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MATHEMATICAL STATEMENT OF THE FLUTTER
PROBLEM

Abstract

In the paper, mathematical statement of the flutter problem is given, and
taking into account momentless state in place of the main state, the obtained
system of equations is investigated.

The refined statement of the flutter formula on the base of the new expressions
of the parameters of the shell’s basic state [2] was cited in [1]. In the present paper
we give a mathematical statement of the flutter formula and carry out analysis of
the obtained system of equations assuming that a momentoes state was taken in
place of the basic state.

Let an annular conic shell in a spherical system of coordinates r, θ, α occupy a
part r ≤ r ≤ r2 of the conic surface

{0 ≤ r < ∞; θ = α; 0 ≤ α ≤ 2π} ,

gas flows interior to the cone in the positive direction of the axis r, and unperturbed
flow is assumed to be radial stationary, its parameters-the velocity u0(r), density
ρ0(r), pressure p0(r), local velocity a0(r) are the known functions of the radius.

The flow is supersonic, M2 >> 1, provided small conicity α << 1, we’ll identify
the coordinate r with the coordinate x, counted off from the vertex of the cone.

Further, we consider the shell as elastic, its mechanical characteristics: E is
Young’s modulus, v is a Poisson ratio, ρ is density, cylindrical rigidity
D = Eh3/(12(1− v2)), where h is the shell’s thickness.

We’ll describe the stress-strain state of the shell by the equations of technical
theory
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ψ = ϕ sinα is ∆ is a Laplace operator.
We look for the solution of the nonlinear system in the form

w = w0(x) + w1(x, ϕ, t), F = F0(x) + F1(x, ϕ, t)

where w0(x), F0(x) is assumed to be the main (quasistatic), w1(x, ϕ, t), F1(x, ϕ, t)
the perturbed (dynamical) state.
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Substituting these expansions in (1), (2) and linearizing in small perturbations,
after some simplifications we get the following systems.

For the main state

D∆2w0 − 1
xtgα
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= p0(x) (3)
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Eh
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For the perturbed state
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In system (3), (4), p0(x) is quasistatic pressure, the surplus pressure ∆p1(x, t) in
system (5), (6) was determined by us in [4,5].

Since the main state is momentless, we’ll not investigate system (3), (4).
For investigating system (5), (6) of the perturbed state, we introduce a new

coordinate assuming

x = x1 + y1, 0 ≤ y1 ≤ l, l = x2 − x1

and appropriate dimensionless coordinate

x/l = x1/l + y1/l ≡ x0 + y ∗ 0 ≤ y ≤ 1.

We also introduce dimensionless deflection functions W1, and forces Φ1 =
= F1/

(
Eh2l

)
assuming

W1 = w1/h, Φ1 = F1/(Eh2l).

We’ll consider axisymmetric perturbed state. In this case the operator L(w1, F0)
takes the form

L(w1, F0) =
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By definition, the force functions

1
x
· ∂F0

∂x
= T1;

∂2F0
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= T2, (8)

where T1, T2 are forces in median surface determined as follows (see [6]):
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Then from (6) we get the equation
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But we can write these expressions of forces x in dimensionless coordinates in the
form

T1 = − A0
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Substitute (7), (8) and (11) in (5), then in dimensionless parameters we get:
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We look for the solution of system (10), (13) in the form

W1 = W (y) exp(ωt), Φ1 = Φ(y) exp(ωt).

Therewith, on the base of the results from [7,8], the surplus pressure ∆ρ1 takes the
form
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where
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Since in formula (14) the flexure W is dimensional quantity, we should make the
substitution W =⇒ hW .

Dividing the both parts of equation (13) by Dh/l4, we get
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Here we introduced the denotation:
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B2 =
12(1− v2)l2a2

be∂
h2ñ2

, ñ2 = E/ρ, (18)

the primes denote the derivatives with respect to y. Using (14), assign each of the
addends of the expression
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Eh4
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taking into account that x is dimensionless, so x = x0 + y;
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Note that two sequential addends are the same by mechanical sense-of Winkler
base type, bus they are opposite in sign. It makes sense to compare (in modulus)
these addends. We have
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(IV )
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x2ε
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. (21)

This result is expected: for small conisity and large M this ratio will greater
than a unit.

Substitute expressions (I)-(IV) in (19), insert all these in (15). As a result we
get:
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Equation (10) is written in the form

∆2Φ +
1

tgα(x0 + y)
W

′′
= 0. (23)

Together with boundary conditions, system (22), (23) composes an eigen value
problem. A problem on critical parameters of the flutter, as it was noted in [4], will
be determined by the “surface” ReΩn(Mmin) = 0 that defines the area of stable and
unstable vibrations. By definition, Mmin = Mbe∂ .
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In nozzle flow aerodynamics, the Mach number in critical cross section is assumed
to be critical; by definition it equals unit. Here, the value of the Mach number on
the left end of the shell will be considered as critical, i.e. Mbe∂ = Mbe∂(x0) = Mbe∂

0 .
Based around such assumptions make an analysis of system (22), (23).
Pay a special attention to equation (22). Rewrite it in the form
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As we noted above, the critical velocity of the flutter is defined by the number
Mbe∂

0 , where M0 is the value of the Mach number on the left end of the shell x = x0.
Since for great supersonic velocities (γ − 1)M2 >> 1, then for this case we can

write the main relations ρ∗/ρ = (T ∗/T )
1

γ−1 as follows
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Obviously, xcr < x0. Therefore in (29) there should be
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Note that for concrete calculations it is necessary to follow that this is fulfilled.
Allowing for (28), (29), the addends in (24) may be written as:
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(III)
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Substituting these expressions in (24), we finally get:
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Thus, we get the system of equations (23), (31) that together with homogeneous
boundary conditions makes up an eigen value problem.
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