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APPLIED PROBLEMS OF MATHEMATICS AND MECHANICS

Vagif M. ABDULLAEV

NUMERICAL SOLUTION TO SOME INVERSE

NONLOCAL BOUNDARY-VALUE PROBLEMS

Abstract

We investigate problems of restoring the parameters of an object the state
of which is described by a non-autonomous system of ordinary loaded differen-
tial equations with non-separated point and integral conditions. To restore the
parameters, additional conditions are given. We propose an approach to the
numerical solution to the problem. The approach is based on the operation that
convolves given integral conditions into point conditions. This approach allows
reducing the solution to the initial problem to a Cauchy problem with respect
to systems of ordinary differential and of linear algebraic equations. The ap-
proach is extended to a class of one-dimensional inverse problems for parabolic
equations.

1. Introduction
Inverse problems for linear ordinary differential equations represent an important

class of inverse problems. On the one hand, many of these problems have direct
practical importance. On the other hand, they arise when investigating inverse
problems for partial differential equations [1-5].

In the work, we investigate problems of restoring the parameters of an object
described by a non-autonomous system of ordinary loaded differential equations with
nonseparated point and integral conditions. To restore the parameters, additional
conditions are given. We propose an approach to the numerical solution to the
problems considered. This approach is based on the operation that convolves the
integral conditions into point conditions [6,7]. The approach allows reducing the
solution to the initial problem to a Cauchy problem with respect to systems of
ordinary differential and of linear algebraic equations. By using method of lines,
the approach can be extended to the class of one-dimensional inverse problems with
respect to a loaded parabolic equation.

Some parametric identification problems for the processes described by loaded
partial differential equations are reduced to the class of problems investigated in
the work. Such kind of equations arise when describing the processes of heat and
moisture transmission, of fluid filtration, ecology, etc. [2]-[4]. Approximation of the
partial differential equation under which the derivatives with respect to all the vari-
ables except for one are replaced with difference schemes is a widely used numerical
method of solution to boundary-value problems. By applying this kind of approxi-
mation, one obtains a system of ordinary differential equations, which are solved by
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efficient numerical methods.

2. Problem statement
Consider the following problem of restoring the parameters of the loaded differ-

ential equations

ẋ(t) = A(t)x(t) +
l3∑

s=1

Bs(t)x(
^

t s) + C(t)λ + K(t), t ∈ (t0, T ), (1)

l1∑

i=1

t̄i+∆i∫

t̄i

D̄i(τ)x(τ)dτ +
l2∑

j=1

D̃jx(t̃j) +
l3∑

s=1

^

Dsx(
^

t s) + D̂λ = L0. (2)

Here x(t) is the unknown n-dimensional vector function; given matrices and
vectors: A(t), Bs(t), s = 1, ..., l3, of the dimension (n×n), C(t)−(n×m), K(t)−
n ; t̄i, t̃j ,

^

t s , i = 1, ..., l1, j = 1, ..., l2, s = 1, ..., l3 are given ordered points of
time from [t0, T ]; ∆i are given lengths of the intervals of the state measurement; the
((n + m)× n) matrix functions D̄i (τ) and numerical matrices D̃j ,

^

Ds, D̂, as well as
the (n + m)-dimensional vector L0, l1, l2, l3 are given.

The problem consists in determining the values of the m−dimensional vector λ.
It is significant to note that many boundary-value problems with partial deriva-

tives and with nonlocal initial and boundary conditions are reduced to the considered
problem by applying the method of lines [4].

3. Method of solution
Introduce the following ((n + m)× n) matrix function:

D(t) =
l1∑

i=1

¯̄Di(t),

where

¯̄Di(t) =

{
D̄i(t), t ∈ [t̄i, t̄i + ∆i] ,
0, t /∈ [t̄i, t̄i + ∆i]

.

Then (2) can be rewritten in the following form

T∫

t0

D(τ)x(τ)dτ +
l2∑

j=1

D̃jx(t̃j) +
l3∑

s=1

^

Dsx(
^

t s) + D̂λ = L0. (3)

Introduce the following (n + m)-dimensional vector functions

L̄(t) =

t∫

t0

D(τ)x(τ)dτ, L(t) =

T∫

t

D(τ)x(τ)dτ, (4)
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for which there holds true

L(t0) = 0, L̄(T ) = L0 −
l2∑

j=1

D̃jx(t̃j)−
l3∑

s=1

^

Dsx(
^

t s)− D̂λ,

L(t0) = L0 −
l2∑

j=1

D̃jx(t̃j)−
l3∑

s=1

^

Dsx(
^

t s)− D̂λ, L(T ) = 0. (5)

Definition. The (n + m) × n matrix functions ᾱ(t), α(t), β̄
s(t), βs(t), s =

1, ..., l3, (n+m)×m functions ξ̄(t), ξ(t), and (n+m)-dimensional vector functions
γ̄(t), γ(t) convolve integral conditions (3) into point conditions if for x(t), t ∈ [t0, T ],
the solution to the system (1), there hold true the following equalities

t∫

t0

D(τ)x(τ)dτ = ᾱ(t)x(t) +
l3∑

s=1

β
s(t)x(

^

t s) + ξ̄(t)λ + γ̄(t), (6)

T∫

t

D(τ)x(τ)dτ = α(t)x(t) +
l3∑

s=1

βs(t)x(
^

t s) + ξ(t)λ + γ(t). (7)

It is clear that there hold true the equalities

ᾱ(T )x(T )+
l2∑

j=1

D̃jx(t̃j)+
l3∑

s=1

(
β̄

s(T ) +
^

D
s)

x(
^

t s)+
(
ξ̄(T ) + D̂

)
λ+γ̄(T ) = L0, (8)

α(t0)x(t0)+
l2∑

j=1

D̃jx(t̃j)+
l3∑

s=1

(
βs(t0) +

^

D
s)

x(
^

t s)+
(
ξ(t0) + D̂

)
λ+γ(t0) = L0. (9)

Each of the conditions (8) and (9) represents a nonlocal point boundary condi-
tion. Let ᾱ(t), β̄

s(t), s = 1, ..., l3, ξ̄(t), γ̄(t), and α(t), βs(t), s = 1, ..., l3, ξ(t), γ(t)
be two pairs of functions that convolve the integral conditions (3) into point condi-
tions from left to right and vice versa, respectively.

The functions ᾱ(t), β̄
s(t), s = 1, ..., l3, ξ̄(t), γ̄(t), and α(t), βs(t), s = 1, ..., l3,

ξ(t), γ(t), which convolve the integral conditions (3), are not uniquely determined.
Let 0(n+m)×n be a ((n + m)× n) null matrix, and 0(n+m) be a (n×m)-dimensional
null vector. The following theorem holds.

Theorem 1. If the functions ᾱ(t), β̄
s(t), s = 1, ..., l3, ξ̄(t), γ̄(t) for t ∈ (t0, T ]

are the solutions to the following Cauchy problems:

˙̄α(t) = −ᾱ(t)A(t) + D(t), ᾱ(t0) = 0(n+m)×n , (10)

˙̄βs(t) = −ᾱ(t) Bs(t), s = 1, ..., l3, β̄
s(t0) = 0(n+m)×n , (11)

˙̄ξ(t) = −ᾱ(t) C(t), ξ̄(t0) = 0(n+m)×m , (12)

˙̄γ(t) = −ᾱ(t) K(t), γ̄(t0) = 0(n+m) , (13)
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then these functions convolve the integral conditions (3) into the point conditions
(8) from left to right.

Proof. Assume that there exists the following dependence

L(t) = ᾱ(t)x(t) +
l3∑

s=1

β
s(t)x(

^

t s) + ξ̄(t)λ + γ̄(t), t ∈ [t0, T ] . (14)

Let ᾱ(t), β̄
s(t), s = 1, ..., l3, ξ̄(t), γ̄(t) be yet arbitrary matrix and vector func-

tions of the dimensions ((n + m) × n), ((n + m) × n),((n + m) × n), and (n + m),
respectively, which satisfy the condition (5). Then there holds true the following
equalities:

ᾱ(t0) = 0(n+m)×n, β̄
s(t0) = 0(n+m)×n, s = 1, ..., l3,

ξ̄(t0) = 0(n+m)×m, γ̄(t0) = 0(n+m).
(15)

Differentiating (14) and taking (1) and (4) into account, we have

[ ˙̄α(t) + ᾱ(t)A(t)−D(t)] x(t) +
l3∑

s=1

[
˙̄βs(t) + ᾱ(t)Bs(t)

]
x(

^

t s)+

+
[

˙̄ξ(t) + ᾱ(t)C(t)
]
λ + [ ˙̄γ(t) + ᾱ(t)K(t)] = 0.

(16)

Having regard to the arbitrariness of the functions ᾱ(t), β̄
s(t), s = 1, ..., l3, ξ̄(t),

γ̄(t), and to the fact that (16) must be satisfied for all x(t) , the solutions to the
system (1), then it is necessary that each of the expressions in the brackets in (6)
vanish, i.e. the conditions (10)-(13) of the theorem be satisfied.

The same proof remains valid for the following theorem.
Theorem 2. If the functions α(t),βs(t), s = 1, ..., l3, ξ(t), γ(t) for t ∈ (t0, T ]

are the solutions to the following Cauchy problems:

α̇(t) = −α(t)A(t)−D(t), α(T ) = 0(n+m)×n , (17)

β̇
s
(t) = −α(t) Bs(t), s = 1, ..., l3, βs(T ) = 0(n+m)×n , (18)

ξ̇(t) = −α(t) C(t), ξ(T ) = 0(n+m)×m , (19)

γ̇(t) = −α(t) K(t), γ(T ) = 0(n+m) , (20)

then these functions convolve the integral conditions (3) into the point conditions
(29) from right to left.

Thus, to solve the problem (1) and (2), we need to obtain the system (8)
or (9) of the (n + m) order by solving the Cauchy problem (10)-(13) or (17),
respectively. These systems contain the loaded values x(

^

t s), s = 1, 2, ..., l3 and
x(t̃j), j = 1, 2, ..., l2, as well as the unknown parametersλ ∈ Rm, and x(T ) or x(t0)
(according to the direction of convolution).

Hence, to find x(t) ∈ Rn and λ ∈ Rm, we obtain the problem (1) and (8). To
solve this problem, we use the method of conditions shift proposed by the author in
[8,9].
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The choice of the convolution scheme, which is to be applied to the condition
(2), depends on the properties of the matrix A(t), namely on its eigenvalues. If they
are all positive, then the system (10)-(13) is stable; if they are all negative, then
the system (17)-(20) is stable. If the matrix A(t) has both positive and negative
eigenvalues, and they are sufficiently large in modulus, then both of the systems
have fast increasing solutions, and therefore unstable, and their numerical solution
may result in a poor accuracy. In this case it is recommended to make use of the
convolving functions proposed in the following theorem, which have a linear growth
with respect to time.

Theorem 3. If the n-dimensional vector functions g1
ν(t), rν(t),qs

ν(t), s =
1, ..., l3, and scalar functions g2

ν(t), mν(t) for t ∈ (t0, T ] are the solutions to the
following nonlinear Cauchy problems:

ġ1
ν(t) = S(t)g1

ν(t)−A∗(t)g1
ν(t) + mν (t)D∗

ν(t), g1
ν(t0) = 0, (21)

q̇s
ν(t) = S(t)qs

ν(t)−Bs∗(t)g1
ν(t) , s = 1, l3, q

s
ν(t0) = 0 , (22)

ṙν(t) = S(t)rν(t)− C∗(t)g1
ν(t), rν(t0) = 0 , (23)

ġ2
ν(t) = S(t)g2

ν(t)−K∗(t)g1
ν(t), g2

ν(t0) = 0 . (24)

ṁν(t) = S(t)mν(t), mν(t0) = 1, (25)

S(t) =

[
1

2(T−t0) + g1∗
ν (t)A(t)g1

ν(t)−mν(t)Dν(t)g1
ν(t) + K∗(t)g1

ν(t)g
2
ν(t)

]

[g1∗
ν (t)g1

ν(t) + (g2
ν(t))2]

, (26)

then the functions g1
ν(t), g

2
ν(t) convolve the νth integral condition (3) from left to

right, and there holds true

g1∗
ν (t) g1

ν(t) +
(
g2
ν(t)

)2 = (t− t0)/(T − t0) , t ∈ [t0, T ]. (27)

Proof. Multiplying the νth equality from (14) by a yet arbitrary function mν(t)
which satisfies the condition

mν(t0) = 1, (28)

we obtain
mν(t)L(t) = mν(t) ᾱ∗ν(t)x(t)+

+mν(t)
l3∑

s=1

β
s
ν(t)x(

^

t s) + mν(t)ξ̄ν(t)λ + mν(t)γ̄ν(t), t ∈ [t0, T ] .

Here the n−dimensional vector ᾱν(t) is the νth row of the matrix ᾱ(t).
Introduce the notations

g1
ν(t) = mν(t) ᾱ∗ν(t), g2

ν(t) = mν(t) γ̄ν(t),

qs
ν(t) = mν(t)β

s

ν(t), s = 1, l3, rν(t) = mν(t)ξ̄ν(t), (29)

and it is clear that

g1
ν(t0) = 0 , g2

ν(t0) = 0, qs
ν(t0) = 0, rν(t0) = 0 .
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Ensuring the fulfillment of the condition (27), i.e. linear growth of the sum of
squares of the convolving functions, is required of the function mν(t).

Differentiating (27), we obtain

2(ġ1
ν(t) , g1

ν(t)) + 2ġ2
ν(t)g

2
ν(t) = 1/(T − t0). (30)

Differentiating (29) and taking (10)–(13) into account, it is not difficult to obtain
the following set of equations

ġ1
ν(t) =

ṁν(t)
mν(t)

g1
ν(t)−A∗(t)g1

ν(t) + mν(t)D∗
ν (t), (31)

q̇s
ν(t) =

ṁν(t)
mν (t)

qs
ν(t)−Bs∗(t)g1

ν(t) , s = 1, l3, (32)

ṙν(t) =
ṁν(t)
mν(t)

rν(t)− C∗(t)g1
ν(t), (33)

ġ2
ν(t) =

ṁν(t)
mν(t)

g2
ν(t)−K∗(t)g1

ν(t). (34)

Substituting the derivatives obtained into (29), we have
(

ṁν(t)
mν(t)

g1
ν(t)−A∗(t)g1

ν(t) + mν(t)D∗
ν(t), g1

ν(t)
)

+

+
ṁν(t)
mν(t)

(
g2
ν(t)

)2 −K∗(t)g1
ν(t)g

2
ν(t) =

1
2(T − t0)

.

From here, it is not difficult to obtain the equation (25) by using the notation
(26). Substituting (25) into (31)-(34), we obtain the equations (21)-(24).

4. Inverse problems for partial differential equations
The approach proposed in the work, by using method of lines as described in

[10], can be extended to partial differential equations.
In particular, let us consider the following parametric identification problem with

respect to a one-dimensional loaded parabolic equation:

ut(x, t) = uxx(x, t) +
l3∑

s=1

Bs(x, t)u(^
xs, t) + H(t) E(x, t) + f(x, t),

(x, t) ∈ Ω = {(x, t) : 0 < x < l , 0 < t ≤ T} , (35)

under initial condition
u(x, 0) = ϕ(x), 0 ≤ x ≤ l, (36)

and nonlocal point and integral nonseparated conditions:

l1∑

i=1

x̄i+∆i∫

x̄i

D̄i(x, t)u(x, t)dx +
l2∑

j=1

D̃j(t)u(x̃j , t) +
l3∑

s=1

^

Ds(t)u(^
xs, t) = L0(t), (37)
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where t and x are time and spatial coordinates, respectively; u(x, t) is the process
state at the point x at the point of time t; x̄i ,x̃j ,

^
xs, i = 1, ..., l1, j = 1, 2, ...l2, s =

1, 2, ..., l3 are given points of the interval (0, l), at that x̄i+1 > x̄i and x̄l + ∆l ∈
[0, l]; min (x̄1 , x̃1 ) = 0, max (x̄l1 + ∆1, x̃l2 ) = l, and for all i = 1, ..., l1, j =
1, ..., l2 there holds the condition x̃j∈̄ [x̄i, x̄i + ∆i]; f(x, t), ϕ(x) are given continuous
functions for 0 ≤ x ≤ l and 0 ≤ t ≤ T ; D̄i(x, t) , D̃j(t) are the three-dimensional
vector functions continuous with respect to all their arguments.

The inverse problem (35)-(37) consists in determining the unknown function
H(t) and the corresponding solution to the nonlocal problem u(x, t) satisfying the
conditions (35)-(37).

To apply method of lines at the segment [0, T ], take the points tk = kτ , τ = T/n

and draw straight lines t = tk, k = 0, 1, ..., n. Introducing the notations U (k)(x) =
u(x, tk), f (k)(x) = f(x, tk), E(k)(x) = E(x, tk), H(k) = H(tk) and replacing
∂u(x,t)

∂t |t=tk with a difference relation, we obtain the following second order ordinary
differential equations:

Ü (k)(x) =
1
τ

U (k)(x)−
l3∑

s=1

B
(k)
s (x)U (k)(^

xs)− E(k)(x)H(k)−

−1
τ

U (k−1)(x)− f (k)(x), k = 1, n , U (0)(x) = ϕ(x), (38)

solved sequentially from k = 1 to k = n.
Under (37), there are the following nonlocal conditions for these equations:

l1∑

i=1

x̄i+∆i∫

x̄i

D̄
(k)
i (x)U (k)(x)dx +

l2∑

j=1

D̃
(k)
j U (k)(x̃j) +

l3∑

s=1

^

D
(k)

s U (k)(^
xj) = L

(k)
0 , (39)

where we used the notations D̄
(k)
i (x) = D̄i(x, tk) , D̃

(k)
j = D̃j(tk) ,

^

D
(k)

s =
^

Ds(tk) .
The problem (38)-(39) can be reduced to the following problem with respect to

the system of two first order differential equations:

U̇
(k)
1 (x) = U

(k)
2 (x), U̇

(k)
2 (x) =

1
τ

U
(k)
1 (x)−

l3∑

s=1

B
(k)
s (x)U (k)

1 (^
xs)−

−1
τ

U
(k−1)
1 (x)−E(k)(x)H(k) − f (k)(x), k = 1, n , U

(0)
1 (x) = ϕ(x), (40)

at that U
(0)
1 (x) = ϕ(x), with nonseparated integral and point conditions:

l1∑

i=1

x̄i+∆i∫

x̄i

D̄
(k)
i (x)U (k)

1 (x)dx +
l2∑

j=1

D̃
(k)
j (t)U (k)

1 (x̃j) +
l3∑

s=1

^

D
(k)

s U
(k)
1 (^

xs) = L
(k)
0 . (41)

Next, to solve the system of differential equations (40) with nonlocal conditions
(41), one can apply the above mentioned scheme.
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Now consider another case of the parametrical inverse problem. Assume that
instead of (35) we have the following equation:

ut(x, t) = uxx(x, t) +
l3∑

s=1

Bs(x, t)u(x,
^

t s) + H(x) E(x, t) + f(x, t),

(x, t) ∈ Ω = {(x, t) : 0 < x < l , 0 < t ≤ T} (42)

and that instead of the initial condition (36) we have the following condition:

l1∑

i=1

t̄i+∆i∫

t̄i

D̄i(x, t)u(x, t)dt +
l2∑

j=1

D̃j(x)u(x, t̃j) +
l3∑

s=1

^

Ds(x)u(x,
^

t s) = L0(x), (43)

and boundary conditions have the classical form:

u(0, t) = ψ1(t), u(l, t) = ψ2(t), 0 ≤ x ≤ T. (44)

Here ψ1(t), ψ2(t)are given continuous functions; functions D̄i(x, t) , D̃j(x) ,
^

Ds(x),
L0(x) are continuous with respect to x, t, i = 1, ..., l1, j = 1, ..., l2, s = 1, ..., l3.

The inverse problem (42)-(44) consists in determining the unknown function
H(x) and the corresponding solution to the nonlocal problem u(x, t) satisfying the
conditions (42)-(44).

To apply the method of lines at the segment [0, l], we take the points xk = kh,
h = l/n and draw straight lines x = xk, k = 0, 1, ..., n. Introducing the notations
U (k)(t) = u(xk, t), E(k)(t) = E(xk, t), H(k) = H(xk), and replacing ∂2u(x,t)

∂x2 |x=xk

with a difference relation, we obtain the following system of n first order ordinary
differential equations:

U̇ (k)(t) =

(
U (k+1)(t)− 2U (k)(t) + U (k−1)(t)

)

h2
+

l3∑

s=1

B
(k)
s (x)U (k)(

^

t s)+

+E(k)(t)H(k) − f (k)(t), k = 1, n , U (0)(t) = ψ1(t), U (n+1)(t) = ψ2(t), (45)

with non-separated multipoint and integral conditions

l1∑

i=1

t̄i+∆i∫

t̄i

D̄
(k)
i (t)U (k)(t)dt +

l2∑

j=1

D̃
(k)
j (t)U (k)(t̃j) +

l3∑

s=1

D̃(k)
s (t)U (k)(

^

t s) = L
(k)
0 . (46)

It is easy to see that the problem (44), (45) coincides with the problem (1), (2),
therefore, to its numerical solution one can apply the results of section 2.

5. Results of numerical experiments
Here are the results of numerical experiments obtained for a linear system of

loaded third order differential equations for t ∈ (0, 1]:

ẋ1(t) = x1(t)− 2t x2(t) + x3(t)− x3(0.25) + 2λ1 + λ2 + t2 + 2t− 7.9375 ,
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ẋ2(t) = tx1(t) + x2(t)− x3(t) + 2x1(0.25) + tλ1 − t2 − 4t− 1,

ẋ3(t) = x1(t)− tx2(t) + 2x3(t) + 2tλ2 − t2 − 8t− 7,

with the following nonseparated point and integral conditions:

0.2∫

0

D̄1(τ) x(τ)dτ + D̃1 x(0.5) +

1∫

0.75

D̄2(τ) x(τ)dτ = L0,

D̄1(τ) =




τ −τ −1
0 τ −1
1 −2 0
τ 0 −2
1 −1 0




, D̄2(τ) =




−1 2 0
0 τ −1
τ 0 −2
1 −2 3
1 −2 0




, D̃1 =




2 1 4
1 4 0
1 2 4
1 2 2
−1 4 0




,

L0 = (19.63; 11.1275; 18.1188; 14.3981; 7.07)T ;

t̄1 = t0 = 0, ∆1 = 0.2, t̄2 = 0.75, ∆2 = 0.25, t̃1 = 0.5,
^

t 1 = 0.25.

It is easy to check that the vector-function x∗(t) = (2t + 1; t + 2; t2 + 3)T and the
vector λ∗ = (λ∗1, λ

∗
2) = (2; 5)T are the exact solution to the formulated problem.

Table 1 . The exact and obtained solutions to the problem.

N
Obtained solution Exact solution
x1 x2 x3 x∗1 x∗2 x∗3

0
5
10
15
20
25
30
35
40

0.9999
1.2499
1.4999
1.7499
2.0000
2.2500
2.5001
2.7501
3.0002

2.0001
2.1250
2.2500
2.3750
2.5000
2.6250
2.7500
2.8750
3.0001

3.0001
3.0157
3.0625
3.1407
3.2500
3.3906
3.5625
3.7656
3.9999

1.0000
1.2500
1.5000
1.7500
2.0000
2.2500
2.5000
2.7500
3.0000

2.0000
2.1250
2.2500
2.3750
2.5000
2.6250
2.7500
2.8750
3.0000

3.0000
3.0156
3.0625
3.1406
3.2500
3.3906
3.5625
3.7656
4.0000

The results of calculations are given in table 1. We obtained the following value
for the identifiable vector of parameters λ = (2.0002; 4.9999)T . To solve the initial-
value problems, we use the fourth order Runge-Kutta method with the step 0.025.
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