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NECESSARY OPTIMALITY CONDITIONS IN THE

PROBLEMS OF CONTROL OF

GOURSAT-DARBOUX SYSTEMS WITH INTEGRAL

CONDITIONS

Abstract

In the paper, an optimal control problem is considered for the Goursat-

Darboux systems with integral boundary conditions. The obvious form of the

formulae for the gradient of the functional is found on the base of the func-

tional increment formula.

Introduction. Recently, the differential equations with nonlocal boundary con-

ditions are intensively studied. Usually, the problems wherein instead of classic

boundary conditions for partial differential equations, definite relation of the values

of the desired function on the boundary of the domain or on its compact subsets is

given, are called non-local problems. Often, the conditions containing the integral

from the desired solution play as such relations.

In the books [1,2], numerous examples from biology, sociology, agriculture are

considered and mathematical models are described by hyperbolic equations with

non-local conditions. In the paper [3], a linear hyperbolic system with integral and

multipoint boundary conditions is considered, necessary and sufficient solvability

conditions of boundary value problems are proved, and concrete processes whose

mathematical models are described by these problems, are given. The hyperbolic

equations with non-classic conditions in deriving mathematical models of the worn

surfaces are obtained in [4]. In [5], one-dimensional nonlinear hyperbolic differential

equation with integral equations is considered. The boundary conditions are given or

the characteristics of the equation. Existence and uniqueness of the classic solution

of the problem under consideration is proved. In the papers [6-10], linear and quasi-

linear hyperbolic equations with integral conditions are considered and theorems

on existence and uniqueness of classic solutions are proved. An one-dimensional

linear hyperbolic equation with integral conditions is considered in the paper [11].

The Fourier method is applied and a theorem on the existence and uniqueness of

the classic solution is proved. Different hyperbolic equations with various integral

boundary conditions are considered in [12-14]. Thus, if follows from what has been

said above that different fields of science, engineering and economy need hyperbolic

equations with non-local boundary conditions. Therefore, there arises a necessity

on optimal control of such processes.

The optimal control problems with different non-local conditions were not stud-

ied quite enough. Different optimal control problems for hyperbolic systems with

non-local conditions are considered in the papers [15-19].
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In the present paper, a non-linear system of hyperbolic equations on a bounded

rectangle is considered. The boundary conditions are given on the characteristics of

a hyperbolic system by means of ordinary differential equations. Integral conditions

are given in one of the characteristics for a unique solvability of differential equa-

tions. The control parameters are contained in the right hand side of the hyperbolic

system and boundary conditions. The optimal control problems with such boundary

conditions are considered for the first time.

Problem Statement. Let some controlled system be described by the system

hyperbolic equations with initial-boundary conditions

∂2y(t, s)

∂t∂s
= f

(
t, s, y(t, s),

∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
, a.e. (t, s) ∈ Q, (1)

∂y(t, 0)

∂t
= φ(t, y(t, 0), v(t)), a.e. t ∈ [0, T ], (2)

∂y(0, s)

∂s
= ψ(s, y(0, s), ω(s0), a.e. s ∈ [0, l] , (3)

y(0, 0) +

T∫
0

n(t)y(t, 0)dt = c, (4)

where Q = {(t, s) ; 0 ≤ t ≤ T, 0 ≤ s ≤ l} is the given rectangle, T, l > 0 are the given

numbers; y = (y1, y2,...,yn) are phase variables; u = (u1, u2,...,ur) ,

v = (v1, v2,...,vm) , ω = (ω1, ω2,...,ωq) are the controlling parameters;
∂y(t, s)

∂t
,

∂y(t, s)

∂s
,
∂2y(t, s)

∂t∂s
are generalized derivatives of the Sobolev function

y = y(t, s);

f = (f1, f2, ..., fn), φ = (φ1, φ2, ..., φn) , ψ = (ψ1, ψ2, ..., ψn)

are the given vector-functions; is n(t) is n× n-dimensional matrix-function,

c ∈ Rn is the given constant vector.

It is assumed that the controls w = w(t, s) = (u(t, s), v(t), ω(s)) are chosen

from the set

W = U × V × Ω, (5)

where U ⊆ Lr
2(Q), V ⊆ Lm

2 ([0, T ]), Ω ⊆ Lq
2([0, l]).

Here we use the following denotation; Rn stands for n−dimensional Euclidean

space, Lr
2(A) for a space of Lebesgue measurable and square-summable r−

dimensional vector functions on the set A.

Definition. Under the solution of problem (1)-(4) that corresponds to the con-

trol w ∈ W , we understand a vector-function y = y(t, s;w) ∈ H1,m
2 (Q) possessing

Sobolev generalized derivative
∂2y(t, s)

∂t∂s
∈ Ln

2 (Q) and satisfying differential equation

(1), conditions (2), (3) almost everywhere, and condition (4) in the classic sense.



Transactions of NAS of Azerbaijan
[Necessary optimality conditions in the ...]

127

Here H1,n
2 (Q) is a Sobolev space of n-dimensional vector-functions (in the se-

quel we’ll omit the indices indicating the dimension of vector-functions) that are

Lebesgue square-summable on Q together with their first generalized derivatives,

i.e. y(t, s),
∂y(t, s)

∂t
,
∂y(t, s)

∂s
∈ L2(Q). Note that from the given definition of the

solution of initial boundary value problem (1)-(4) it follows that the given solution

also belongs to the space Cn(Q). (By Cn(Q) the space of n−dimensional vector-

functions continuous in the rectangle Q is denoted).

The optimal control problem is stated as follows: Among the controls

w = w(t, s) ∈W it is necessary to find a control in order to minimize the functional

J(w) =

∫
Q

∫
F

(
t, s, y(t, s),

∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
dtds+

+
k∑

i=1

Φ(y(ti, si)), (6)

where F (t, s, y, p, q, u) and Φ(y) are scalar functions; (ti, si), i = 1, k is an arbitrary

collection of points from the rectangle Q; k is a fixed natural number.

Note that the optimization problems of type (1)-(6) are of practical interest. To

present day, there exist numerous processes described by means of hyperbolic system

of equations: in investigating the sorption, desorption, drying, friction, wearing and

etc. processes. Condition (4) is justified by the fact that while modeling the specific

process it is impossible to measure some characteristics (states) at the characteristic

point, and some mean (integral) value of the characteristic is known [5].

For the given functions we make the following assumptions:

I) Let the functions f(t, s, y, p, q, u) and F (t, s, y, p, q, u) for almost all

(t, s) ∈ Q be continuous with respect to variables (y, , p, q, u) ∈ R3n × Rr, and for

each fixed (y, p, q, u) ∈ R3n ×Rr be measurable with respect to (t, s) ∈ Q.

II) It is assumed that the function f(t, s, y, p, q, u) for almost all (t, s) ∈ Q and for

any (y, p, q, u) ∈ R3n×Rr have continuous derivatives with respect to (y, p, q) ∈ R3n.

The followings hold:

f

(
·, ·, y (t, s) , ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q);

∂f

∂y

(
·, ·, y (t, s) , ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L∞(Q);

∂f

∂p

(
·, ·, y (t, s) , ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q);

∂f

∂q

(
·, ·, y (t, s) , ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L∞(Q).

III) Let for the function f(t, s, y, p, q, u) it hold

f(t, s, 0, 0, 0, 0) ∈ L2(Q);
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IV) The function f(t, s, y, p, q, u) satisfies the Lipschits condition with respect to

variables (y, p, q, u) ∈ R3n, i.e.

|f(t, s, y, p, q, u)− f(t, s, y, p, q, u)| ≤ k (|y − y|+ |p− p|+ |q − q|+ |u− u|) ,

for all (y, p, q, u) , (y, p, q, u) ∈ R3n ×Rn;

V) The function φ(t, y, v) for almost all t ∈ [0, T ] is continuous with respect to

(y, v) ∈ Rn × Rm and measurable with respect to t ∈ [0, T ] for each fixed (y, v) ∈
Rn ×Rr;

VI) The function φ(t, y, v) for almost all t ∈ [0, T ] and for any

(y, v) ∈ Rn ×Rr has continuous derivatives with respect to y and

φ (·, y(t, 0), v(t)) : C ([0, T ])× V → L2 ([0, T ]) ,

∂φ

∂y
(·, y(t, 0), v(t)) : C ([0, T ])× V → L∞ ([0, T ]) ;

VII) Let for the function φ(t, y, v) it hold

φ (t, 0, 0) ∈ L2 ([0, T ]) ;

VIII) The function φ(t, y, v) satisfies the Lipschits condition with respect to the

variables (y, v) ∈ Rn ×Rm, i.e.

|φ(t, y, v)− φ(t, y, v)| ≤ L (|y − y|+ |v − v|) ,

for all (t, y, v) and (t, y, v) ∈ [0, T ]×Rn ×Rm;

IX) Let the function ψ(s, y, ω) for almost all s ∈ [0, l] be continuous with respect

to (y, ω) ∈ Rn ×Rq;

X) The function ψ(s, y, ω) for almost all s ∈ [0, l] and for any (y, ω) ∈ Rn × Rq

has continuous derivatives with respect to y and

ψ (·, y(0, s), ω(s)) : C ([0, l])× Ω → L2 ([0, l]) ,

∂ψ

∂y
(·, y(0, s), ω(s)) : C ([0, l])× Ω → L∞ ([0, l]) ;

XI) Let ψ(s, 0, 0) ∈ L2 ([0, l]);

XII) The function ψ(s, y, ω) satisfies the Lipchits condition with respect to the

variables (y, ω) ∈ Rn ×Rq, i.e.

|ψ(s, y, ω)− ψ(s, y, ω)| ≤ N (|y − y|+ |ω − ω|) ,

for all (s, y, ω) and (s, y, ω) ∈ [0, l]×Rn ×Rq;

XIII) n(t) is a matrix of the function of order n× n and nij(t) ∈ L∞ ([0, T ) ,

i, j = 1, n, moreover,

∥∥∥∥∥∥
T∫
0

n(t)dt

∥∥∥∥∥∥ < 1. Obviously, ñ(T ) = E +

t∫
0

n(t)dt is a non-

degenerate matrix and

LT

(
1 +

∥∥ñ−1(T )
∥∥ · |n(t)|L∞

T

2

)
< 1;
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XIV) The function Φ(y) for any y ∈ Rn has continuous derivatives;

XV) Let the scalar function F (t, s, y, p, q, u) for almost all (t, s) ∈ Q and for any

(y, p, q, u) ∈ R3n × Rr be continuous with respect to y, p, q, u ∈ R3n × Rr and for

fixed y, p, q, u ∈ R3n×Rr have continuous derivatives with respect to (y, p, q, u) and

F

(
·, ·, y(t, s, ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L1(Q);

∂F

∂y

(
·, ·, y(t, s, ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q);

∂F

∂p

(
·, ·, y(t, s, ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q);

∂F

∂q

(
·, ·, y(t, s, ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q);

∂F

∂u

(
·, ·, y(t, s, ∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)
: H1

2 (Q)× U → L2(Q).

Functional increment formula. Let w = (v, ω, u) and

w + w = (v + v, ω + ω, u+ u)

be two admissible controls, i.e. w and w + w ∈ W = V × Ω × U . The solution of

problem (1)-(4) that corresponds to these controls is denoted by y(t, s) = y(t, s;w)

and y(t, s)+y(t, s) = y(t, s;w+w). Then, according to (6), for the increment of the

functional we get the following formula:

J (w + w)− J(w) =
k∑

i=1

[Φ(y(ti, si) + y(ti, si))− Φ(y(ti, si))]+

+

∫
Q

∫
F

(
t, s, y(t, s) + y(t, s),

∂y(t, s)

∂t
+
∂y(t, s)

∂t
,

∂y(t, s)

∂s
+
∂y(t, s)

∂s
, u(t, s) + u(t, s)

)
−

−F
(
t, s, y(t, s),

∂y(t, s)

∂t
,
∂y(t, s)

∂t
, u(t, s)

)
dtds, (7)

where y(t, s) is a solution of the following system:

∂2y(t, s)

∂t∂s
= f

(
t, s, y(t, s) + y(t, s),

∂y(t, s)

∂t
+
∂y(t, s)

∂t
,

∂y(t, s)

∂s
+
∂y(t, s)

∂s
, u(t, s) + u(t, s)

)
−

−f
(
t, s, y(t, s),

∂y(t, s)

∂t
,
∂y(t, s)

∂s
, u(t, s)

)]
, a.e. (t, s) ∈ Q (8)
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with initial boundary conditions

∂y(t, s)

∂t
= φ(t, y(t, 0) + y(t, 0), v(t) + v(t))−

−φ(t, y(t, 0), v(t)), a.e. t ∈ [0, T ],
(9)

∂y(0, s)

∂s
= ψ(s, y(0, s) + y(0, s), ω(s)− ω(t))−

−ψ(s, y(0, s), ω(t)), a.e. s ∈ [0, l],
(10)

y(0, 0) +

T∫
0

n(t)y(t, 0)dt = 0. (11)

For further simplification of mathematical formulae, we introduce the denotation:

H̃(t, s) = H(t, s, y(t, s),
∂y

∂t
(t, s),

∂y

∂s
(t, s), ψ(t, s), u(t, s)),

∂f̃

∂y
(t, s) =

∂f

∂y
(t, s, y(t, s),

∂y

∂t
(t, s),

∂y

∂s
(t, s), u(t, s))

and etc.

Introduce the system of equations in variations:

∂2z(t, s)

∂t∂s
=
∂f

∂y
(t, s), z(t, s) +

∂f

∂p
(t, s)

∂z

∂t
(t, s)+

+
∂f

∂q
(t, s)

∂z

∂s
(t, s) +

∂f

∂q
(t, s)u(t, s), a.e. (t, s) ∈ Q,

(12)

∂z(t, 0)

∂t
=
∂φ

∂y
(t)z(t) +

∂φ

∂v
(t)v(t), a.e. t ∈ [0, T ] , (13)

∂z(0, s)

∂s
=
∂ψ

∂y
(s)z(s) +

∂ψ

∂ω
(s)ω(s), a.e. s ∈ [0, l] , (14)

z(0, 0) +

T∫
0

n(t)z(t, 0)dt = 0. (15)

By means of the solutions of the system of variational equations (12)-(15), we

can rewrite the increment formula of functional (7) in the following equivalent form:

J(w + w)− J(w) =

k∑
i=1

⟨
∂Φ

∂y
(y(ti, si), z(ti, si))

⟩
+

∫
Q

∫ ⟨
∂F̃

∂y
(t, s), z(t, s)

⟩
dtds+

+

∫
Q

∫ ⟨
∂F̃

∂p
(t, s),

∂z

∂t
(t, s)

⟩
dtds+

∫
Q

∫ ⟨
∂F̃

∂q
(t, s),

∂z

∂s
(t, s)

⟩
dtds+

+

∫
Q

∫ ⟨
∂F̃

∂u
(t, s), u(t, s)

⟩
dtds+
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+

k∑
i=1

[
Φ(y(ti, si) + y(ti, si))− Φ(y(ti, si))−

⟨
∂Φ

∂y
(y(ti, si), y(ti, si))

⟩]
+

+

∫
Q

∫ [
F

(
t, s, y(t, s+ y(t, s),

∂y

∂t
(t, s) +

∂y

∂t
(t, s),

∂y

∂s
(t, s) +

∂y

∂s
(t, s), u(t, s) + u(t, s)

)
−

−F̃ (t, s)−

⟨
∂F̃

∂y
(t, s), y(t, s)

⟩
−

⟨
∂F̃

∂p
(t, s),

∂y

∂t
(t, s)

⟩
−

−

⟨
∂F̃

∂q
(t, s),

∂y

∂s
(t, s)

⟩
−

⟨
∂F̃

∂u
(t, s), u(t, s)

⟩]
dtds+

+

k∑
i=1

⟨
∂Φ

∂y
(y(ti, si)), y(ti, si)− z(ti, si)

⟩
+

∫
Q

∫ [⟨
∂F̃

∂y
(t, s), y(t, s)− z(t, s)

⟩
+

+

⟨
∂F̃

∂p
(t, s),

∂y

∂t
(t, s)− ∂z

∂t
(t, s)

⟩
+

⟨
∂F̃

∂q
(t, s),

∂y

∂s
(t, s)− ∂z

∂s
(t, s)

⟩]
dtds. (16)

We scalarly multiply equation (12) by the function ψ (t, s), multiply (13) scalarly by

µ (t), (14) multiply scalarly by η(s), (15) multiply by a constant vector λ, and con-

sequently, integrate the obtained equalities on the rectangle Q and on the segments

[0, T ] and [0, l], put the obtained one together with (16) and introduce the system

of conjugated equations:

k∑
i=1

∂Φ

∂y
(y (ti, si))−

∫
Q

∫
∂H̃

∂y
(t, s)dtds−

−
T∫
0

∂

∂y
H̃1(t)dt−

l∫
0

∂

∂y
H̃2(s)ds+ (ñ(T ))′λ = 0,

(17)

k∑
i=1

Eχ(t− ti)
∂Φ

∂y
(y (ti, si))−

l∫
0

T∫
t

∂H̃

∂y
(τ , s)dτds−

−
l∫

0

∂

∂p
H̃(t, s)ds−

T∫
t

∂

∂y
H̃1(τ)dτ +

 T∫
t

n(τ)dτ

′

λ+ µ(t) = 0,

(18)

k∑
i=1

Eχ(s− si)
∂Φ

∂y
(y (ti, si))−

T∫
0

l∫
s

∂H̃

∂y
(t, r)dr−

−
T∫
0

∂

∂q
H̃1(t, s)dt−

l∫
s

∂

∂y
H̃2(r)dr + η(s) = 0,

(19)
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k∑
i=1

Eχ(t− ti)χ(s− si)
∂Φ

∂y
(y (ti, si))−

T∫
l

l∫
s

∂H̃

∂y
(τ , r)dτdr−

−
l∫

s

∂H̃

∂p
(t, r)dr −

T∫
t

∂

∂q
H̃(τ , s)dτ + ψ(t, s) = 0,

(20)

where

H̃(t, s) =
⟨
ψ(t, s), f̃(t, s)

⟩
− F̃ (t, s) ,

H̃1(t) = ⟨µ(t), φ̃(t)⟩ , H̃2(s) =
⟨
η(s), ψ̃(s)

⟩
.

χ(t) is Heaviside’s function. E is a unit matrix.

As a result, we have the following equality:

J(w + w)− J(w) = −
∫
Q

∫ ⟨
∂

∂u
H̃(t, s), u(t, s)

⟩
dtds−

−
T∫
0

⟨
∂

∂v
H̃1(t), v(t)

⟩
dt−

l∫
0

⟨
∂

∂ω
H̃2(s), ω(s)

⟩
ds+R,

(21)

where R is a residual formula of functional increment and is determined by the

equality

R =

k∑
i=1

[Φ (y(ti, si) + y(ti, si))− Φ(y(ti, si))−

−
⟨
∂Φ

∂y
(y(ti, si)) , y(ti, si)

⟩]
+

k∑
i=1

⟨
∂Φ

∂y
(y(ti, si)) , y(ti, si)− z(ti, si)

⟩
+

+

∫
Q

∫ [
F

(
t, s, y(t, s) + y(t, s),

∂y

∂t
(t, s)+

+
∂y

∂t
(t, s),

∂y

∂s
(t, s) +

∂y.

∂s
(t, s), u(t, s) + u(t, s)

)
−

−

⟨
∂F̃

∂q
(t, s),

∂y.

∂s
(t, s)

⟩
−

⟨
∂F̃

∂u
(t, s), u(t, s)

⟩]
dtds+

+

∫
Q

∫ ⟨
∂F̃

∂y
(t, s), y(t, s)− z(t, s)

⟩
+

⟨
∂F̃

∂p
(t, s),

∂y.

∂t
(t, s)− ∂z.

∂t
(t, s)

⟩
+

+

⟨
∂F̃

∂q
(t, s),

∂y.

∂s
(t, s)− ∂z.

∂s
(t, s)

⟩]
dtds. (22)

Gradient in an optimal control problem. Introduce the following condi-

tions:
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XVI) Let the function f(t, s, y, p, q, u) satisfy the condition∣∣∣f (t, s, y + y, p+ p, q + q, u+ u)− f̃(t, s)−

−∂f
∂y

(t, s)y − ∂f

∂p
(t, s)p− ∂f

∂q
(t, s)q − ∂f

∂u
(t, s)u

∣∣∣∣ ≤
≤ k

(
|y|2 + |p|2 + |q|2 + |u|2

)
;

XVII) Let the function φ (t, y, v) satisfy the condition∣∣∣∣φ (t, y + y, v + v)− φ̃(t)− ∂

∂y
φ̃(t)y − ∂

∂v
φ̃(t)v

∣∣∣∣ ≤ L
(
|y|2 + |v|2

)
;

XVIII) Let the function ψ (s, y, ω) satisfy the condition∣∣∣∣ψ (s, y + y, ω + ω)− ψ(s, y, ω)− ∂

∂y
ψ(s, y, ω)y − ∂

∂ω
ψ(s, y, ω)ω

∣∣∣∣ ≤ N
(
|y|2 + |ω|2

)
;

XIX) Let the function Φ (y) satisfy the condition∣∣∣∣Φ(y + y)− Φ(y)−
⟨
∂Φ

∂y
(y), y

⟩∣∣∣∣ ≤M |y − y|2 ;

XX) Let the function F (t, s, y, p, q, u) satisfy the condition∣∣∣F (t, s, y + y, p+ p, q + q, u+ u)− F̃ (t, s)−

−

⟨
∂F̃ (t, s)

∂y

⟩
−

⟨
∂F̃ (t, s)

∂p

⟩
−

⟨
∂F̃ (t, s)

∂q
, q

⟩
−

⟨
∂F̃ (t, s)

∂u
, u

⟩∣∣∣∣∣ ≤
≤M

(
|y|2 + |p|2 + |q|2 + |u|2

)
for all

(y, v) , (y + y, v + v) ∈ Rn ×Rm, (y, ω) , (y + y, ω + ω) ∈ Rn ×Rq,

(y, p, q, u) , (y + y, p+ p, q + q, u+ u) ∈ R3n ×Rr.

For calculating the gradient of functional (6) under constraints (1)-(5) it is

enough to show that the residual formula of functional (21) has order O
(
∥w∥2

)
.

Using conditions I)- XIII), one can prove that there exist the non-negative numbers

σ1, σ2, σ3 such that

max
[0,T ]

|y(t, 0)− z(t, 0)| ≤ σ1 ∥v∥2 , (23)

max
[0,l]

|y(0, s)− z(0, s)| ≤ σ2

(
∥v∥2 + ∥ω∥2

)
, (24)
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max
Q

|y(t, s)− z(t, s)|+ vrai
[0,l]

max

T∫
0

∣∣∣∣ ∂∂t (y(t, s)− z(t, s))

∣∣∣∣ dt+
+vrai

[0,T ]
max

l∫
0

∣∣∣∣ ∂∂s (y(t, s)− z(t, s))

∣∣∣∣ ds ≤ σ3

[
∥u∥2 + ∥v∥2 + ∥ω∥2

] (25)

Taking into account estimates (23)-(25)and conditions XIV)-XX), from (22) we

can obtain the estimation

|R| ≤ C |w|2 ,

where C is a constant independent of control parameters. Thus, we proved

Theorem 1. Let conditions 1)-XX) be fulfilled. Then functional (6) under

constraints (1)-(5) is differentiable and its gradient is of the form:

J ′(w) = −

(
∂H̃

∂u
(t, s),

∂H̃1

∂v
(t),

∂H̃2

∂ω
(s)

)
∈ Lr

2(Q)× Lm
2 ([0, T ])× Lq

2 ([0, l]) .

Necessary optimality conditions. Having the gradient formula for func-

tional (6) under constraints (1)-(5) we can obtain necessary optimality conditions

for optimal control problem (1)-(6).

Theorem 2. Let w∗ = (u∗(t, s), v∗(t), ω∗(s)) ∈ W be an optimal control in

problem (1)-(6). Then it holds the inequality∫
Q

∫ ⟨
∂H

∂u

(
t, s, y (t, s;w∗) ,

∂y

∂t
(t, s;w∗),

∂y

∂s
(t, s;w∗), ψ(t, s;w∗), u∗(t, s)

)
, u(t, s)

⟩
dtds+

+

T∫
0

⟨
∂H1

∂v
(t, y(t, 0;w∗), µ(t;w∗), v∗(t)) , v(t)

⟩
dt+

+

l∫
0

⟨
∂H2

∂ω
(s, y(0, s;w∗), η(s;w∗), ω∗(s)) , ω(s)

⟩
ds ≤ 0,

where y(t, s;w∗) is a solution of boundary value problem (1)-(6) for w∗ = (u∗, v∗, ω∗) ∈
W = U × V ×Ω, and the triple (ψ (t, s;w∗) , µ(t;w∗), η (s;w∗)) be a solution of con-

jugated system (17)-(20) that corresponds to the control w∗ = (u∗, v∗, ω∗) ∈ W . If

w∗ ∈ int W , the last inequality is equivalent to

∂H

∂u

(
t, s, y (t, s;w∗) ,

∂y

∂t
(t, s;w∗),

∂y

∂s
(t, s;w∗), ψ(t, s;w∗), u∗(t, s)

)
= 0,

∂H1

∂v
(t, y(t, 0;w∗) , µ(t;w∗), v∗(t)) = 0,

∂H2

∂ω
(s, y(0, s;w∗) , η(s;w∗), ω∗(s)) = 0.

The proof is carried out by means of the scheme from [20, p. 524].
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