Zhuk and Q.I. Natanson [31], see the
proof of Theorem 2, inequality (6) on the p. 22. The inequality (11) was proved in
[32], Theorem 2, inequality (22) on the p.9 (see also [33], inequality (17) on the p.8).

First we proof the estimation (m ∈ N, m < l)

∞∑

ν=n+1

νηm−1ωη
l (ψ; π/ν)γ≤C19 (l,m, γ)

∞∑

ν=n+1

ν−(l−m)η−1
∥∥∥S(l)

ν (ψ; ·)
∥∥∥

η

γ
, n ∈ N. (12)

Indeed, in the case γ 6= 2 by inequality (10) and by Hardy’s inequality [28],
Theorem 346, p. 308, we have that ( η/θ > 1, 1− ηm < 1 )

∞∑

ν=n+1

νη m−1ωη
l (ψ;π/ν)γ ≤

≤ (C17 (l, γ))η
∞∑

ν=n+1

νηm−1




∞∑

µ=ν+1

µ−θl−1
∥∥∥S(l)

µ (ψ; · )
∥∥∥

θ

γ




η/θ

≤

≤ (C17 (l, γ))η C20 (m, θ, η)
∞∑

ν=n+1

ν−η(l−m)−1
∥∥∥ S(l)

ν (ψ; · )
∥∥∥

η

γ
;

in the case γ = 2 (⇒ η = θ = 2 ) we obtain that

(C17 (l, 2))−2
∞∑

ν=n+1

ν2m−1ω2
l (ψ;π/ν)2 ≤

∞∑

ν=n+1

ν2m−1
∞∑

µ=ν+1

µ−2l−1
∥∥∥ S(l)

µ (ψ; · )
∥∥∥

2

2
=

=
∞∑

µ=n+1

µ−2l−1
∥∥∥ S(l)

µ (ψ; · )
∥∥∥

2

2

µ∑

ν=n+1

ν2m−1 ≤
∞∑

µ=n+1

µ−2(l−m)−1
∥∥∥ S(l)

µ (ψ; · )
∥∥∥

2

2
.

Furthermore, putting m = s ∈ N, l = k + s, in (12) and applying the inequality
(11), we obtain (iii) in the case l = k + s (C19 = C19 (k + s, s, γ))

( ∞∑

ν=n+1

νη s−1ωη
k+s (ψ; π/ν)γ

)1/η

≤ C
1/η
19

( ∞∑

ν=n+1

ν−ηk−1
∥∥∥ S(k+s)

ν (ψ; · )
∥∥∥

η

γ

)1/η

≤

≤ C
1/η
19 C18 (k, γ) ωk

(
ψ(s);π/n

)
γ
, n ∈ N.
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In the case l > k + s the estimation (iii) reduce to the case l = k + s by known
inequality ωl (ψ; δ)γ ≤ 2 · 2l−(k+s)ωk+s (ψ; δ)γ .

Lemma 4 is proved.
Given α ∈ (0,∞), let M0 (α) be the set of all sequences λ = {λn}∞n=1 ∈ M0 such

that nαλn ↓ (n ↑).
Lemma 5. Let p, q ∈ (1,∞) , 1/r = 1/p + 1/q − 1 > 0 (⇒ r ∈ (1,∞)), γ ∈

(r,∞] , k ∈ N, s ∈ Z+, σ = s+1/r−1/γ, τ = τ (γ) = γ for γ < ∞ and τ (∞) = 1,
λ = {λn}∞n=1 ∈ M0 (α) and ε = {εn}∞n=1 ∈ M0 (β) for some α, β ∈ (0,∞). Then
there are functions f0 ( · ; p ; λ) ∈ Lp (T) and g0 ( · ; q ; ε) ∈ Lq (T) such that

(i) En−1 (f0)p ≤ C21 (p, α) λn, En−1 (g)q ≤ C21 (q, β) εn, n ∈ N;

(ii) h0 = f0 ∗ g0 ∈ W s
γ (T) ⇔

∞∑
n=1

nτσ−1λτ
nετ

n < ∞;

(iii) if the series in (ii) converge, then
( ∞∑

ν=n+1

ντσ−1λτ
νε

τ
ν

)1/τ

+ n−k

(
n∑

ν=1

ντ(k+σ)−1λτ
νε

τ
ν

)1/τ

≤

≤ C22 (k, s, r, τ) ωk

(
h

(s)
0 ; π/n

)
γ
, n ∈ N.

Proof. For p, q ∈ (1,∞) (p′ = p/ (p− 1), q′ = q/ (q − 1)), let

f0 (x; p; λ) =
∞∑

n=1

n−1/p′λneinx, g0 (x; q; ε) =
∞∑

n=1

n−1/q′εneinx, x ∈ T.

Since λ ∈ M0 (α) and ε ∈ M0 (β), in virtue of Lemma 1 [34] we have f0 ∈ Lp (T) ,
En−1 (f0)p ≤ C21 (p, α) λn and g0 ∈ Lq (T) , En−1 (g0)q ≤ C21 (q, β) εn, n ∈ N.

If the series in (ii) converge, then by (i) we have that

∞∑

n=1

nτσ−1Eτ
n−1 (f0)p Eτ

n−1 (g0)q ≤ (C21 (p, α) C21 (q, β))τ
∞∑

n=1

nτσ−1 λτ
n ετ

n < ∞,

whence h0 = f0 ∗ g0 ∈ W s
γ (T) by Theorem 1.

For further exposition of proof we consider by itself the cases: γ ≤ 2, 2 < γ < ∞
and γ = ∞.

First we consider the case γ ≤ 2. If h0 ∈ W s
γ (T), then taking into account

cn (h0) = cn (f0) · cn (g0) = n−(1/p′+1/q′)λnεn and γσ − 1 = γs + γ/r − 2 = γs + γ −
2+γ (1/p + 1/q − 2) = γs+γ−2−γ (1/p′ + 1/q′) , we have by (ii) of Lemma 1 that

( ∞∑

n=1

nγσ−1 λγ
n εγ

n

)1/γ

=

( ∞∑

n=1

nγs+γ−2 |cn (h0)|γ
)1/γ

≤ C23 (γ)
∥∥∥h

(s)
0

∥∥∥
γ
.

Further, applying the inequalities (i) and (iii) of Lemma 1 for h0 ∈ W s
γ (T), we

obtain that
( ∞∑

ν=n+1

νγσ−1 λγ
ν εγ

ν

)1/γ

+ n−k

(
n∑

ν=1

νγ(k+σ)−1λγ
ν εγ

ν

)1/γ

=

=

( ∞∑

ν=n+1

νγs+γ−2 |cν (h0)|γ
)1/γ

+ n−k

(
n∑

ν=1

νγ(k+s)+γ−2 |cν (h0)|γ
)1/γ

≤
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≤ C24 (k, γ) ωk

(
h

(s)
0 ; π/n

)
γ

+ nsC25 (k + s, γ) ωk+s (h0; π/n)γ ≤

≤ (C24 (k, γ) + πsC25 (k + s, γ)) ωk

(
h

(s)
0 ;π/n

)
γ
,

whence the estimation (iii) follows in the case γ ≤ 2.
Consider now the case 2 < γ < ∞. Previously we proof the following estimation

(l ∈ N)
n1/r−1/γλnεn ≤ C26 (l, r, γ) ωl (h0; π/n)γ , n ∈ N, (13)

under condition that h0 ∈ Lγ (T).
Since 0 < cn (h0) = cn (Reh0) = cn (Imh0) = n−(1/p′+1/q′)λnεn ↓ (n ↑), then by

(ii) of Lemma 3 we have that n1−1/γc2n (Reh0) ≤ C27 (γ) En (Re h0)γ ,

n1−1/γc2n (Im h0) ≤ C27 (γ) En (Im h0)γ , whence n1−1/γc2n (h0) ≤ C27 (γ) En (h0)γ ,
n ∈ N.

Taking into account the last estimation and 1/p′+1/q′ = 1−1/r, we obtain that

n1/r−1/γλ2nε2n = 21−1/rn1−1/γ (2n)1/r−1 λ2nε2n =

= 21−1/rn1−1/γ (2n)−(1/p′+1/q′) λ2nε2n =

= 21−1/rn1−1/γc2n (h0) ≤ 21−1/rC27 (γ) En (h0)γ ,

whence n1/r−1/γλ2nε2n ≤ 21−1/rC27 (γ) En (h0)γ , n ∈ N.
Further, in virtue of λn ↓, εn ↓ (n ↑) and by the Lγ - analoque of known D.

Jackson-S.B.Stechkin inequality (see [35], Theorem 1, p. 226; [5], Section 5.11, p.
338, inequality (1), and references therein):

En−1 (f)γ ≤ C28 (l) ωl (f ; π/n)γ , γ ∈ [1,∞] , f ∈ Lγ (T) , n ∈ N, (14)

we have that for n ≥ 2 ([t] - entire part of t ∈ R)

n1/r−1/γλnεn ≤ 31/r−1/γ [n/2]1/r−1/γ λ2[n/2]ε2[n/2] ≤

≤ 31/r−1/γ21−1/rC27 (γ) E[n/2] (h0)γ ≤ C29 (r, γ) C28 (l) ωl (h0; π/ ([n/2] + 1) )γ ≤
≤ C29 (r, γ) C28 (l) ωl (h0; 2π/n )γ ≤ C29 (r, γ) C28 (l) 2lωl (h0; π/n )γ ,

whence it follows the estimation (13) for n ≥ 2 with constant C26 (l, r, γ) =
= 2lC28 (l) C29 (r, γ) = 2lC28 (l) 31/r−1/γ21−1/rC27 (γ) . For n = 1 we have that (see
f.e. [2], v. 1, p. 129, exercise (6.10)) λ1ε1 = c1 (h0) ≤ E0 (h0)1 ≤ E0 (h0)γ ≤
C28 (l) ωl (h0; π)γ .

Now we proof the validity of implication ” ⇒ ” in (ii) for 2 < γ < ∞. In the
case s = 0 by the known G.Hardy-J.Littlewood’s theorem (see f.e. [1], v. 2, p. 193,
Lemma (6.6)) we have that ( 1− 1/r = 1/p′ + 1/q′ )

( ∞∑

n=1

nγ(1/r−1/γ)−1 λγ
n εγ

n

)1/γ

=

( ∞∑

n=1

nγ(1/r−1)+γ−2 λγ
n εγ

n

)1/γ

=

=

( ∞∑

n=1

nγ−2n−γ(1/p′+1/q′) λγ
n εγ

n

)1/γ

=

( ∞∑

n=1

nγ−2cγ
n (h0)

)1/γ

≤ C30 (γ) ‖h0 ‖γ .
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In the case s > 0 by (ii) of Lemma 4 (we put l = s + 1, η = max {2, γ} = γ) and
by inequality (13) we have that (C26 = C26 (s + 1, r, γ))

C11 (s + 1, s, γ)
∥∥∥h

(s)
0

∥∥∥
γ
≥

( ∞∑

n=1

nγ s−1 ωγ
s+1 (h0;π/n)γ

)1/γ

≥

≥ C−1
26

( ∞∑

n=1

nγ s−1nγ(1/r−1/γ) λγ
nεγ

n

)1/γ

= C−1
26

( ∞∑

n=1

nγ σ−1 λγ
nεγ

n

)1/γ

.

Now we proof the estimation (iii). In the case s = 0 taking into account cn (h0) =
n1/r−1λnεn, n ∈ N, by (iii) of Lemma 3 and inequalities (13) and (14) we have that

( ∞∑

ν=n+1

νγ(1/r−1/γ)−1 λγ
ν εγ

ν

)1/γ

=

( ∞∑

ν=n+1

νγ−2 cγ
ν (h0)

)1/γ

≤

≤
(

2n+1∑

ν=n+1

νγ−2 cγ
ν (h0)

)1/γ

+




∞∑

ν=2(n+1)

νγ−2 cγ
ν (h0)




1/γ

≤

≤ cn+1 (h0) (γ − 1)−1/γ (
2γ−1 − 1

)1/γ (n + 1)1−1/γ + C31 (γ) En+1 (h0)γ ≤

≤ (γ − 1)−1/γ (
2γ−1 − 1

)1/γ 21−1/γn1−1/γcn (h0) + C31 (γ)En (h0)γ =

= (γ − 1)−1/γ (
2γ−1 − 1

)1/γ 21−1/γn1/r−1/γλnεn + C31 (γ) En (h0)γ ≤
≤ C32 (γ) C26 (k, r, γ) ωk (h0; π/n)γ + C31 (γ) C28 (k) ωk (h0; π/ (n + 1))γ ≤

≤ {C32 (γ) C26 (k, r, γ) + C31 (γ) C28 (k) } ωk (h0; π/n)γ .

In the case s > 0 by (iii) of Lemma 4 (we put l = k + s) and inequality (13) we
obtain that (C33 = C26 (k + s, r, γ))

C12 (k + s, k, s, γ) ωk

(
h

(s)
0 ;π/n

)
γ
≥

( ∞∑

ν=n+1

νγ s−1ωγ
k+s (h0; π/ν)γ

)1/γ

≥

≥ C−1
33

( ∞∑

ν=n+1

νγ s−1νγ(1/r−1/γ) λγ
ν εγ

ν

)1/γ

= C−1
33

( ∞∑

ν=n+1

νγ σ−1 λγ
ν εγ

ν

)1/γ

.

From obtained estimations follows the estimation of the first summand in (iii)
for s ∈ Z+ and 2 < γ < ∞.

Further, by (i) of Lemma 4 (we put l = k + s + 1, s ∈ Z+) and inequality (13)
we have that (C10 = C10 (k + s + 1, k + s, γ) , C34 = C26 (k + s + 1, r, γ) )

C10 πsωk

(
h

(s)
0 ; π/n

)
γ
≥ n−k

(
n∑

ν=1

νγ (k+s)−1ωγ
k+s+1 (h0; π/ν)γ

)1/γ

≥

≥ C−1
34 n−k

(
n∑

ν=1

νγ (k+s)−1νγ(1/r−1/γ) λγ
ν εγ

ν

)1/γ

= C−1
34 n−k

(
n∑

ν=1

νγ (k+σ)−1 λγ
ν εγ

ν

)1/γ

,
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whence it follows the estimation of the second summand in (iii) for 2 < γ < ∞.
At last we consider the case γ = ∞ (⇒ τ = 1). We proof the validity of impli-

cation ” ⇒ ” in (ii). If h0 = f0 ∗ g0 ∈ W s∞ (T) ≡ Cs (T), then taking into account
equality cn (h0) = cn (f0) cn (g0) = n−(1/p′+1/q′ )λnεn = n1/r−1λnεn, n ∈ N, and by
(iii) of Lemma 2 we have that (s ∈ Z+, σ = s + 1/r)

∞∑

n=1

nσ−1λnεn =
∞∑

n=1

ns+1/r−1λnεn =
∞∑

n=1

nscn (h0) ≤
∥∥∥ ψ(s)

∥∥∥
∞

.

Further, by (iv) of Lemma 2 we obtain that (s ∈ Z+)

∞∑

ν=n+1

νσ−1λνεν =
∞∑

ν=n+1

νs+1/r−1λνεν =
∞∑

ν=n+1

νscν (h0) ≤ C35 (k) ωk

(
h

(s)
0 ; π/n

)
∞

,

whence it follows the estimation of the first summand in (iii). Now we estimate the
second summand in (iii). For s ∈ Z+ and k ∈ N by (i) of Lemma 2 for even k + s
and by (ii) of Lemma 2 for odd k + s we have that

n−k
n∑

ν=1

νk+σ−1λνεν = n−k
n∑

ν=1

νk+s+1/r−1λνεν = n−k
n∑

ν=1

νk+scn (h0) ≤

≤ C36 (k + s) ns ωk+s (h0; π/n)∞ ≤ C36 (k + s) πs ωk

(
h

(s)
0 ;π/n

)
∞

,

whence it follows the estimation of the second summand in (iii).
Lemma 5 is proved.
Given p, q ∈ [1,∞] and λ, ε ∈ M0, put

Ep [λ] ∗Eq [ε] = {h = f ∗ g : f ∈ Ep [λ] , g ∈ Eq [ε] } .

The following theorem shows that estimation (5) of Theorem 1 is exact in the
sence of order on classes Ep [λ] ∗ Eq [ε] in the case p, q ∈ (1,∞) under conditions
that λ ∈ M0 (α) and ε ∈ M0 (β) for some α, β ∈ (0,∞).

Theorem 2. Let p, q ∈ (1,∞), r = pq/ (p + q − pq) ∈ (1,∞), γ ∈ (r,∞],
k ∈ N, s ∈ Z+, σ = s + 1/r − 1/γ, τ = τ (γ) = γ for γ < ∞and τ (∞) = 1,
λ = {λn}∞n=1 ∈ M0 (α) and ε = {εn}∞n=1 ∈ M0 (β) for some α, β ∈ (0,∞), and

∞∑

n=1

nτσ−1λτ
n ετ

n < ∞. (15)

Then

sup
{

ωk

(
h(s);π/n

)
γ

: h ∈ Ep [λ] ∗Eq [ε]
}
³

³
( ∞∑

ν=n+1

ντσ−1λτ
ν ετ

ν

)1/τ

+ n−k

(
n∑

ν=1

ντ(k+σ)−1λτ
ν ετ

ν

)1/τ

, n ∈ N.

Proof. Indeed, the upper estimation for every p, q ∈ [1,∞) and for arbitrary
λ, ε ∈ M0 immediately follows by inequality (5) of Theorem 1. The lower estimation
is realized by function

h0 ( · ; p, q; λ, ε) = (C21 (p, α) )−1 f0 ( · ; p; α) ∗ (C21 (q, β) )−1 g0 ( · ; q; ε) ∈ Ep [λ]∗Eq [ε]
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in virtue of (iii) of Lemma 5.
Remark. The condition convergence of the series (15) it is necessary and

sufficiently for imbedding Ep [λ] ∗ Eq [ε] ⊂ W s
γ (T). The sufficiency for arbitrary

λ, ε ∈ M0 immediately follows from the first part of the statement of Theorem
1. The necessity under conditions λ ∈ M0 (α) and ε ∈ M0 (β) follows from the
statement (ii) of Lemma 5.

Given p, q ∈ [1,∞] and α, β ∈ (0,∞) we denote Ep, α = Ep

[{n−α}∞n=1

]
, Eq, β =

Eq

[{
n−β

}∞
n=1

]
. The following statement follows from Theorem 2.

Corollary. Let p, q ∈ (1,∞), 1/r = 1/p + 1/q − 1 > 0 (⇒ r ∈ (1,∞) ),
γ ∈ (r,∞], k ∈ N, s ∈ Z+, σ = s + 1/r − 1/γ, τ = τ (γ) = γ for γ < ∞ and
τ (∞) = 1, α, β ∈ (0,∞) , ρ = α + β − σ > 0. Then for δ ∈ (0, π]

(i) sup
{

ωk

(
h(s); δ

)
γ

: h ∈ Ep, α ∗ Eq,β

}
³

³
{

δρ for ρ < k; δk (ln (π e/δ) )1/τ for ρ = k; δk for ρ > k
}

.

(ii) sup
{

ωk+1

(
h(s); δ

)
γ

: h ∈ Ep, α ∗Eq, β

}
³ δk for ρ = k.

Proof. For the proof it is sufficiently to note the following (see f.e. [22], the proof
of Theorem 3). For every δ ∈ (0, π] there exists an n ∈ N such that π/ (n + 1) <
δ ≤ π/n, whence we have the following estimations:

2−kωk

(
h(s); π/n

)
γ
≤ ωk

(
h(s); δ

)
γ
≤ ωk

(
h(s); π/n

)
γ
;

2−ρ (π/n)ρ < δρ ≤ (π/n)ρ for every ρ ∈ (0,∞) ;

δk (ln (πe/δ) )1/τ ≤ (π/n)k (ln (e (n + 1) ) )1/τ =

= πkn−k (1 + ln (n + 1) )1/τ ≤ 31/τπkn−k (ln (n + 1) )1/τ ;

n−k (ln (en) )1/τ ≤ (2/π)k (π/ (n + 1))k (ln (πe/δ ) )1/τ < (2/π)k δk (ln(πe/δ) )1/τ .

Furthermore the following estimations hold:

(τρ)−1/τ 2−ρn−ρ ≤ (τρ)−1/τ (n + 1)−ρ ≤
( ∞∑

ν=n+1

ν−τρ−1

)1/τ

≤ (τρ)−1/τ n−ρ, n ∈ N;

ϕn (k − ρ; τ) ≤ n−k

(
n∑

ν=1
ντ(k−ρ)−1

)1/τ

≤ ψn (k − ρ; τ) , n ∈ N, where ϕn (k − ρ; τ) =

(τ (k − ρ) )−1/τ n−ρ, ψn (k − ρ; τ) = (τ (k − ρ) )−1/τ n−k
(

(n + 1)τ(k−ρ) − 1
)1/τ

≤
≤ (τ (k − ρ))−1/τ 2k−ρn−ρ either ψn (k − ρ; τ) ≤ n−ρ for ρ < k and τ (k − ρ) ≥ 1;

ϕn (k − ρ; τ) = (τ (k − ρ) )−1/τ n−k
(

(n + 1)τ(k−ρ) − 1
)1/τ

≥

≥ (τ (k − ρ))−1/τ n−k
(
τ (k − ρ) 2τ(k−ρ)−1nτ(k−ρ)

)1/τ
= 2k−ρ−1/τn−ρ,

ψn (k − ρ; τ) = (τ (k − ρ))−1/τ n−ρ for ρ < k and τ (k − ρ) ≤ 1;

ϕn (k − ρ; τ) = n−k (ln (n + 1))1/τ , ψn (k − ρ; τ) = n−k (ln (en))1/τ for ρ = k;
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ϕn (k − ρ; τ) = n−k, ψn (k − ρ; τ) =
(
1 + (τ (ρ− k))−1

)1/τ
n−k for ρ > k;

τ−1/τn−k ≤ n−(k+1)

(
n∑

ν=1

ντ(k+1−ρ)−1

)1/τ

≤ n−k for ρ = k.
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