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Niyazi A. ILYASOV

ESTIMATIONS OF THE SMOOTHNESS MODULES
OF CONVOLUTION OF TWO PERIODIC
FUNCTIONS BY MEANS OF THEIR BEST
APPROXIMATIONS IN L, (T) (THE CASE OF
DIFFERENT METRICS)

Abstract

In the paper the upper estimations of smoothess modules wg (h(s);é)v of

derivative h(®) of order s(h(®) = h) of the convolution h = f * g of two 27 peri-
odic functions f € L, (T) and g € L, (T) are obtained by means of expression

containing the product Ey_1(f), En—1(g), of the best approzimations of these

functions in the metrics of L, (T) and L, (T) respectively, where k € N, s € Z,
p,q € [1,00), 1/r=1/p+1/¢g—1>0, v € (r,o0], T = (—7,w|. It is proved
in the case p,q € (1,00) that the obtained estimations are exact in the sense of
order on classes of convolutions with given majorants of sequences of the best
approzimations of f and g under some regularity of these majorants.

In what follows we use the following notation.

e L,(T), 1 < p < o0, is the space of all measurable 27 periodic functions

1
f R — C with finite Ly-norm || f||, = ((271)71 Jo If ()P d:c) " < 0.

e C(T) = Lo (T) is the space of all continuous 27 periodic functions with uni-
form norm || f|| ., = max {|f (z)| : v € T}.

e W, (T), s € N, p € [1,00), is the class of functions f € L,(T) having an
absolutely continuous derivative of order s — 1 and f*) € L,(T).

e C¢(T) =W5 (T), s € N, is the class of functions f € C(T) having an ordinary
derivative f(¥) € C(T).

o F, (f)p is the best approximation of a function f in the metric of L, (T) by
the trigonometric polynomials of order <n € Z.

e S, (f;+) is the partial sum of order n € Z; of the Fourier-Lebesgue series of a

function f € Ly (T) : Sn (fi2) = 320 v (f) et xeT.
® wy (f10), is the smoothness module of order k of a function f € L, (T) :
wk(f;é)p = sup{HAfpr:teR, |t] S(S}, k€ N, § € [0,00), where
Abf (@)= Y5 (D (5) f @4ot), s e R
o M is the class of all sequences A = {\,}22; C Rsuch that 0 < A\, | 0(n T 00).

o E, N ={fe€Ly(T): En1(f)p <A, neN} for pe[l,o0] and A € M.
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The convolution h = fxg of f € L1 (T) and g € Ly (T) is defined by the formula:
hiz)=(f*g)(x) = (1/2n) [; f (x —y) g (y) dy; it is known (see f.e. [1], v.1, § 2.1,
pp.64-65, [2], v.1, § 3.1, pp.65-66) that the function h is defined almost everywhere,
27 periodic, measurable and ||h|; < || f]|; |lg]l; (whence it follows in particular that
h = fxgé€ L1 (T)). The last statement is a particular case of the following result
known as the W.Young’s inequality (see, f.e. [1], v.1, Theorem (1.15), pp.67-68;
[2], v.2, Theorem 13.6.1, pp.176-177; [2], v.1, Theorem 3.1.4, p.70, Theorem 3.1.6,
p.72). Given p € [1,00], let p’ = p/(p — 1) be the exponent conjugate to p. As
usual, we assume that p’ = 1 for p = oo and p’ = oo for p = 1. If p,q € [1,00] and
1/r=1/p+1/¢—1>0, then r = pg/(p+ q—pq) and r € [1,00) for 1/r > 0 and
r = oo for 1/r =0 (in this case 1/p+ 1/q = 1, so that ¢ = p/).

Theorem A. Let p,q € [1,00], f € L,(T)and g € Ly(T), h = fx*g, 1/r =
1/p+1/q—12>0. Then

e If 1/r >0 then h belongs to L, (T) and ||hll, < | f|[, [lgl,-

o If 1/r=0 then h belongs to C(T) = Loo (T) and [|h|[o, < [IfIl, - ll9ll,

Recall that the Fourier coefficients ¢, (h) of h = f % g of two arbitrary functions
f € Li(T) and g € Ly (T) are calculated by the formula (see [1], v.1, Theorem
(1.5), p.64; [2], v.1, p.66, formula (3.1.5)) ¢, (h) = ¢ (f*xg) = cn (f) - cn(g) for
every n € Z.

We use also the following obvious inequalities (see f.e. [3], Lemma 1, pp. 18-19):
let feL,(T),pe[l,o0], k€ Nand f = Re f+ilm f; then

(i) maz{ Ea(Re £y, Ea(Im £y} < Eu(f)y <

E.(Ref)p+ E,(Im f), <2E,(f)p, n € Zy.
(ii) max{wg(Re f;0)p, wp(Im f;0)p} < wi(f;0)p <
<wg(Re f;0)p +wrp(Im f;0)p < 2wi(f;0)p, ¢ € [0,00).

The following statement be so called the inverse theorem of the approximation
theory of 27 periodic functions in different metrics of L, (T).

Theorem B. Let 1 <p < q < oo, f € L,(T), 7 =1(¢q) = q for ¢ < oo and
T(o)=1,s€Zs,keN, o =s+1/p—1/q and

Zn” 'Er_(f), < 0. (1)

Then f € W;(T) (more precisely, f almost everywhere equal to some function
from Wi (T) for ¢ < oo and C*(T) for ¢ = oo) and the following estimation holds:

1/7
Wk (f(s)ﬂT/n>q < Ci(k,s,p.q) ( Z VO ET L (f) ) +

v=n+1

n /T
+n <Z VT(k+”)1E51(f)p) ,  méeN, (2)

v=1

where C1(k, s,p,q) is a positive constant depending only on parameters k, s,p and q.
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Theorem B was proved by A.A.Konyushkov [4], Theorem 2, pp.56-57, in the case
s =0,q = oo, and by A.F.Timan [5], Theorem 6.4.1, p.378, in the case s € Z;,q = o0
(more precisely, in these cited works was given weak version of formulated theorem
with exponent 7 = 7(q) =1 < ¢ for all ¢ € (1,00)).

The implication (1)== f € W/(T) was proved by P.L.Ul’yanov [6], Theorem
4, p.121, inequality (4.2), for s = 0,q < oo (see also [7], Remark 6, pp. 671-672,
inequalities (3.6'); [8], Theorem 4, p.1045, inequality (8); [9], pp. 1251-1253; [10],
Theorem A, pp. 62-65) and by M.F.Timan [10], Theorem 8, p.73, for s € Z,q < 0.

The inequality (2) was proved by the author [11], Proposition 2.7, pp.27-41, in
thecase s € Zy and 1 < p<qg<2;se€eZyandp=12<q<o00,s €Z4 and
1 < p < ¢ = o0; [12], Proposition 1, (2), p.49-50 (see also [13], Proposition 1, (3), pp.
4-5) in the case s € Z4,q < 2; [14], Theorem 1, pp. 57-61 (see also [15], Proposition
1, pp. 3-9) in the case s € Z1,2 < q < 0.

We note also that in the case s = 0,1 < p < ¢ < oo the inequality (2) was
formulated without proof by M.B.Sikhov [16], Theorem 1, p. 46, inequality (2).

The estimation (2) is exact in the sense of order on the class E,[A] for all
values 1 < p < ¢ < 00, namely

sup {wk (f(s);ﬂ'/n)q 1 fe Ep[)\]} =

[e%s) 1/T n /T
= ( > yTJ_lAZ) +n 7k (Z uT<k+")_1)\Z> : n € N. (3)
v=1

v=n+1

[e.@]

under condition that ngl nT I\ < 0o <= Ey[A] € W{(T). The sufficiency of
denote condition follows from implication (1) = f € W7(T) (see Theorem B). The
necessity in the case s = 0 was proved by N.T.Temirqaliev [17], Theorem 2, pp.
840-841, for p = 1,q < oo, V.I.LKolyada [18], Theorems 3 and 4, pp. 212-215, for
1 <p < q<oo, M.F.Timan [19], Theorem 1, pp. 76-79, for 1 < p < g < oo (see also
[9], p.1253; [10], Theorem 6, pp. 70-72), author [11], p.135, Theorem 3, point (3.1),
in the case s € Z4,1 < p < ¢ < o0, [12], Remark after theorem on the page 49 (see
also [13], point (1) of theorem on the page 3), the case s € Z;,1 <p < q < 2, [14],
Theorem 2, p.61 (see also [15], the point (1) of theorem on the page 3), the case
re€’Zy,2<q<oo.

The upper estimation in (3) immediately follows from inequality (2). The lower
estimation in (3) is realized by means of individual functions in E,[A]; more precisely,
for every p € [1,00) and for arbitrary A € My there exists a function fo(;p; \) €
L,(T) with E,—1(fo) < Ap, n € N, such that

o0
(i) fo € WS(T) < an_l)\:l < o0
n=1

(ii) if the series in (i) converge, then wy (fés); 7r/n> >
q

00 1/r n 1/r
> Cs(k,s,p,q) ( Z 1/”_1/\;) +nF (Z VT(H”)_I)\Z) , n € N.
v=1

v=n+1

The statement (i) and estimation (ii) was proved by the author [11], Lemma
3.13, p.98, for s € Z,,1 < p < q < 2, Lemma 3.14, p.101, for s € Z;,1 < p <
q < oo and ¢ > 2; [12]; Lemma 2, pp. 54-56 (see also [13], Lemma 3, pp.7-9), for
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s €Zy,1 <p<q<2;[14], Lemma 3, pp.62-63 (see also [15], Lemma 1, pp. 12-14),
for se€Z,,1 <p<q<ooandq>2;[20], Lemma 5, pp.57-60, for 1 < p < g = oo.

Theorem 1. Let p,q € [1,00), 1/r=1/p+1/¢g—1>0,v € (r,00], k € N;s €
Zy,0=s5+1/r—1/y, 7 =7(y) =vfory <oocand 7(co) =1, f € Ly(T), g € Ly(T),
h = fx*gand

Z”TU YEL_ (N)pEr_1(g)g < 00 (4)

Then h € W3(T) and the following estimation holds:

[e's) 1/T
o (WO m/n) < Cs(hy5,7,7) (Z VUL (£), Bl <g>q> -

v v=n-+1

n 1/7
¢ (Z Vg (f) B <g>q) neN. (5)
v=1

Proof. Since f € L,(T) and g € Ly(T) we have that h € L,(T) for 1/r > 0 (=
r € [1,00)) by Theorem A. We need the following estimation (see [21], the inequality
2) in the proof of Theorem 1, p.41)

Enfl(f * g)r < Enfl(f)p : Enfl(g)qa neN, re [1700]' (6)

Taking into account (4) and by inequality (6) we have that

[e.e] o0
> e Z LB (f)pEr1(9)g < o0,

n=1

whence it follows that (1) hold for h. Therefore h € W3(T) by Theorem B and
applying the inequalities (2) for h and (6), we obtain (5). Theorem 1 is proved.
For further exposition we need preliminary lemmas.
Lemma 1. Let 1 < <2,s € Zy,k € Ny € WI(T) and have the Fourier series

V(@) ~ ez ()€™, z € T. Then
n 1/
(i) n=" (Z k=2 \cuw)l”) " < Cuth, (¢;7/n), ,n€N;

v=1

(i) (ioi et |cn<w>|”> "< o [

n=1

00 1/~
(iii)( > yvs+v—2|cy(¢)w> < Co(k, 7w <w(s);7r/n> , neN.

v=n+1 v
Lemma 1 was proved in [3], Lemma 2 (point (i)) and in [22], Lemma 1 (points
(ii) and (iii)).
Lemma 2. Let s € Z4,k € Ny € C*(T) and have the Fourier series 9 (z) ~
3% L en()e™®, x € T, with ¢, (1) > 0 for every n € N. Then

n=1
(1) n=® > v®e,(v) < 27Fwg (Rep;m/n),,, n€EN,
v=1
where ae= k + (1 — (—=1)*)/2 = {k for even k; k + 1 for odd k} .
(i) == 3 v®c, (¢) < 2= *FHDawy (Imp; 7/n)
=1

where &= k + (14 (—=1)%)/2 = {k + 1 for even k; k for odd k} .

n €N,
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HReMS) for s =0,2,4, - ;
(i) > nen(th) < =
" HIHM[J(S) fors =1,3,---.
Wi (Re¢(8);w/n> for s =0,2,4, - ;

iv 3 vic,(¢¥) < 2k+20 (|
(iv) y:;—i-l W) () W <Im1/1(s);7r/n fors=1,3,---.

Lemma 2 was proved in [3], Lemma 4 (points (i) and (ii)) and in [22], Lemma 3
(points (iii) and (iv)).

Lemma 3. Lety € (1,00),¢ € L(T) and have the Fourier series i(x) ~
(1/2)ao(v) + > 02y (an(y)) cosnz + by () sinnz) ,x € T, where ag(p) > 0, a,(¢) >
0,b,(10) > 0 for every n € N. Then

(i) 3 (@) + b(¥)) < Co()nV Eu(),, n €N

Furtl;ermore, if an() 1,bn(¥) | forn 1, then
(i) (asn (06) + ban () 01~ /7 < Cy(3) Bn(t)y, m € Ny
(

00 1/~
(iii) ( > 2 (au(¥) + by (¢ ))7> < Co(V)Ej(nr1)21(¥)y, n €N

v=n+1
Lemma 3 was proved by A.A.Konyushkov [23], Theorem 5, inequalities (17) and

(19), p.73; Theorem 6, inequality (20), p.74. In the inequality (iii) for 2 < v < o0,
in general, dos not exchange Ej(;,41)/2)(¢)y by means E, (1)), (see [23], p.75); in the
case 1 < v < 2 it is possible without denote assumption a,(¢)) |, b,(¥) | (n 1) (see

the proof (iii) of Lemma 1 for s = 0).
Lemma 4. Lety € (1,00),l,k € N;s € Zy,¢p € Wi(T),n = max{2,v}. Then

(n € N)

n 1/
(i) n~* (Z p Tl (v w/v)y> < Cro (k4 s7) o (0;m/m)
v=1
(s€Zi,l>k+s);

(s e NI >s);

00 1/n
(ii) <Z 17 (g w/mv) < Cu (s, 7) [

n=1

5
(seN,I>k+s).
Proof. We need the following known inequalities (§ = min {2,~},v € L,(T))

[e'¢) 1/n
(iii) < > vl (¢;W/V)7> < Crz (I, k, 5,7) wi (w“);w/n)

v=n+1

1/0
wi (Y;m/n), < Ciz(l,7)n (ZVW "By ( 7> , mneN, (7)

n 1/n

n”! (Z V1) <w>y> <Cu(l.y)w (;m/n),, neN (8)
v=1

The inequality (7) was proved by S.B.Stechkin [24], p. 502, Lemma 1, for [ = 1,

v = 2, and by M.F.Timan [25], Theorem 1, p. 126, inequalities (7), for [ € N,
v € (1,00) (see also [5], §6.1.5; [26], §7.3, Theorem 3.4, p. 210, inequality (3.9)).

The inequality (8) was proved by M.F. Timan [27], pp. 135-137.
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First we proof the estimation (m € N, m < [)

Z,ﬂm Yl (Y;7/v), < Cis (I, m,7) ZVﬁmflEg—l ®)y, neN.(9)

v=1

In virtue of inequality (7) we have that

n/0

Zynm 1 Qﬂ,ﬂ/l/) 013 Z’Y ZV n(l—m) Zlué’l 1E9 1 ) ,

whence in the case v # 2 by Hardy’s inequality [28], p. 308, Theorem 346, we obtain
that (n/0 >1, n(l—m)+1>1)

n n

Z’ﬂmflwy (im/v)., < (Cis(1,7))" Cig (I,m, 0, n) ZynmilE;}—l ()

v=1 v=1
and in the case y =2 (= n =0 =2) we have that

v

013 l2 QZV2m 1 2 w’ﬂ_/y < ZV—2Z m) IZM2Z 1 )2:
n n

:Zﬂzl_lEZ1 ZV —m) <1+ l_ )Z'u2m 1E2 )2‘
p=1 p=1

If we put m =k+s <1, s € Zy, in (9), then by (8) and known inequality
Wits (¥;6), < 26°wy, <w(s);5> for s € N, we obtain that (Ci5 = Ci5(l,k+s,7),
v
Crs = Cra (k+5,7))

n 1/n 1/n
n*k (Z Vﬁ(kJrs)*lw;z (w7 W/V),Y> %éﬁnfk (Z n(k+s) 1E7V7_1 (w)’y> <

v=1

< C'llén Cran’wis (Vs 7r/n)7 < Cllgn Oy - 21wy, (¢(S); W/n)v ,

whence if follows the estimation (i) with Cio(l,k + s,7) = 27750115/77014.
Furthermore, putting m = s < [, s € N, in (9), by inequality (8) and known

inequality ws (¢;6)., < 26° PO, e W3 (T), we have that
v

n 1/n 1/n
(ZVWlW? W%W/V)V) < (Ci5 (1, 8,7)) (Z L S 7) <
v=1

< (C1s (L, 5,97 Cua (5,7) nws (3 7/n),, < CHM. Cyy - 20 || 9

Y

,
whence it follows the estimation (ii) as n — oo.
We note that in virtue of (9) for m = s € N the inequality (ii) follows also

from the lower estimations of L, - norm H P

‘ by means of expression containing
~
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Ey, ()., which was obtained by O.V.Besov in [29], p. 15, inequalities (5) and (7)

(see also [30], p. 224).
For proof the estimation (iii) we use the following inequalities (6 = min {2,~},
P eWI(T),leN, s€Zy, > s)

wi (Y;m/n)., < Cir(1,7) ( A IHSZ) H ) N, (10)
v=n+1
<V:zn;rlu—(l—s)77—1HS£l H ) <Cis(l — 8,7) wi— S(qu(s);ﬁ/n)v, n € N. (11)

The inequality (10) was proved by V.V.Zhuk and Q.I. Natanson [31], see the
proof of Theorem 2, inequality (6) on the p. 22. The inequality (11) was proved in
[32], Theorem 2, inequality (22) on the p.9 (see also [33], inequality (17) on the p.8).

First we proof the estimation (m € N, m <)

i Vnmilw;?(w;ﬂ/y),YSCw (I,m,7) Z y~(=min= 1HSZ) (¥ ‘ ,neN. (12)
v=n+1 v=n+1

Indeed, in the case v # 2 by inequality (10) and by Hardy’s inequality [28§],
Theorem 346, p. 308, we have that (/0 >1,1—nm < 1)

Z V1] (i /v)., <

v=n+1
n/0
w55 oo (5 nspf)) <
v=n+1 p=v+1 v
< (Ci7(1,7))" C2o (m, 6,m) i yl=m HSﬁ” (3 ')HZ;

v=n-+1

in the case y =2 (= n =0 =2) we obtain that

Co@a)* 3 s Yt S s o =

v=n+1 v=n+1 p=rv+1

2

> ot sl 32 ot 50w st o

pu=n+1 p=n-+1

Furthermore, putting m = s € N, [ = k + s, in (12) and applying the inequality
(11), we obtain (iii) in the case | = k+ s (C19 = Ci9 (k + s,5,7))

N 1/n ~ . 1/n
(3 vrsam,) <cr (5 v fsoof) s

v=n+1 v=n+1

< 011577018 (k,y)wr (1/1(5);77/71)7, n € N.
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In the case | > k + s the estimation (iii) reduce to the case | = k + s by known
inequality wy (1;0), < 22"y (56),,.

Lemma 4 is proved.

Given a € (0,00), let My () be the set of all sequences A = {\,}-~; € My such
that n®\,, | (n 7).

Lemma 5. Let p,q € (1,00), 1/r=1/p+1/¢g—1>0 (= re(l,0)), v €
(ryoo], keEN, s€Zy,0=s+1/r=1/y, T=7(y) =" fory <ooandT(c0) =1,
A={\}2) € My(o) and € = {en},~; € Mo (B) for some o, 3 € (0,00). Then
there are functions fo (-;p;A) € Ly (T) and go (-;q;€) € Lq (T) such that

(7') E’n—l (fO)p S 021 (p704) )‘Tla ETL—l <g)q S 021 (Q76) En, n e N;

(i1) ho = foxgo € WE(T) & > n" '\e], < oo;

n=1
(7i1) if the series in (ii) converge, then

00 1/7 n 1/T
( Z VTUl)\‘IV'g;') + nfk ( Z l/T(kJrU)lAZé‘Z) <
v=1

v=n-+1
< Co(k,s,r, 7) wg (h[()s);w/n> , neN.
v

Proof. Forp, g€ (l,00) (p'=p/(p—1), ¢ =4q/(¢—1)),let
(z; p; A anl/p)\ et go (x5 q; € Zn Vd' g, ein xzeT.

Since A € My (o) and € € My (f3), in virtue of Lemma 1 [34] we have fy € L, (T),
Eyn1(f0), < Ca1(p,a) Ay and go € Lq (T), En—1(g0), < C21(q,8) en, n € N.
If the series in (ii) converge, then by (i) we have that

an YET 1 (fo), En—i (90), < (Co1 (p,@) Cai (g, 3 an LA el < oo,

n=1

whence ho = fo * go € W3 (T) by Theorem 1.

For further exposition of proof we consider by itself the cases: v < 2,2 <y < o0
and v = oo.

First we consider the case v < 2. If hg € W3 (T), then taking into account

cn (ho) = cn (fo) - en (90) = n~(/PHA)N e, and yo—l=7ys+y/r—2=ys+7v—
24+v(1/p+1/qg—2) =vs+v—2—7(1/p' +1/¢'), we have by (ii) of Lemma 1 that

0o 1/ 00 1/~
(Z n17 ) - (Z n o, <ho>|”) < O () | 67| -
n=1 n=1

Further, applying the inequalities (i) and (iii) of Lemma 1 for hg € W3 (T), we

obtain that
00 1/~ n 1/~
< Z o1 )\Z E’Vy) + nFk (Z V’Y(k-&-d)—l)\z 63) _

v=n-+1 v=1

) 1/~ n 1/
— ( Z YsHY—2 ey (h0)|7) +nk (Z Y (kts)+y—2 ey (ho)!7> <

v=n+1 v=1
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< Coa (k)i (175m/m) 1o (k + 5,7) i (i /)., <

< (Caoa (k) +7°Cos ( +5,7)) wi (W m/m)
Y

whence the estimation (iii) follows in the case v < 2.
Consider now the case 2 < v < co. Previously we proof the following estimation

(leN)
nt" Y\ ey < Cog (1, 7, ) wi (hoim/n),, meEN, (13)
under condition that hg € L, (T).
Since 0 < ¢, (ho) = cn (Re hg) = ¢n (Imhg) = n~W/P+VE) N\ e | (n 1), then by
(ii) of Lemma 3 we have that n'=%/7¢y, (Re ho) < Ca7 (7) B (Re ho)., »

n'=Yeq, (Imhg) < Cor (v) By (Im ho)., , whence n' =Y eq, (ho) < Cor (7) Bn (ho)., »
n € N.
Taking into account the last estimation and 1/p'+1/¢' = 1—1/r, we obtain that

nTV Ny g, = 21T/ (2n)1/r_1 Aan€an =
— 21—1/7"77,1_1/7 (2n)—(1/p'+1/q’) Aon€ap =
= 21" ey, (ho) < 217V Cor () En (ho).,

whence n/"" Y7 Ny, e0, < 2171/ Chy (v) En (h0>7’ n € N.

Further, in virtue of A, |, €, | (n 1) and by the L, - analoque of known D.
Jackson-S.B.Stechkin inequality (see [35], Theorem 1, p. 226; [5], Section 5.11, p.
338, inequality (1), and references therein):

En (f)»y < C128 (l) Wi (f;ﬂ—/n)'w v E [17 OO] ) f € L’y (T)a ne N7 (14)
we have that for n > 2 ([t] - entire part of ¢ € R)
nl/r_l/,y)\ngn < 31/7“_1/7 [71/2]1/7‘_1/V A2[n/2]52[n/2] <

< 3V Cor (4) Epyy (ho), < Cag (r,7) Cas (D) wi (hosm/ ([n/2] + 1)), <
< Chy (r,7) Cas (1) wi (ho; 27 /n )., < Chg (r,7) Cas (1) 2wy (hos w/n ).,

whence it follows the estimation (13) for n > 2 with constant Cag (I, 7, v) =
= 2/C (1) Cag (r,7y) = 2'Cs (1) 31/7=1/721=1/7Cy; (7). For n = 1 we have that (see
f.e. [2], V. 1, p. 129, exercise (6.10)) /\161 = C1 (ho) < Eo (ho)l < E() (h(]),y <
Cas () wi (ho; ), -

Now we proof the validity of implication ” = 7 in (ii) for 2 < v < co. In the
case s = 0 by the known G.Hardy-J.Littlewood’s theorem (see f.e. [1], v. 2, p. 193,
Lemma (6.6)) we have that (1 —1/r=1/p'+1/¢")

00 1/~ 00 1/~
(Z pY(t/r=1/7)=1 A) 5%) = (Z nY(L/r=1)+7-2 A €%> _

n=1 n=1

%) 1/ %) 1/~
- (Z n1 I D ) = (Z %) (h0)> <G () llholl,
n=1

n=1
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In the case s > 0 by (ii) of Lemma 4 (we put { = s+ 1, n = max {2,v} =) and
by inequality (13) we have that (Cos = Cos (s + 1,7,7))

[e'¢) /vy
. > (Z n’Ys—l wz+1 (ho;ﬂ'/n)w) >

n=1

Cii(s+1,s,7) Hhés)

1/~

o) 1/~ (%)
> Oyl (Z nY s~ d/r=1/7) Ageg> = Coft (Z nyot mq)
n=1 n=1

Now we proof the estimation (iii). In the case s = 0 taking into account ¢, (ho) =
n" " \pen, n € N, by (iii) of Lemma 3 and inequalities (13) and (14) we have that

- 1/~ s 1/~
( Z (4 r=1/7)=1 )\ZEZ> = ( Z 2 c) (h())> <

v=n-+1 v=n-+1

2n+1 1/ 0o 1/
g(z (m)) S vam] <

v=n+1 v=2(n+1)
< o (ho) (= 1) (@7 = 1)V (0 + 1)V 4 Co1 (7) Bt (ho), <
<(y-1)7VT(2t - 1)1/7 27 ey, (ho) + Cs1 (7) En (ho)., =

— (y— 1)71/7 (2771 _ 1) 1/ 1=V t/r=1/v ) e + Oy (v) En (ho)w <
< Cso (’}/) Cos (k, T, ’y) Wi (ho; 7T/n),y + C31 (")/) Cos (k) Wk (ho; 7T/ (n + 1))7 <
<A{C32 (v) Co6 (k, 7, v) + C31 (v) Cas (k) } wi (ho; m/n)., .

In the case s > 0 by (iii) of Lemma 4 (we put | = k + s) and inequality (13) we
obtain that (Cs3 = Cog (k+ s, 7, 7))

o] 1/
Cl2 (k +s, k, s, 7) Wk (h(()S)a 71—/71)’y > < Z y’ys—lwngS (h07 7T/1/),y> =
v=n+1

00 1/~ 0 1/~
20331< > ey )\7,57,) = Oy ( Pz A;@) :

v=n-+1 v=n-+1

From obtained estimations follows the estimation of the first summand in (iii)
for s € Z4 and 2 < v < o0.

Further, by (i) of Lemma 4 (we put l =k +s+1, s & Z;) and inequality (13)
we have that (Cio=Cio(k+s+1, k+s,7),C3a=Co(k+s+1,7r 7))

n 1/~
Cro 7wy, (h(()s)S 77/”)7 >n (Z v (k+5)_1“’Z+s+1 (ho; 7T/V)»y> 2

v=1

n 1/~ n 1/
> C3—41n—k (Z Y (k+s)=1, y(1/r=1/7) /\Z 63) _ ?:Ll nF <Z 7 (k+o)—1 AZ Ez) 7
v=1

v=1
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whence it follows the estimation of the second summand in (iii) for 2 < v < oco.

At last we consider the case v = 0o (= 7 = 1). We proof the validity of impli-
cation 7 = 7 in (ii). If hg = fo x g0 € W5 (T) = C*(T), then taking into account
equa]ity Cn (hO) = Cn (fO) Cn (90) = ni(l/purl/q/))‘ngn = nl/ril)\nfm ne N7 and by
(iii) of Lemma 2 we have that (s € Zy, o =s+1/r)

o0 o0

Zna—l)\ngn _ Zns—f—l/r—l)\ngn _ inscn (ho) < H ¢(5)
n=1 n n=1

=1

’ o0

Further, by (iv) of Lemma 2 we obtain that (s € Z;)

i o\ e, = i YT ey, = i viey (ho) < Css (k) wy (h(()s)3”/”> ,
o0

v=n+1 v=n-+1 v=n-+1

whence it follows the estimation of the first summand in (iii). Now we estimate the
second summand in (iii). For s € Z; and k € N by (i) of Lemma 2 for even k + s
and by (ii) of Lemma 2 for odd k + s we have that

n n n
nk Z o1y ok Z phbstl/r=ly ok Z Ve (ho) <

v=1 v=1 v=1
< Cs6 (k4 5) n° wrys (hoym/n) oy < Cs6 (k4 5) T wy (hgs); ﬂ'/n)oo ,

whence it follows the estimation of the second summand in (iii).
Lemma 5 is proved.
Given p, g € [1,00] and A, € € My, put

Ep[N«Egle]={h=fxg: feEyN, geEyle]}.

The following theorem shows that estimation (5) of Theorem 1 is exact in the
sence of order on classes E, [\] * E, [¢] in the case p, ¢ € (1,00) under conditions
that A € My () and € € My (B) for some «, 5 € (0,00).

Theorem 2. Let p,q € (1,00), r = pg/(p+q—pg) € (1,00), v € (r,o0],

keN se€Zy,o0=s+1/r=1/y, 7 =71(y) =7 fory < cocand 7(0) = 1,
A={A\}roy € My(a) and e = {ep},oy € Mo (B) for some a, 5 € (0,00), and
an_lz\; gy, < 00. (15)
n=1
Then
sup{wk (h(s);yr/n>7 h € E, [\ * E, [5}} =
00 1/ n 1/r
= ( Z yTOINT 55) +nF <Z G sf,) , neN.
v=n+1 v=1

Proof. Indeed, the upper estimation for every p, ¢ € [1,00) and for arbitrary
A, € € My immediately follows by inequality (5) of Theorem 1. The lower estimation
is realized by function

ho (39, @\ €) = (Ca1 (p, ) )" fo (3p30) * (Co1 (¢, 8)) " g0 (3 05€) € By [N+Eq €]
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in virtue of (iii) of Lemma 5.

Remark. The condition convergence of the series (15) it is necessary and
sufficiently for imbedding Ej, [A] * Ey[¢e] € W3 (T). The sufficiency for arbitrary
A, € € My immediately follows from the first part of the statement of Theorem
1. The necessity under conditions A € My (a) and € € My () follows from the
statement (ii) of Lemma 5.

Given p, g € [1,00] and «, 3 € (0,00) we denote E, o = E), [{n*a}zo:l}, E, 5=
E, [{n_ﬁ }:O:J. The following statement follows from Theorem 2.

Corollary. Let p,q € (1,00), 1/r = 1/p+1/g—1 >0 (= re(l,c0)),
v € (ry,ool, k€N, s€Zy,0=s+1/r—1/y, 7 =71(y) =7 fory < oo and
T(0)=1,a, 8€(0,00), p=a+—0c>0. Then for 6 € (0, ]

(1) sup{z,u;g (h(s);(S)W: hGEp,a*Eq”@} =
x{&p for p<k; 6" (In(me/8))Y™ for p=k; 6" for ,0>k:}.

(i) sup{wk+1(h(3);5)7: hEEp’a*Eqﬁ}xék for p==k.

Proof. For the proof it is sufficiently to note the following (see f.e. [22], the proof
of Theorem 3). For every ¢ € (0, 7] there exists an n € N such that 7/ (n+1) <
0 < m/n, whence we have the following estimations:

2 Ry (h(s);w/n)V < wy <h(5);(5)7 < wy, (h(s);w/n> :

.,
27 (7/n)P < 6 < (w/n)’ for every p € (0,00);
&% (In (me/8) )™ < (m/n)F (In (e (n+1) )" =
=P A +In(n+ 1))V <3V 7k F (In(n+1))Y7;
n* (In (en) Y™ < (2/m)% (n/ (n + 1))F (In (we/8 )Y < (2/m)F 6% (In(me/6) )Y .

Furthermore the following estimations hold:

1/7
(Tp) 1/7’2 Pn=P < (Tp) 1/T (n+ 1 —-pP < ( Z TP 1) < (Tp)_l/Tn_p, neN;
v=n+1

n /T
(= pir) <0t (5257 60) T < (k= i) € N where g (= i) =

v=1

1/7
(r (k= p)) 00y (k= pi7) = (7 (k= p) Tk (7 1) <
< (1 (k= p))~Y" 2k=Pp=r either ¢, (k — p;7) <n P for p < k and 7 (k — p) > 1;
-1/ — T(k— e
oo k= pi7) = (7 (k=p) "0t (n+ 17 ¢0 —1) 7 >

1/7
> (r (k= )7 0 (7 (k= )27t to)) T gty

v, (k—pr)= (1 (k—p) V" n P for p<kandr(k—p) <l;
en (k= pim) =0~ (I (n+ D)7,y (k= pr7) = 07" (In (en)) 7 for p = k;
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o (k= i) =t (k= i) = (14 (o= 1)) for p > b

n L/

v=1
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