Rashid A.ALIEV

ON REPRESENTABILITY OF FUNCTIONS ANALYTIC ON A HALF PLANE WITH RESPECT TO OWN BOUNDARY CONDITIONS

Abstract

In the paper, using the notion of A- integration we prove that the Cauchytype integrals of Lebesgue integrable functions on a real axis R on upper and lower half-plane are the Cauchy A- integrals and the moments of nontangential limit values of Cauchy type integrals in the sense of A- integration equal zero.

Introduction. Let Γ be a simple closed rectifiable contour, G^+ be the bounded and G^- the unbounded domains with boundary Γ and $f \in L(\Gamma)$. The functions

$$F^{+}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\tau)d\tau}{\tau - z}, \ z \in G^{+}, \ F^{-}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\tau)d\tau}{\tau - z}, \ z \in G^{-},$$

are called Cauchy- type integrals of the function f over Γ .

V.I. Smirnoff [1] proved that the analytic functions $F^+(z)$ and $F^-(z)$ have finite nontangential boundary values $F^+(\tau)$ and $F^-(\tau)$ for almost all points $\tau \in \Gamma$ (see V.P.Khavin's paper [2]).

It follows from A.Zigmund's theorem (see, for example, [3]) that, if $f \in L \log L(\Gamma)$, then the Cauchy type integral is the Cauchy integral, that is it holds the equality

$$F^{+}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{F^{+}(\tau)}{\tau - z} d\tau, \ z \in G^{+}.$$
 (1)

If $f \in L(\Gamma)$ and $f \notin L\log L(\Gamma)$, then even in the cricle case $T = \{z \in C : |z| = 1\}$ it can happen that the boundary values $F^+(\tau)$ and $F^-(\tau)$ are not Lebesgue integrable on T, and therefore the equality (1) in this case is not satisfied.

Using the notion of A-integration P.L.Ul'yanov ([4] in the case of a unit circle; and [5] in the case of prime closed Lyapunov contour) established that, if $f \in L(\Gamma)$, then it holds the equality

$$F^{+}(z) = \frac{1}{2\pi i} (A) \int_{\Gamma} \frac{F^{+}(\tau)}{\tau - z} d\tau, \ z \in G^{+},$$
(2)

that is, the Cauchy- type integral of the Lebesgue integrable function is a Cauchy A-integral. A.B.Alexandrov [6] established the validity of equality (2) for analytic functions in the unit circle, which belonging to V.I.Smirnoff's class and satisfying the condition $\lambda m \{\tau \in T : |F^+(\tau)| > \lambda\} = o(1)$ as $\lambda \to +\infty$.

For analytic functions in bounded simply connected domains G with simple rectifiable boundary ∂G and satisfying the condition

$$\lambda m \{ \tau \in \partial G : |F_{\alpha}^{*}(\tau)| > \lambda \} = o(1), \ \lambda \to +\infty$$

16_____ /R.A.Aliev]

for some $\alpha > 1$, equality (2) was proved by T.S.Salimov [7] for $\alpha > 2$ and by the author [8] for $\alpha > 1$, where

 $F^*_{\alpha}(\tau) = \sup \{ |F(z)| : z \in G, |z - \tau| < \alpha \rho(z, \partial G) \}$ is an analogue of a nontangential maximum function, and $\rho(z, \partial G)$ is the distance from the point $z \in G$ to the boundary ∂G .

Absence of formula of change of variables for A- integral with respect to unbounded sets requires new methods for obtaining similar results on domain with unbounded boundaries.

In the paper, using the notion of A-integration, it is proved that if the function f is Lebesgue integrable on a real axis R, then Cauchy - type integral of the function f on the upper and lower half -plane are the Cauchy A- integrals, and the moments of nontangential boundary values of Cauchy- type integrals in the sense of A- integration equal zero.

Representability of analytic on a half plane functions with respect to own boundary values. Let $f \in L_1(R)$, that is the function f(t) be Lebesgue integrable on a real axis R. The analytic functions

$$F^{+}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{+}, \ F^{-}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{-},$$

where $G^+ = \{z \in C : \operatorname{Im} z > 0\}, G^- = \{z \in C : \operatorname{Im} z < 0\}$ are called Cauchy - type integrals of the function $f \in L_1(R)$.

The analytic functions $F^{\pm}(z)$ have finite nontangential boundary values $F^{\pm}(t)$ almost for all $t \in R$ (see, for example, [3],[9]). But the boundary values $F^{\pm}(t), t \in R$ generally speaking, may not even belong to the class of functions $L_1^{(loc)}(R)$.

Definition 1. The complex-valued function q(t) measurable on a real axis R is said to be A- integrable on R if the following condition is fulfilled

$$\lambda m \{t \in R : |g(t)| > \lambda\} = o(1), \quad \lambda \to +\infty,$$

and there exists a finite limit

$$\lim_{\lambda \to +\infty} \int_{\{t \in R: |g(t)| \le \lambda\}} g(t) dt.$$

This limit is called the A-integral of the function q(t) with respect, to R and is

denoted by $(A) \int_R g(t) dt$. Note that A-integral possesses the additivity property with respect to functions, that is if the functions $g_1(t)$ and $g_2(t)$ are A -integrable on R, then their sum $g_1(t)$ + $g_2(t)$ also is A-integrable on R, and the following equality is valid:

$$(A) \int_{R} (g_1(t) + g_2(t))dt = (A) \int_{R} g_1(t)dt + (A) \int_{R} g_2(t)dt.$$

Definition 2. Let $f \in L_1(R)$. The function

$$(Hf)(t) = \frac{1}{\pi} v_{\cdot} p_{\cdot} \int_{R} \frac{f(\tau)}{t - \tau} d\tau = -\frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\varepsilon}^{+\infty} \frac{f(t + \tau) - f(t - \tau)}{\tau} d\tau$$

Transactions of NAS of Azerbaijan ______17 [On representability of functions analytic...]

is called Hilbert transformation of the function f on R.

Note that for $f \in L_1(R)$ the function (Hf)(t) was determined almost every where on R, but , generally speaking, may not even belong to the class of functions $L_1^{(loc)}(R)$. Therewith, if $f \in L_p(R), p > 1$ then the function (Hf)(t) also belongs to the class of functions $L_p(R)$ (see, for example, [3])

It is known that (see, for example, [3]) if $f \in L_p(R), g \in L_q(R), \frac{1}{p} + \frac{1}{q} = 1$, $1 < p, q < \infty$, then the following equality is valid

$$\int_{R} g(t)(Hf)(t)dt = -\int_{R} f(t)(Hg)(t)dt.$$

Anter Ali Al Saiyad [10] proved the following theorem that we'll need in future.

Theorem A. If g(t) is a bounded function, $g \in L_p(R)$ for some $p \ge 1$, and its Hilbert transformation (Hg)(t) is also bounded, and $f \in L_1(R)$, then the function (Hf)(t)g(t) is A-integrable on R and the following equality is valid :

$$(A)\int_{R} g(t)(Hf)(t)dt = -\int_{R} f(t)(Hg)(t)dt.$$
(3)

Theorem 1. Let $f \in L_1(R)$ and

$$F^{+}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{+}$$

be the Cauchy- type integral of the function f(t) on the upper half-plane. Then for any $z \in G^+$ the following equality is valid

$$F^{+}(z) = \frac{1}{2\pi i} (A) \int_{R} \frac{F^{+}(t)}{t - z} dt,$$
(4)

where $F^+(t)$ are nontangential boundary values of the function $F^+(z)$ as $z \to t \in \mathbb{R}$.

Proof. Take any point z = x + iy from the upper half-plane G^+ and represent $F^+(z)$ in the from:

$$F^{+}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-x-iy} dt =$$

$$= \frac{1}{2\pi i} \int_{R} \frac{t-x+iy}{(t-x)^{2}+y^{2}} f(t) dt = \frac{1}{2\pi i} \int_{R} \frac{t-x}{(t-x)^{2}+y^{2}} f(t) dt +$$

$$+ \frac{1}{2\pi} \int_{R} \frac{y}{(t-x)^{2}+y^{2}} f(t) dt.$$
(5)

Consider the function $g(t) = \frac{y}{(t-x)^2+y^2}$. Find the Hilbert transformation of this function:

$$(Hg)(t) = \frac{1}{\pi} v_{.} p_{.} \int_{R} \frac{g(\tau)}{t - \tau} d\tau = \frac{1}{\pi} v_{.} p_{.} \int_{R} \frac{y}{(\tau - x)^{2} + y^{2}} \cdot \frac{1}{t - \tau} d\tau =$$

$$18 \qquad \text{Transactions of NAS of Azerba}$$

$$= \frac{1}{\pi} v_{\cdot} p_{\cdot} \int_{R} \left[\frac{\tau + t - 2x}{(\tau - x)^{2} + y^{2}} + \frac{1}{t - \tau} \right] \frac{y}{(t - x)^{2} + y^{2}} d\tau =$$

$$= \frac{y}{(t - x)^{2} + y^{2}} \left[\frac{t - x}{y} \arctan \frac{\tau - x}{y} \Big|_{-\infty}^{+\infty} + \lim_{\varepsilon \to 0^{+}} \left(\ln \frac{\sqrt{(x - \tau)^{2} + y^{2}}}{|\tau - t|} \Big|_{-\infty}^{t - \varepsilon} + \ln \frac{\sqrt{(x - \tau)^{2} + y^{2}}}{|\tau - t|} \Big|_{-\infty}^{+\infty} \right]$$

Taking into attention equality (3) (see Theorem A) and taking into account the additivity of A- integral with respect to functions, by equality (5) we have

$$F^{+}(z) = \frac{1}{2\pi i} \int_{R} (Hg)(t)f(t)dt + \frac{1}{2\pi} \int_{R} g(t)f(t)dt =$$

= $-\frac{1}{2\pi i} (A) \int_{R} g(t)(Hf)(t)dt + \frac{1}{2\pi} \int_{R} g(t)f(t)dt =$
= $\frac{1}{2\pi} (A) \int_{R} g(t) [f(t) + i(Hf)(t)] dt.$ (6)

Since the nontangential boundary values of the function $F^+(z)$ as $z \to t \in \mathbb{R}$ are calculated from formula (see [3])

$$F^{+}(t) = \frac{1}{2} \left[f(t) + i(Hf)(t) \right],$$

then from equality (6) it follows that

$$F^{+}(z) = \frac{1}{\pi} (A) \int_{R} g(t) F^{+}(t) dt.$$
(7)

On the other hand, based on the same equality (3), from theorem A the following relations are valid

$$\int_{R} f(t)(Hg)(t)dt = -(A)\int_{R} g(t)(Hf)(t)dt,$$
$$\int_{R} f(t)g(t)dt = (A)\int_{R} (Hg)(t)(Hf)(t)dt.$$

From these equalities, by the additivity with respect to the functions of Aintegral, it follows that

$$(A) \int_{R} [(Hg)(t) - ig(t)] F^{+}(t) dt = (A) \int_{R} [(Hg)(t) - ig(t)] \times [f(t) + i(Hf)(t)] dt = \int_{R} f(t)(Hg)(t) dt - i \int_{R} f(t)g(t) dt + i(Hf)(t)] dt = \int_{R} f(t)(Hg)(t) dt - i \int_{R} f(t)g(t) dt + i(Hf)(t) dt = \int_{R} f(t)(Hg)(t) dt - i \int_{R} f(t)g(t) dt + i(Hf)(t) dt = \int_{R} f(t)(Hg)(t) dt = \int_{R} f(t)(Hg)(t) dt - i \int_{R} f(t)g(t) dt + i(Hf)(t) dt = \int_{R} f(t)(Hg)(t) dt = \int_{R} f(t)(Hg)(t) dt = \int_{R} f(t)(Hg)(t) dt = \int_{R} f(t)(Hg)(t) dt + i(Hf)(t) dt + i(Hf)(t) dt = \int_{R} f(t)(Hg)(t) dt + i(Hf)(t) dt + i(Hf)(t) dt = \int_{R} f(t)(Hg)(t) dt + i(Hf)(t) dt = i(Hf)(t) dt + i(Hf)(t) dt +$$

Transactions of NAS of Azerbaijan ______ [On representability of functions analytic...]

$$+i(A)\int_{R} (Hf)(t)(Hg)(t)dt + (A)\int_{R} (Hf)(t)g(t)dt = 0.$$
(8)

Taking into account equality (8), from equality (7) we get

$$F^{+}(z) = \frac{1}{\pi} (A) \int_{R} g(t)F^{+}(t)dt = \frac{1}{\pi} (A) \int_{R} g(t)F^{+}(t)dt + \frac{1}{2\pi i} (A) \int_{R} [(Hg)(t) - ig(t)] F^{+}(t)dt = \frac{1}{2\pi i} (A) \int_{R} [(Hg)(t) + ig(t)] F^{+}(t)dt = \frac{1}{2\pi i} (A) \int_{R} \frac{t - x + iy}{(t - x)^{2} + y^{2}} F^{+}(t)dt = \frac{1}{2\pi i} (A) \int_{R} \frac{F^{+}(t)}{t - x - iy} dt = \frac{1}{2\pi i} (A) \int_{R} \frac{F^{+}(t)}{t - z} dt,$$

that is formula (4) is valid. Theorem 1 is proved.

Definition 3. If for a function $\Phi(z)$ analytic in the half-plane G^+ there exists a constant C > 0 such that for any y > 0 the condition

$$\int_{R} |\Phi(x+iy)|^p \, dx \le C,$$

is fulfilled, then the function $\Phi(z)$ belongs to the space $H_p(G^+)$, where $p \ge 1$. **Theorem 2.** Let $f \in L_1(R)$, and

$$F^{+}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{+}$$

be a Cauchy - type integral of the function f(t) on the upper half-plane G^+ . If the function $\Phi(z)$ analytic and bounded on the upper half-plane G^+ belongs to the space $H_p(G^+)$ for some $p \ge 1$ it is valid the equality

$$(A) \int_{R} F^{+}(t)\Phi(t)dt = 0,$$
(9)

where $F^+(t)$ and $\Phi(t)$ are nontangential boundary values of the functions $F^+(z)$ and $\Phi(z)$, respectively, as $z \to t \in R$.

Proof. Denote $g(t) = \operatorname{Re} \Phi(t), t \in R$. Then from the condition $\Phi \in H_p(G^+)$ if follows that $(Hg)(t) = \operatorname{Im} \Phi(t), t \in R$. Hence we get that the functions g(t)and (Hg)(t) are bounded, $g \in L_p(R)$, $Hg \in L_p(R)$. Applying theorem A to the functions g(t) and f(t) and also to the functions (Hg)(t) and f(t), we have equalities

$$\int_{R} f(t)(Hg)(t)dt = -(A)\int_{R} g(t)(Hf)(t)dt,$$

 $_{19}$

[R.A.Aliev]

$$\int_{R} f(t)g(t)dt = (A) \int_{R} (Hg)(t)(Hf)(t)dt.$$

Taking into account the additivity with respect to the functions of A-integral, from these equalities it holds

$$\begin{split} 2(A) &\int_{R} F^{+}(t) \Phi(t) dt = (A) \int_{R} \left[f(t) + i(Hf)(t) \right] \left[g\left(t \right) + i(Hg)(t) \right] dt = \\ &= \int_{R} f(t) g(t) dt + i \int_{R} f(t)(Hg)(t) dt + i(A) \int_{R} g(t)(Hf)(t) dt - \\ &- (A) \int_{R} (Hf)(t)(Hg)(t) dt = 0, \end{split}$$

i.e. formula (9) is valid. Theorem 2 is proved. Corollary 1. Let $f \in L_1(R)$, and

$$F^+(z) = \frac{1}{2\pi i} \int_R \frac{f(t)}{t-z} dt, \ z \in G^+,$$

be a Cauchy type integral of the function f(t) on the upper half-plane G^+ . Then for any point $z \in G^+$ it is valid the equality

$$(A)\int_{R} \frac{F^{+}(t)}{t-\overline{z}}dt = 0,$$

where $F^+(t)$ are nontangential boundary values of the function $F^+(z)$ as $z \to t \in R, \overline{z} = x - iy$.

For the lower half-plane G^- the analogs of theorems 1,2 are formulated in the following way:

Theorem 3. Let $f \in L_1(R)$, and

$$F^{-}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{-},$$

be a Cauchy- type integral of the function f(t) on the lower half-plane G^- . Then for any $z \in G^-$ it is valid the equality

$$F^{-}(z) = \frac{1}{2\pi i} (A) \int_{R} \frac{F^{-}(t)}{t-z} dt,$$

where $F^{-}(t)$ are nontangential boundary values of the function $F^{-}(z)$ as $z \to t \in \mathbb{R}$.

Theorem 4. Let $f \in L_1(R)$, and

$$F^{-}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{-}$$

20

Transactions of NAS of Azerbaijan _____21 [On representability of functions analytic...]

be a Cauchy-type integral of the function f(t) on the lower half-plane G^- . If the function $\Phi(z)$ analytic and bounded on the lower half-plane G^- belongs to the space $H_p(G^-)$ for some $p \geq 1$ it is valid the equality

$$(A)\int_{R} F^{-}(t)\Phi(t)dt = 0,$$

where $F^{-}(t)$ and $\Phi(t)$ are nontangential boundary values of the functions $F^{-}(z)$ and $\Phi(z)$, respectively, as $z \to t \in R$.

The proofs of theorems 3 and 4 are similar to the proofs of theorems 1 and 2. **Corollary 2.** Let $f \in L_1(R)$, and

$$F^{-}(z) = \frac{1}{2\pi i} \int_{R} \frac{f(t)}{t-z} dt, \ z \in G^{-},$$

be a Cauchy- type integral of the function f(t) on the lower half-plane G^- . Then for any point $z \in G^-$ it is valid the equality

$$(A)\int_{R} \frac{F^{-}(t)}{t-\overline{z}}dt = 0,$$

where $F^{-}(t)$ are nontangential boundary values of the function $F^{-}(z)$ as $z \to t \in \mathbb{R}$, $\overline{z} = x - iy.$

References

[1]. Smirnoff V.I. "Sur les valeurs limites des functions regulieres a l'interieur d'un cercle" Zh. Leningrad phys.-mat, obshestva 2:2(1928), pp.22-37 (Russian).

[2].Khavin V.P.Boundary properties of integrals of Cauchy type and conjugate harmonic functions in regions with rectifiable boundary .Matem. Sb 68(110):4, 1965, pp.499-517 (Russian).

[3]. Coosis P. Introduction to H^p spaces. London Math. Soc. Lecture Note Ser., vol.40, Cambridge Univ. Press, Cambridge-New York, 1980, XV-376 p.

[4]. Ul'yanov P.L." Cauchy A -integral I", Uspekhi Math. Nauk, 11:5(71), 1956, pp.223-229.(Russian).

[5]. Ul'yanov P.L. "Integrals of Cachy type" .Tr Mat. Inst, Steklov, vol. 60, Moskow, 1961, pp.262-281 English transl. in Amer. Math. Soc. Trans. Ser. 2, vol.44, 1965, pp.129-150.

[6]. Alexandrov A.B. A-inegrability of the boundary values of harmonic functions. Mat.zametki 30:1,1981,pp.59-72; English transl in Math. Notes 30:1 (1981),pp.515-523.

[7]. Salimov T.S. The A-integral and boundary values of analytic functions Matem Sb., 136 (178):1(5), 1988, pp.24-40; English transl. in Math USSR-Sb. 64:1(1989),pp.23-39.

[8]. Aliev R.A., Existence of angular boundary values and Cauchy-green formula, Zh. Mat. Fiz. Analiz.Geom.7:1, 2011, pp.3-18.(Russian).

[R.A.Aliev]

[9]. Garnett J., *Bounded anlytic functions* Los Anggeles, Californiya, Academic Press, 1981, 471 p.

[10]. Anter Ali Al Saiyad *Hilbert transformation and A-integral* Fund. and Prikl.Matem., 8:4, 2002, pp.1239-1243 (Russian).

Rasid A. Aliev

Baku State University, 23, Z.Khalilov str, AZ 1148, Baku, Azerbaijan Tel.: (99412) 538-05-82 (off.).

Received January 28, 2014; Revised April 16, 2014.

 22_{-}