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ASSESSMENT AND OPTIMAL POLICIES OF LIMIT
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Abstract

We analyzed limit killed Markov decision process on finite time interval for
finite and countable models, as well as its assessment and optimal policy. We
showed that assessment of limit process is equal to limit of assessments, both
for countable and finite model. For finite models we proved that limit point of
sequence of optimal policies always exists and each limit point is optimal policy
for limit process. For countable models we proved that if limit point of ε -optimal
policies exists than this point is δ - optimal policy for limit process, where δ is
arbitrary real number greater than ε.

1. Introduction
Bellman’s book [6] can be considered as a starting point of Markov decision

processes, where ideas of dynamic programming principle were applied to Markov
decision processes. Later Markov decision processes are well described in [1]: the
definition of Markov decision process was given, as well as definition of optimal pol-
icy, assessment of the policy and assessment of process. But in [1] the model does
not take into account the risk factor, namely the probability of bankruptcy at some
determined moment of time. As a result, we come to the idea of killed Markov de-
cision process where the business can crash with some nonzero probability at every
moment of time, with the exception of the initial state. The basic ideas about killing
of Markov processes is given in [5]. Also some aspects of Markov decision processes
where described by Feinberg and Shwartz [4].

2. Definitions
Let Xt(t=m, . . . ,n) and let At(t=m+1, . . . ,n) be countable or finite.
Remark. All definitions and basic ideas of killed Markov decision process are

given accordingly to [2] and [3].
Definition. A mapping T : Xt×At+1×Xt+1 → P (Xt) which satisfies following

conditions:
T
(
x, a, x′

)
=P
(
xt+1 = x

∣∣ xt = x′, at+1 = a
)
≡ P

is called transition function and we we’ll it as p(x|a).
Definition. The point x∗ ∈ Xt is called killed state, and p(x∗|a) - probability

of kill
Definition. The trajectory l = xmam+1xm+1 . . . atxt n is called way if t = n

or xt = x∗.The set of all ways we’ll denote as L = X × (A×X)n−m.
Definition [Killed Markov decision process]. A killed Markov decision

process on a time interval [m,n] is defined through the following objects:

1. Sets X =
n∪

t=m
Xt (spaces of states);

2. Sets A =
n∪

t=m+1
At (spaces of actions);

3. The projection mapping j : A → X, where j(At+1) = Xt\{x∗}, x∗ ∈ Xt,
4. Probability distribution p(·|a)=P(xt = x|at = a, xt−1) on Xt with killed states:

P (xt+1 = x∗ | at = a) ≡ p (x∗ | a) ≥ 0; ;

5. Function q : A → R (reward function);
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6. Function r : Xn → R (terminal reward);
7. Function c (crash function), defined on killed states:

c(x) =

 −
t∑

i=m+1
sup
ai∈Ai

q(ai) , x = x∗

0 , x ̸= x∗

x ∈ Xt, x
∗ - killed state. (function c ensures a total bankruptcy - total loss of

accumulated capital or more);
8. Initial distribution µ on Xm.
A stochastic process defined through (1-8) is called killed Markov decision

process and is denoted as Zµ. If the initial distribution µ is concentrated in the
point x, we shall write Zx.

Definition. Let A(x) ⊂ A - is the set of all available actions at state x ∈ X.
φ(x) : X\x∗ → A(x) is called simple policy if φ (xt−1) = at ∀t = m+ 1, . . . , n.

Definition. The mapping π : H → π(·|h ∈ H) is called policy , where π(·|h ∈
H) - probability distribution on A(xt−1) and H - the space of histories up to epoch
(h ∈ H ⇔ h = xmam+1, . . . , at−1xt−1).

Definition. Policy π(·|h) is called Markov policy if π( · |h) =π( · |xt−1).
Assumption. The reward function q and terminal reward function r have the

supremum, ∃ supa∈A q(a) and ∃ sup x∈Xn
r(x).

If p(·|a) is the transition function and π(·|h) is a policy, then for ∀µ - initial
distribution exists corresponding probability distribution P defined on space L which
has such notation:

P (l) =


µ (xm)π (am+1 | xm) p (xm+1 | am+1) · · · · ·

·π (an | hn−1) p (xn | an) , , ∀t xt ̸= x∗

µ (xm)π (am+1 | xm) p (xm+1 | am+1) · · · · ·
·π (at | ht−1) p (x

∗
t | at) ,

, xt = x∗

For all function ξ from space L the mathematical expectation of ξ is:

E∗ (ξ)=
∑
l∈L

ξ (l) P (l) (2.1.2)

The assessment

I (l)=


n∑

t=m+1
q (at)+r (xn) ,∀r xk ̸= x∗

t∑
k=m+1

q (at)+c (x∗t ) , xt = x∗

of the way l is example of such function. And we’ll denote its expectation as ω:

ω=EI (l)

Definition [Assessment of policy]. The value ω is called assessment of
policy .

Definition [Assessment of process]. υ ≡ supπ ω(π) is called assessment
of killed Markov decision process Z∗

µ or assessment of initial distribution
µ.

Definition [optimal policy]. If spaces of states and spaces of actions are finite
sets then policy π is called optimal if ω(π) = υ.



Transactions of NAS of Azerbaijan
[Assessment and optimal policies of limit...]

25

Definition [ε-optimal policy]. If spaces of states and spaces of actions are
countable or finite sets and at least one of them is countable then policy π is called
ε-optimal if ω(π) ≥ υ − ε.

3. Formulation of the Problem
Lets consider that we have a family of killed Markov decision processes

(
Zk
µ

)∞
k=0

on a time interval [m,n], where Zk
µ = (X,A, j, pk, qk, rk, ck, µk), and following con-

ditions are hold:

∀t, ∀at ∈ At, ∀xt ∈ Xt : lim
k→∞

pk (xt | at) = p (xt | at) ,

∀t, ∀at ∈ At : lim
k→∞

qk (at) =q (at) ,

∀xn ∈ Xn : lim
k→∞

rk (xn) =r (xn) ,

∀xm ∈ Xm : lim
k→∞

µk (xm) =µ (xm) ,

∀t : lim
k→∞

ck (x
∗
t ) =c (x∗t ) ,

∀k :
∑

xm∈ Xm

µk(xm) = 1,

∀t, ∀at ∈ At, ∀k :
∑

xt∈Xt

pk (xt | at) = 1.

Our goal is to find assessment and optimal (ε -optimal) policies of limit process
Zµ = (X,A, j, p, q, r, c, µ).

4. Finite Case
Let Xt(t=m, . . . ,n) and let At(t=m+1, . . . ,n) be countable sets.
Theorem 1. Let

(
Zk
µ

)∞
k=0

be a family of killed Markov decision processes as
defined above, then:

1. υ = limk→∞ υk , where υ - assessment of limit process Zµ and υk assess-

ments of corresponding processes Zk
µ.

2. Exists at least one limit point of (πk)
∞
k=0, where πk – optimal policy for

corresponding processes Zk
µ

3. If π is a limit point of (πk)
∞
k=0 then π is optimal policy for limit process Zµ.

Proof. For ∀k exists optimal policy πk of corresponding process Zk
µ which

satisfies following conditions ([3]):

ωk (µk, πk) = sup
π

ωk (µk, π) = υk(µk)

∀t, ∀at+1 ∈ At+1, ∀xt ∈ Xt : 0 ≤ πk (at+1|xt) ≤ 1.

Let’s consider a sequence of optimal polices (πk)
∞
k=1. As X and A are finite sets

(πk)
∞
k=1 is a subset of finite Cartesian product of compacts, thus exists convergent

sub sequence (πks)
∞
s=1, which satisfies following conditions:

∀t, ∀xt ∈ Xt :
∑

at+1 ∈ At

πks (at+1|xt)= 1 ,

∀t, ∀at+1 ∈ At+1, ∀xt ∈ Xt : πks (at+1|xt) −→
s→∞

π (at+1|xt)
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For limit process Zµ = (X,A, j, p, q, r, c, µ) exists optimal policy π∗:

ω(µ, π∗) = sup
π

ω(µ, π)

We need to show that assessment of policy π is equal to assessment of limit
process Zµ:

ω (µ, π) = ω (µ, π∗) = υ(µ)

Let’s suppose that this is not true:

ω (µ, π) ̸= υ(µ)

Let ω (µ, π) > υ(µ). As υ (µ) = ω(µ, π∗) = supπ ω (µ, π) ≥ ω (µ, π′) for ∀π′,
consequently ω (µ, π) ≤ υ(µ).

Let ω (µ, π)< υ(µ) and ω(µ, π∗)− ω (µ, π) = ε > 0. As

µk −→
k→∞

µ, pk −→
k→∞

p, qk −→
k→∞

q, ck −→
k→∞

c, rk −→
k→∞

r, πks −→s→∞
π.

Then:

∀ δ > 0 ∃ k0 ∀ k > k0 : |ωk (µk, π∗)− ω (µ, π∗)| < δ,

∀ δ > 0 ∃ s0 ∀ s > s0 :
∣∣ωks

(
µks , πks

)
− ω (µ, π)

∣∣ < δ.

And
∀k : 0 < ω (µ, π∗)− ω (µ, π) = ω (µ, π∗)− ωk (µ, π

∗)+

+ ωk (µ, π
∗)− ωk (µk, πk) + ωk (µk, πk)− ω (µ, π)

Moreover πk is optimal policy for process Zk
µ, thus ∀k : ωk (µ, π

∗)−ωk (µk, πk) ≤
0, as a result:

∀k : 0 < ω (µ, π∗)− ω (µ, π) ≤ ω (µ, π∗)− ωk (µ, π
∗) + ωk (µk, πk)− ω (µ, π) ≤

≤ |ωk (µk, π∗)− ω (µ, π∗)|+ |ωk (µk, πk)− ω (µ, π)|

∀ k > k∗ = max {k0, kso} : 2δ > |ωk (µk, π∗)− ω (µ, π∗)|+

+ |ωk (µk, πk)− ωk (µk, π)| ≥ |ω (µ, π∗)− ω (µ, π)| = ω(µ, π∗)−ω (µ, π) = ε > 0

Which means that ω (µ, π) = ω (µ, π∗) = υ (µ). Theorem is proved.

5. Countable Case
Let Xt(t=m, . . . ,n) and let At(t=m+1, . . . ,n) be countable or finite sets and at

least one of them is countable.
∃ supa∈A q(a) and ∃ sup x∈Xn

r(x)

Theorem 2. Let
(
Zk
µ

)∞
k=0

be a family of killed Markov decision processes as

defined above. If ∀k ∃ supa∈A qk (a) ̸= ∞ , ∃ sup x∈Xn
rk(x) and ∃ supa∈A q (a) ̸=

∞ , ∃ sup x∈Xn
r(x) then:

1. υ = limk→∞ υk , where υ - assessment of limit process Zµ and υk assess-

ments of corresponding processes Zk
µ.

2. If exists at limit point of (πk)
∞
k=0, where πk – ε - optimal policy for corre-

sponding processes Zk
µ then this limit point is δ - optimal policy for limit process

Zµ, where δ is arbitrary real number greater than ε.
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Proof. As

υk (µk) = sup
π

ωk (µk, π) = sup
π

EI (l) = sup
π

∑
l∈L

I (l)Pk (l)

Let L′ be a set of way where ∀t xt ̸= x∗ and L
′′
= L\L′ then

υk

(
µk

)
= sup

π

(∑
l∈L′

I (l)Pk (l) +
∑
l∈L′′

I (l)Pk (l)
)
=

= sup
π

(∑
l∈L′

(
n∑

i=m+1

qk (ai)+rk (xn)

)
×

×
(
µk (xm)π

(
am+1 | xm

)
. . . π (an | hn−1) pk

(
xn | an

))
+

+
∑
l∈L′′

( t∑
i=m+1

qk (ai)+ck

(
x∗t

))
×

×
(
µk (xm)π

(
am+1 | xm

)
. . . π (an | hn−1) pk (x

∗
t | an)

))
As a result

lim
k→∞

υk (µk) = sup
π

(∑
l∈L′

(
n∑

i=m+1

q (ai)+r (xn)

)
×

× (µ (xm)π (am+1 | xm) . . . π (an | hn−1) p (xn | an))+

+
∑
l∈L′′

(
t∑

i=m+1

q
(
ai

)
+c
(
x∗t

))(
µ
(
xm

)
π
(
am+1

∣∣∣xm)×
×π
(
an

∣∣∣hn−1

)
p
(
x∗t

∣∣∣ an))) = υ(µ)

In addition if exists at limit point of (πk)
∞
k=0 this means that exists convergent

subsequence (πks)
∞
s=1, which satisfies following conditions:

∀t, ∀xt ∈ Xt :
∑

at+1 ∈ At

πks (at+1|xt)= 1 ,

∀t, ∀at+1 ∈ At+1, ∀xt ∈ Xt : πks (at+1|xt) −→
s→∞

π (at+1|xt)

∀ks : ωks

(
µks , πks

)
> υks

(
µks

)
− ε

So
ω (µ, π) = lim

s→∞
ωks

(
µks , πks

)
≥ υ (µ)− ε

Consequently π is δ – optimal for limit process Zµwhere δ is arbitrary real num-
ber greater than ε. Theorem is proved.

6. Example
Let’s consider a family of killed Markov decision processes

(
Zk
µ

)∞
k=0

where Zk
µ:
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From definition of crash function c (x)= −
t∑

i=m+1
supai∈Ai

q(ai) for xt=x∗ we

receive that c (x∗1)= −15 and c (x∗2)= −30−(−1)n3/n .As a result assessments of
states (III), (IV ) and (V ) would equal to following values:

υn (III) = max?{22 + (−1)n12/5n, 22 + 1/2n− (−1)n1/2n}

υn (IV ) = 16− (−1)n3/10n

υn (V ) = 16− (−1)n3/4n.

Accordingly υn (III) = 22 + 12/5n if n is even and υn (III) = 22 − 1/n if n is
odd number.

Thus is n is even assessments of states (I) and (II) would be as following:

υn (I) = 13 + 41/40n+ n/n+ 1

υn (II) = 24 + 193/32n+ 9/20n2.

And if n is odd:
υn (I) = 13− 67/120n+ n/n+ 1

υn (II) = 24 + 783/160n− 17/80n2.

As υn (µn) = µn (I) υn (I) + µn (II) υn (II)
We receive that assessment of limit process equals to:

υ (µ) = 13µ (I) + 24µ (II) .
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