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Abstract

In Hilbert space H consider the equation

Ay +B(y) = ξ,

where A is an unbounded linear operator, B is a bounded smooth operator and

ξ is a random element in H with smooth distribution measure µξ Specifically

we suppose that µξ possesses a logarithmical derivative along the directions of

vectors from the dense subspace H+ ⊂ H.

We study the problem: when the distribution µy of the solution of the given

equation y possesses a logarithmical derivative , and under what conditions

this measure is equivalent with respect to a simpler measure. In the case of

equivalence we calculate the Radon- Nikodym density. We cite examples when

A is a differential operator.

Before going on to the main problem we cite a theorem on nonlinear transfor-

mation of smooth measure in Banach space from the paper [1], that we’ll need in

future.

Let B be a separable real Banach space; H be Hilbert space compactly imbedded

on B and the imbedding i : H → B be the Hilbert-Schmidt operator. Therewith

i∗ : B∗ → H∗ ∼ H and therefore we’ll assume that B∗ ⊂ H ⊂ B. Denote by ⟨·, ·⟩
a coupling of elements from B and B∗. Let µ be a measure ( a real- valued finite

function of the sets) on a Borel σ -algebra B, and z(x) : B → B∗ be a vector field

in B.

It is said that (see [2]) µ possesses a logarith mical derivative along the vector

field z of the form ρµ(z, x) if for any function φ ∈ C1
b (B) it is valid the equality (the

integration by parts formula)∫
B

⟨
φ′(x), z(x)

⟩
µ(dx) =

∫
B

φ(x)ρµ(z, x)µ(dx).

We’ll denote by M a set of measures possessing a logarithmic derivative along

any constant directions z(x) = h ∈ B∗ of the form ρµ(z, x) = ⟨λ(x), h⟩, where

λ(x) : B → B is a continuous function. In particular, Gauss measures and also their

smooth images belong to M .

Theorem 1. [1] Let a nonlinear transformation f : B → B having the inverse

of the form f−1 : x → y = x + F (x) where F (x) : B → B∗ is differentiable, act

on B. Then if the operator I + tF ′(x) is inversible for each t ∈ [0, 1] : then the
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measures µ ∈ M and µf = µ(f−1) are equivalent and we can represent the Radon

-Nikodym derivative in the form:

dµf

dµ
(x) =

∣∣det (I + F ′(x)
)∣∣ exp⟨ 1∫

0

λ(x+ tF (x)dt, F (x)

⟩
(1)

Remark. Consider the expression

β (t, F, x) = ⟨λ(x+ tF (x), F (x)⟩+ trF ′(x).

As it is shown in [2] it has sense also when: F : B → H, and therefore we can

strengthen the theorem, and require this condition on the function F instead of

F (x) : B → B∗ . Therewith (1) takes the form

dµf

dµ
(x) =

∣∣det (I + F ′(x)
)∣∣ exp 1∫

0

β(t, F, x)dt

In a separable real Hilbert space H consider the equation

Aη + g(η) = ξ, (2)

for which the following conditions are fulfilled:

a) A is a linear unbounded operator with domain of definition D(A) densely

imbedded in H Suppose that there exists a bounded inverse A−1 being the Hilbert

Schimdt operator. In the domain D(A) introduce a scalar derivative by the formula

(x, y)D = (Ax,Ay)H . We get an equipped Hilbert space X+ ⊂ X ⊂ X−,where

X+ = D(A), X = H;

b) g is a differentiable nonlinear mapping, and the operator I + tA−1g′(x) is

inversible for all t ∈ [0, 1];

c) the random element ξ in X− has the distribution µξ ∈ M, i.e..

E(φ′(ξ), h)H = Eφ(ξ)(λ(ξ), h)H , φ ∈ C1
b (X−).

In addition to (2) consider the linear equation

Aς = ξ. (3)

Let µη and µς be measures corresponding to random elements η and ς .

Theorem 2. Let conditions a) b) c) be fulfilled for equations (2) and (3) .Then

µη ∼ µς and

dµη
dµς

(v) =
∣∣det(I +A−1g′(v))

∣∣ exp 1∫
0

β(t, A−1, g, v)dt, (4)

if g′(v) is a Hilbert-Schmidt operator, then (4) takes the form

dµη
dµς

(v) =
∣∣det(I +A−1g′(v))

∣∣ exp
 1∫

0

λ(Av + tg(v))dt, g(v)


H

.
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Let ∆ be an open, bounded domain in finite -dimensional Euclidean space Rn.

Denote the boundary ∆ by ∂∆ Everywhere we suppose that ∂∆ is a smooth surface.

Under this we understand the following one: to each point x ∈ ∂∆ we can assign n-

dimensional ball Γ(x) centered at the point x such that the part ∂∆ contained in

Γ(x) admits the representation with respect to some system of coordinates (t1, .., tn)

with origin at the point x, of the form

tn = ψ (t1, .., tn) , (5)

where the function ψ is determined in some domain, where it belongs to the class

C1and ψ(x) = ∂ψ
∂xi

= 0, i = 1, ...n. Therewith at each point x ∈ ∂∆ there exists a

definite tangential hyper plane Tx, given by the equation tn. Say that the domain

∆ ∪ ∂∆ belongs to the class A(k) if the function ψ contained in (5) belongs to the

class Ck.

For the derivatives (ordinary or generalized) we apply the following denotation:

Dj =
∂

∂xj
, j = 1, ..., n, Dα = Dα1

1 ...Dαn
n , α = (α1, ..., αn), |α| = α1 + ...+ αn.

The linear differential expression of order r is written as follows:

Lu =
∑
|α|≤r

aα(x)D
αu,

where aα(x) are real coefficients that are smooth. Under this we mean

aα(x) ∈ C |α|(∆ ∪ ∂∆).

Denote the conjugation to L by L∗.Thus,

L∗u =
∑
|α|≤r

(−1)
|α|
Dα(aα(x)u) =

∑
|α|≤r

bα(x)D
αu.

Denote by L2(G) a space of real valued functions that are integrable together with

own sguare with respect to Lebesgue measure and with a scalar product

(u, v)L2(G) =

∫
G
u(x)v(x)dx, u, v ∈ L

As usually W l
2(G) denotes a Sobolev space with a scalar product

(u, v)W l
2(G) = (u, v)L2(G) +

∑
|α|=l

(Dαu,Dαv)L2(G).

In order to cover a more general situation we follow [3] and introduce the notion

of boundary conditions. Denote the set of functions finite with respect to G and ∞
from C l(l = 0, 1, ...,∞) by C l0(G), the space W 0l

2 (G) , l = 0, 1, ...is determined as a

subspace of W l
2(G) obtained by the closure in W l

2(G) of the linear set C
∞
0 ⊂W l

2(G).
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It is known that W 0l
2 (G) for l ≥ 1 coincides with the totality of all functions u(x) ∈

W l
2(G) for which (Dαu)(x) = 0, (x ∈ Γ) for |α| ≤ l − 1.

Any subspace from W l
2(G) containing W 0l

2 (G) is called a subspace of functions

satisfying definite boundary conditions and is denoted as W
l
2(∂G).

Let’s consider a triple of equipped Hilbert spaces

W 2p
2 ⊂W p

2 ⊂ L2(G), (6)

where G is an open bounded domain of the class A(1). Let ξ = ξ(x), x ∈ G be

a random field with probability 1 belonging to L2(G) and let the distribution µξ
in L2(G) possess a logarithmic derivative along W 2p

2 of the form λ(x) : L2(G) →
L2(G). Take a general differential expression

Lu =
∑
|α|≤r

aα(x)D
αu, (7)

and suppose that for differential operators L and L∗ the following energetic inequal-

ities are fulfilled:

∥Lu∥L2(G) ≥ c ∥u∥L2(G) , ∥L∗v∥L2(G) ≥ c ∥v∥L2(G) , (8)

where c > 0, u, v ∈ C∞
0 (G).

We understand the solvability of the boundary value problem

Lς(x) = ξ(x), ς ∈W
α
2 (∂G) (9)

in the following sense: as is known (details in [3] ,subject to energetic inequalities (8)

there exists a resolvable extension of L having a continuous inverse determined on

all L2(G) . We’ll again write the resolvable extension of L by L . Under the solution

of the stated problem it is natural to understand ς = L−1ξ. In the similar sense we

should also understand the solvability of the nonlinear boundary value problem

(Lη)(x) + g(x, η(x)) = ξ(x), η ∈W
α
2 (∂G)

as the solvability of the equation

η(x) + L−1g(x, η(x)) = L−1ξ(x),

where g(x, y) is a smooth function in L2(G).

Consider the nonlinear boundary value problem

(Lη)(x) + g(x, η(x)) = ξ(x), η ∈W
α
2 (∂G) (10)

In (9) and (10) ξ(x) is a random field satisfying the conditions:∫
G
Eξ2(x)dx <∞ (11)
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and its distribution µξ possesses a logarithmic derivative along the constant direc-

tions W 2p
2 . This means that for amy smooth functional φ ∈ C−1(L2(G)) we have

E(φ′(ξ), h)W p
2 (G) = Eφ(ξ)(λ(ξ), h)W p

2 (G), (12)

where λ : L2(G) → L2(G), h ∈W 2p
2 .

Let µξ be the distribution in L2(G) of problem (10) and µς be the distribution

in L2(G) of problem (9). From theorem 2 it followers.

Theorem 3. Let ∆ be an open bounded domain of the class A(1) with the

boundary ∂∆ , L be a differential operator determined by equality (7) with smooth

coefficients aα(x) ∈ C |α|(∆∪ ∂∆), ξ(x) be a random field satisfying conditions (11)

and (12), g(x, u) determined on G×L2(G) for each u possess derivatives generalized

in Sobolev’s sense and of order 2p and there exist an operator F =
∂g

∂u
satisfying

the relation ∥F∥ < γ where γ =
∥∥L−1

∥∥−1
.

Then, if for any u, v ∈ C∞
0 (G). and for some C > 0 the energetic inequalities

(8) are fulfilled, then µη ∼ µς and

dµη
dµς

(u) =
∣∣det(I + L−1(u))

∣∣ exp


1∫
0

∫
G
λ

∑
|α|≤p

aα(x)D
αu+ tg(x, u)

 g(x, u)dsdt+

+(−1)p
1∫
0

∫
G
λ

∑
|α|≤p

aα(x)D
αu+ tg(x, u)

 ∑
|α|=p

D2αug(x, u)dxdt

 , (13)

for u ∈W p
2 (G).

In the special case when ξ(x) is a Gaussion random field, whose correlation

operator in the scalar product of the space W p
2 (G) is θ > 0 we have

dµη
dµς

(u) =
∣∣det(I + L−1F (u))

∣∣ exp{− 1

θ

∫
G

∑
|α|≤p

aα(x)D
αu · g(x, u)dx+

+(−1)p+1

∫
G

∑
|β|≤p

aα(x)D
αu ·D2βg(x, u)dx(x, u)dx− 1

2α

∫
G

∑
|α|=p

(Dαu)2dx
}
.

Cite application of theorem 3 to theory of prediction and filtration of random

fields. Let X be a Hilbert space, ξ be a random variable with values in X, Φ : X →
R be a measurable functional. Let E be some linear space with σ− algebra of its

subsets E, and Q = X → E be some linear operator. The problem is in calculation

of optimal meansquare estimation Φ∗(ξ) of the function Φ from the random variable

ξ by observations of Qξ . It is known well that such an estimation is given by the

equality

Φ∗(ξ) = E

{
Φ(ξ)

EξQ

}
,

where EξQ is σ− algebra generated by the random element Qξ .
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Suppose that on the Borel σ -algebra of B space X another random variable η

is given such that the distributions µξ and µη are equivalent µξ ∼ µη and ρ(x) =
dµξ
dµη

(x).

Lemma. It Φ(x) is a bounded µη -measurable function, then the following

formula is valid

Φ∗(ξ) =
E
{
Φ(η)ρ(η)/EξQ

}
E
{
ρ(η)/EξQ

}
∣∣∣∣∣∣
η=ξ

. (14)

Proof. By definition of conditional mean, for any measurable bounded function

h on E we have

EΦ(ξ)h(Qξ) =E
{
E
[
Φ(ξ)/EξQ

]}
h(Qξ),

hence

EΦ(η)ρ(η)h(Qη) =E
{
E
[
Φ(ξ)/EξQ

]
ξ=η

}
E{ρ(η)/EηQh(Qη),

but as

EΦ(η)ρ(η)h(Qξ) =E
{
E
[
Φ(η)ρ(η)/EξQ

]}
h(Qη),

then because of arbitrariness of h(x) we get

E
[
Φ(ξ)/EξQ

]
ξ=η

E
{
ρ(η)/EξQ

}
= E

[
Φ(η)ρ(η)/EξQ

]
.

hence we get (14).

We can simplify formula (14) if η is a Gaussian variable in X and Q is a con-

tinuous linear mapping of the space X in X. For that we represent η in the form

η = η∗ + η ,where η∗ = E{η/EηQ} is an optimal in the meansquare sense linear

prediction of Gaussian random variable η by observations Qη, while η is a Gaussian

variable independent of EηQ. Then from (14) we can write

Φ∗(ξ) =
E
{
Φ(η)ρ(η)/EηQ

}
E
{
ρ(η)/EηQ

}
∣∣∣∣∣∣
η=ξ

=
E
{
Φ(η∗ + η)ρ(η∗ + η)/EξQ

}
E
{
ρ(η∗ + η)/EηQ

}
∣∣∣∣∣∣
η=ξ

=

=
E{Φ(x+ η)ρ(x+ η)}

E {ρ(x+ η)}

∣∣∣∣
x=η∗=E{η/Eη

Q},η=ξ
, (15)

where (unconditional) mean value is taken with respect to η and is substitutied by

turns x = η∗ = E{η/EηQ} and η = ξ (this last substitution is assumed to be a

substitution of observation ξ).

Let the solution of problem (10)- η(x) be observed in some subdomain G1 ⊂ G. It

is required to find an optimal in the meanquadratic sense estimation of the functional

Φ from the solution of η(x) at the point x = x0 ∈ G2 = G−G1 .

To this end , in addition to problem (10) we consider the linear problem (9)

Lς(x) = ξ(x), ς ∈W
α
2 (∂G).
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By combining theorem 3 with the lemma we get

Theorem 4. Let in open, bounded domain G of the class A(1) with the boundary

∂G we consider a partial equation with boundary conditions (10) in which the coef-

ficients of the operator L are sufficiently smooth, aα(x) ∈ C |α|(∆ ∪ ∂∆), ξ(x) is a

Gaussian random field whose correlation operator in the scalar product of the space

W p
2 (G) is θI, θ > 0; g(x, u) is a function determined on G×L2(G) and possessing for

each x generalized in the Sobolev sense derivatives of order 2p, the operators F = ∂g
∂u

satisfy the relation ∥F∥ < γ , where γ =
∥∥L−1

∥∥−1
. Then if for any u, v ∈ C∞

0 (G)

and some C > 0 the energetic inequalities (8) are fulfilled, then optimal prediction

Φ∗(η)(x0) is given by the formula:

Φ∗(η)(x0) =
{
EΦ(z(x0) + υ(x0))

∣∣det(I + L−1F (z(x) + υ(x)))
∣∣×

× exp

−1

θ

∫
G

∑
|α|≤p

aα(x)D
α(z + υ(x)g(x, z(x) + υ(x))dx+

+(−1)p+1

∫
G

∑
|β|≤p

aα(x)D
α(z(x) + υ(x)) ·D2βg(x, z(x) + υ(x))dx−

− 1

2α

∫
G

∑
|α|=p

(Dα(z(x) + υ(x)))2dx

 · {E
∣∣det(I + L−1F (z(x) + υ(x)))

∣∣×
× exp

−1

θ

∫
G

∑
|α|≤p

aα(x)D
α(z + υ(x)g(x, z(x) + υ(x))dx+

+(−1)p+1

∫
G

∑
|β|≤p

aα(x)D
α(z(x) + υ(x)) ·D2βg(x, z(x) + υ(x))dx−

− 1

2α

∫
G

∑
|α|=p

(Dα(z(x) + υ(x)))2dx


−1∣∣∣∣∣∣

η=ξ

.
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