Besarion DOCHVIRI, Omar GLONTI, Omar PURTUKHIA, Grigol SOKHADZE

RADON-NIKODYM DERIVATIVE OF SOLUTION OF NONLINEAR EQUATIONS WITH RANDOM RIGHT SIDE AND APPLICATIONS

Abstract

In Hilbert space H consider the equation

$$Ay + B(y) = \xi$$

where A is an unbounded linear operator, B is a bounded smooth operator and ξ is a random element in H with smooth distribution measure μ_{ξ} Specifically we suppose that μ_{ξ} possesses a logarithmical derivative along the directions of vectors from the dense subspace $H_{+} \subset H$.

We study the problem: when the distribution μ_y of the solution of the given equation y possesses a logarithmical derivative, and under what conditions this measure is equivalent with respect to a simpler measure. In the case of equivalence we calculate the Radon-Nikodym density. We cite examples when A is a differential operator.

Before going on to the main problem we cite a theorem on nonlinear transformation of smooth measure in Banach space from the paper [1], that we'll need in future.

Let *B* be a separable real Banach space; *H* be Hilbert space compactly imbedded on *B* and the imbedding $i : H \to B$ be the Hilbert-Schmidt operator. Therewith $i^* : B^* \to H^* \sim H$ and therefore we'll assume that $B^* \subset H \subset B$. Denote by $\langle \cdot, \cdot \rangle$ a coupling of elements from *B* and B^* . Let μ be a measure (a real-valued finite function of the sets) on a Borel σ -algebra \mathfrak{B} , and $z(x) : B \to B^*$ be a vector field in *B*.

It is said that (see [2]) μ possesses a logarith mical derivative along the vector field z of the form $\rho_{\mu}(z, x)$ if for any function $\varphi \in C_b^1(B)$ it is valid the equality (the integration by parts formula)

$$\int_{B} \left\langle \varphi'(x), z(x) \right\rangle \mu(dx) = \int_{B} \varphi(x) \rho_{\mu}(z, x) \mu(dx).$$

We'll denote by \mathfrak{M} a set of measures possessing a logarithmic derivative along any constant directions $z(x) = h \in B^*$ of the form $\rho_{\mu}(z,x) = \langle \lambda(x), h \rangle$, where $\lambda(x) : B \to B$ is a continuous function. In particular, Gauss measures and also their smooth images belong to \mathfrak{M} .

Theorem 1. [1] Let a nonlinear transformation $f: B \to B$ having the inverse of the form $f^{-1}: x \to y = x + F(x)$ where $F(x): B \to B^*$ is differentiable, act on B. Then if the operator I + tF'(x) is inversible for each $t \in [0, 1]$: then the

$\frac{46}{[B.Dochviri, O.Glonti, O.Purtukhia, G.Sokhadze]} Transactions of NAS of Azerbaijan (March 1997) and (March 1997) and$

measures $\mu \in \mathfrak{M}$ and $\mu^f = \mu(f^{-1})$ are equivalent and we can represent the Radon -Nikodym derivative in the form:

$$\frac{d\mu^f}{d\mu}(x) = \left|\det\left(I + F'(x)\right)\right| \exp\left\langle \int_0^1 \lambda(x + tF(x)dt, F(x))\right\rangle \tag{1}$$

Remark. Consider the expression

$$\beta(t, F, x) = \langle \lambda(x + tF(x), F(x)) \rangle + trF'(x).$$

As it is shown in [2] it has sense also when: $F: B \to H$, and therefore we can strengthen the theorem, and require this condition on the function F instead of $F(x): B \to B^*$. Therewith (1) takes the form

$$\frac{d\mu^f}{d\mu}(x) = \left|\det\left(I + F'(x)\right)\right| \exp \int_0^1 \beta(t, F, x) dt$$

In a separable real Hilbert space H consider the equation

$$A\eta + g(\eta) = \xi, \tag{2}$$

for which the following conditions are fulfilled:

a) A is a linear unbounded operator with domain of definition $\mathbb{D}(A)$ densely imbedded in H Suppose that there exists a bounded inverse A^{-1} being the Hilbert Schimdt operator. In the domain $\mathbb{D}(A)$ introduce a scalar derivative by the formula $(x,y)_{\mathbb{D}} = (Ax,Ay)_{H}$. We get an equipped Hilbert space $X_{+} \subset X \subset X_{-},$ where $X_+ = \mathbb{D}(A), X = H;$

b) g is a differentiable nonlinear mapping, and the operator $I + tA^{-1}g'(x)$ is inversible for all $t \in [0, 1]$;

c) the random element ξ in X_{-} has the distribution $\mu_{\xi} \in \mathfrak{M}$, i.e..

 $E(\varphi'(\xi), h)_H = E\varphi(\xi)(\lambda(\xi), h)_H, \varphi \in C_h^1(X_-).$

In addition to (2) consider the linear equation

$$A\varsigma = \xi. \tag{3}$$

Let μ_η and μ_ς be measures corresponding to random elements η and ς .

Theorem 2. Let conditions a) b) c) be fulfilled for equations (2) and (3). Then $\mu_{\eta} \sim \mu_{\varsigma}$ and

$$\frac{d\mu_{\eta}}{d\mu_{\varsigma}}(v) = \left|\det(I + A^{-1}g'(v))\right| \exp \int_{0}^{1} \beta(t, A^{-1}, g, v) dt,$$
(4)

if g'(v) is a Hilbert-Schmidt operator, then (4) takes the form

$$\frac{d\mu_{\eta}}{d\mu_{\varsigma}}(v) = \left|\det(I + A^{-1}g'(v))\right| \exp\left(\int_{0}^{1} \lambda(Av + tg(v))dt, g(v)\right)_{H}.$$

Transactions of NAS of Azerbaijan _____ 47 [Radon-Nikodym derivative of solution...]

Let Δ be an open, bounded domain in finite -dimensional Euclidean space \mathbb{R}^n . Denote the boundary Δ by $\partial \Delta$ Everywhere we suppose that $\partial \Delta$ is a smooth surface. Under this we understand the following one: to each point $x \in \partial \Delta$ we can assign *n*dimensional ball $\Gamma(x)$ centered at the point x such that the part $\partial \Delta$ contained in $\Gamma(x)$ admits the representation with respect to some system of coordinates $(t_1, ..., t_n)$ with origin at the point x, of the form

$$t_n = \psi(t_1, .., t_n),$$
 (5)

where the function ψ is determined in some domain, where it belongs to the class C^1 and $\psi(x) = \frac{\partial \psi}{\partial x_i} = 0$, i = 1, ...n. There with at each point $x \in \partial \Delta$ there exists a definite tangential hyper plane T_x , given by the equation t_n . Say that the domain $\Delta \cup \partial \Delta$ belongs to the class $A^{(k)}$ if the function ψ contained in (5) belongs to the class C^k .

For the derivatives (ordinary or generalized) we apply the following denotation:

$$D_j = \frac{\partial}{\partial x_j}, \ j = 1, \dots, n, \ D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}, \ \alpha = (\alpha_1, \dots, \alpha_n), \ |\alpha| = \alpha_1 + \dots + \alpha_n.$$

The linear differential expression of order r is written as follows:

$$Lu = \sum_{|\alpha| \le r} a_{\alpha}(x) D^{\alpha} u$$

where $a_{\alpha}(x)$ are real coefficients that are smooth. Under this we mean

$$a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta).$$

Denote the conjugation to L by L^* . Thus,

$$L^*u = \sum_{|\alpha| \le r} (-1)^{|\alpha|} D^{\alpha}(a_{\alpha}(x)u) = \sum_{|\alpha| \le r} b_{\alpha}(x) D^{\alpha}u.$$

Denote by $\mathcal{L}_2(G)$ a space of real valued functions that are integrable together with own square with respect to Lebesgue measure and with a scalar product

$$(u,v)_{\mathcal{L}_2(G)} = \int_G u(x)v(x)dx, \quad u,v \in \mathcal{L}$$

As usually $W_2^l(G)$ denotes a Sobolev space with a scalar product

$$(u,v)_{W_2^l(G)} = (u,v)_{\mathcal{L}_2(G)} + \sum_{|\alpha|=l} (D^{\alpha}u, D^{\alpha}v)_{\mathcal{L}_2(G)}.$$

In order to cover a more general situation we follow [3] and introduce the notion of boundary conditions. Denote the set of functions finite with respect to G and ∞ from $C^l(l=0,1,...,\infty)$ by $C^l_0(G),$ the space $W^{0l}_2(G)$, l=0,1,... is determined as a subspace of $W_2^l(G)$ obtained by the closure in $W_2^l(G)$ of the linear set $C_0^{\infty} \subset W_2^l(G)$.

48_____ [B.Dochviri,O.Glonti,O.Purtukhia,G.Sokhadze]

It is known that $W_2^{0l}(G)$ for $l \ge 1$ coincides with the totality of all functions $u(x) \in$ $W_2^l(G)$ for which $(D^{\alpha}u)(x) = 0, (x \in \Gamma)$ for $|\alpha| \le l-1$.

Any subspace from $W_2^l(G)$ containing $W_2^{0l}(G)$ is called a subspace of functions satisfying definite boundary conditions and is denoted as $\overline{W}_2^l(\partial G)$.

Let's consider a triple of equipped Hilbert spaces

$$W_2^{2p} \subset W_2^p \subset \mathcal{L}_2(G), \tag{6}$$

where G is an open bounded domain of the class $A^{(1)}$. Let $\xi = \xi(x), x \in G$ be a random field with probability 1 belonging to $\mathcal{L}_2(G)$ and let the distribution $\mu_{\mathcal{E}}$ in $\mathcal{L}_2(G)$ possess a logarithmic derivative along W_2^{2p} of the form $\lambda(x) : \mathcal{L}_2(G) \to \mathcal{L}_2(G)$ $\mathcal{L}_2(G)$. Take a general differential expression

$$Lu = \sum_{|\alpha| \le r} a_{\alpha}(x) D^{\alpha} u, \tag{7}$$

and suppose that for differential operators L and L^* the following energetic inequalities are fulfilled:

$$\|Lu\|_{\mathcal{L}_{2}(G)} \ge c \,\|u\|_{\mathcal{L}_{2}(G)} \,, \quad \|L^{*}v\|_{\mathcal{L}_{2}(G)} \ge c \,\|v\|_{\mathcal{L}_{2}(G)} \,, \tag{8}$$

where c > 0, $u, v \in C_0^{\infty}(G)$.

We understand the solvability of the boundary value problem

$$L\varsigma(x) = \xi(x), \quad \varsigma \in \overline{W}_2^\alpha(\partial G) \tag{9}$$

in the following sense: as is known (details in [3], subject to energetic inequalities (8) there exists a resolvable extension of L having a continuous inverse determined on all $\mathcal{L}_2(G)$. We'll again write the resolvable extension of L by L. Under the solution of the stated problem it is natural to understand $\zeta = L^{-1}\xi$. In the similar sense we should also understand the solvability of the nonlinear boundary value problem

$$(L\eta)(x) + g(x,\eta(x)) = \xi(x), \quad \eta \in \overline{W}_2^{\alpha}(\partial G)$$

as the solvability of the equation

$$\eta(x) + L^{-1}g(x,\eta(x)) = L^{-1}\xi(x),$$

where g(x, y) is a smooth function in $\mathcal{L}_2(G)$.

Consider the nonlinear boundary value problem

$$(L\eta)(x) + g(x,\eta(x)) = \xi(x), \quad \eta \in \overline{W}_2^{\alpha}(\partial G)$$
(10)

In (9) and (10) $\xi(x)$ is a random field satisfying the conditions:

$$\int_{G} E\xi^{2}(x)dx < \infty \tag{11}$$

and its distribution μ_{ξ} possesses a logarithmic derivative along the constant directions W_2^{2p} . This means that for any smooth functional $\varphi \in C^{-1}(\mathcal{L}_2(G))$ we have

$$E(\varphi'(\xi), h)_{W_{2}^{p}(G)} = E\varphi(\xi)(\lambda(\xi), h)_{W_{2}^{p}(G)},$$
(12)

where $\lambda : \mathcal{L}_2(G) \to \mathcal{L}_2(G), h \in W_2^{2p}$.

Let μ_{ξ} be the distribution in $\mathcal{L}_2(G)$ of problem (10) and μ_{ζ} be the distribution in $\mathcal{L}_2(G)$ of problem (9). From theorem 2 it followers.

Theorem 3. Let Δ be an open bounded domain of the class $A^{(1)}$ with the boundary $\partial \Delta$, L be a differential operator determined by equality (7) with smooth coefficients $a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta)$, $\xi(x)$ be a random field satisfying conditions (11) and (12), g(x, u) determined on $G \times \mathcal{L}_2(G)$ for each u possess derivatives generalized in Sobolev's sense and of order 2p and there exist an operator $F = \frac{\partial g}{\partial u}$ satisfying the relation $||F|| < \gamma$ where $\gamma = ||L^{-1}||^{-1}$.

Then, if for any $u, v \in C_0^{\infty}(G)$. and for some C > 0 the energetic inequalities (8) are fulfilled, then $\mu_{\eta} \sim \mu_{\varsigma}$ and

$$\frac{d\mu_{\eta}}{d\mu_{\varsigma}}(u) = \left|\det(I + L^{-1}(u))\right| \exp\left\{\int_{0}^{1} \int_{G} \lambda\left(\sum_{|\alpha| \le p} a_{\alpha}(x)D^{\alpha}u + tg(x,u)\right)g(x,u)dsdt + \left(-1\right)^{p} \int_{0}^{1} \int_{G} \lambda\left(\sum_{|\alpha| \le p} a_{\alpha}(x)D^{\alpha}u + tg(x,u)\right)\sum_{|\alpha| = p} D^{2\alpha}ug(x,u)dxdt\right\}, \quad (13)$$

for $u \in W_2^p(G)$.

In the special case when $\xi(x)$ is a Gaussion random field, whose correlation operator in the scalar product of the space $W_2^p(G)$ is $\theta > 0$ we have

$$\begin{aligned} \frac{d\mu_{\eta}}{d\mu_{\zeta}}(u) &= \left|\det(I+L^{-1}F(u))\right|\exp\big\{-\frac{1}{\theta}\int_{G}\sum_{|\alpha|\leq p}a_{\alpha}(x)D^{\alpha}u\cdot g(x,u)dx + \\ &+(-1)^{p+1}\int_{G}\sum_{|\beta|\leq p}a_{\alpha}(x)D^{\alpha}u\cdot D^{2\beta}g(x,u)dx(x,u)dx - \frac{1}{2\alpha}\int_{G}\sum_{|\alpha|=p}(D^{\alpha}u)^{2}dx\Big\}.\end{aligned}$$

Cite application of theorem 3 to theory of prediction and filtration of random fields. Let X be a Hilbert space, ξ be a random variable with values in $X, \Phi: X \to R$ be a measurable functional. Let E be some linear space with σ - algebra of its subsets \mathfrak{E} , and $\mathbb{Q} = X \to E$ be some linear operator. The problem is in calculation of optimal meansquare estimation $\Phi^*(\xi)$ of the function Φ from the random variable ξ by observations of $\mathbb{Q}\xi$. It is known well that such an estimation is given by the equality

$$\Phi^*(\xi) = E\left\{\frac{\Phi(\xi)}{\mathfrak{E}_{\mathbb{Q}}^{\xi}}\right\},\,$$

where $\mathfrak{E}^{\xi}_{\mathbb{Q}}$ is σ - algebra generated by the random element $\mathbb{Q}\xi$.

49

Transactions of NAS of Azerbaijan

50______[B.Dochviri,O.Glonti,O.Purtukhia,G.Sokhadze]

Suppose that on the Borel σ -algebra of \mathfrak{B} space X another random variable η is given such that the distributions μ_{ξ} and μ_{η} are equivalent $\mu_{\xi} \sim \mu_{\eta}$ and $\rho(x) =$ $\frac{d\mu_{\xi}}{dt}(x).$

 $\overline{d\mu_{\eta}}^{(x)}$. Lemma. It $\Phi(x)$ is a bounded μ_{η} -measurable function, then the following formula is valid

$$\Phi^*(\xi) = \left. \frac{E\left\{ \Phi(\eta)\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\xi} \right\}}{E\left\{ \rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\xi} \right\}} \right|_{\eta=\xi}.$$
(14)

Proof. By definition of conditional mean, for any measurable bounded function h on E we have

$$E\Phi(\xi)h(\mathbb{Q}\xi) = E\left\{E\left[\Phi(\xi)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right]\right\}h(\mathbb{Q}\xi),$$

hence

$$E\Phi(\eta)\rho(\eta)h(\mathbb{Q}\eta) = E\left\{E\left[\Phi(\xi)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right]_{\xi=\eta}\right\}E\{\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\eta}h(\mathbb{Q}\eta),$$

but as

$$E\Phi(\eta)\rho(\eta)h(\mathbb{Q}\xi) = E\left\{E\left[\Phi(\eta)\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right]\right\}h(\mathbb{Q}\eta)$$

then because of arbitrariness of h(x) we get

$$E\left[\Phi(\xi)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right]_{\xi=\eta}E\left\{\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right\}=E\left[\Phi(\eta)\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\xi}\right]$$

hence we get (14).

1

We can simplify formula (14) if η is a Gaussian variable in X and \mathbb{Q} is a continuous linear mapping of the space X in X. For that we represent η in the form $\eta = \eta^* + \overline{\eta}$, where $\eta^* = E\{\eta/\mathfrak{E}_{\mathbb{Q}}^{\eta}\}$ is an optimal in the mean square sense linear prediction of Gaussian random variable η by observations $\mathbb{Q}\eta$, while $\overline{\eta}$ is a Gaussian variable independent of $\mathfrak{E}^{\eta}_{\mathbb{O}}$. Then from (14) we can write

$$\Phi^{*}(\xi) = \frac{E\left\{\Phi(\eta)\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}{E\left\{\rho(\eta)/\mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}\bigg|_{\eta=\xi} = \frac{E\left\{\Phi(\eta^{*}+\overline{\eta})\rho(\eta^{*}+\overline{\eta})/\mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}{E\left\{\rho(\eta^{*}+\overline{\eta})/\mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}\bigg|_{\eta=\xi} = \frac{E\left\{\Phi(x+\overline{\eta})\rho(x+\overline{\eta})\right\}}{E\left\{\rho(x+\overline{\eta})\right\}}\bigg|_{x=\eta^{*}=E\left\{\eta/\mathfrak{E}_{\mathbb{Q}}^{\eta}\right\},\eta=\xi},$$
(15)

where (unconditional) mean value is taken with respect to $\overline{\eta}$ and is substitutied by turns $x = \eta^* = E\{\eta/\mathfrak{E}_{\mathbb{Q}}^{\eta}\}$ and $\eta = \xi$ (this last substitution is assumed to be a substitution of observation ξ).

Let the solution of problem (10)- $\eta(x)$ be observed in some subdomain $G_1 \subset G$. It is required to find an optimal in the meanquadratic sense estimation of the functional Φ from the solution of $\eta(x)$ at the point $x = x_0 \in G_2 = G - G_1$.

To this end, in addition to problem (10) we consider the linear problem (9)

$$L\varsigma(x) = \xi(x), \quad \varsigma \in \overline{W}_2^{\alpha}(\partial G).$$

Transactions of NAS of Azerbaijan ______ [Radon-Nikodym derivative of solution...]

By combining theorem 3 with the lemma we get

Theorem 4. Let in open, bounded domain G of the class $A^{(1)}$ with the boundary ∂G we consider a partial equation with boundary conditions (10) in which the coefficients of the operator L are sufficiently smooth, $a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta), \ \xi(x)$ is a Gaussian random field whose correlation operator in the scalar product of the space $W_2^p(G)$ is $\theta I, \theta > 0; g(x, u)$ is a function determined on $G \times \mathcal{L}_2(G)$ and possessing for each x generalized in the Sobolev sense derivatives of order 2p, the operators $F = \frac{\partial g}{\partial u}$ satisfy the relation $||F|| < \gamma$, where $\gamma = ||L^{-1}||^{-1}$. Then if for any $u, v \in C_0^{\infty}(G)$ and some C > 0 the energetic inequalities (8) are fulfilled, then optimal prediction $\Phi^*(\eta)(x_0)$ is given by the formula:

$$\begin{split} \Phi^*(\eta)(x_0) &= \left\{ E\Phi(z(x_0) + \overline{v}(x_0)) \left| \det(I + L^{-1}F(z(x) + \overline{v}(x))) \right| \times \right. \\ &\times \exp\left\{ -\frac{1}{\theta} \int_G \sum_{|\alpha| \le p} a_\alpha(x) D^\alpha(z + \overline{v}(x)g(x, z(x) + \overline{v}(x))dx + \right. \\ &+ (-1)^{p+1} \int_G \sum_{|\beta| \le p} a_\alpha(x) D^\alpha(z(x) + \overline{v}(x)) \cdot D^{2\beta}g(x, z(x) + \overline{v}(x))dx - \right. \\ &\left. -\frac{1}{2\alpha} \int_G \sum_{|\alpha| = p} (D^\alpha(z(x) + \overline{v}(x)))^2 dx \right\} \cdot \left\{ E \left| \det(I + L^{-1}F(z(x) + \overline{v}(x))) \right| \times \\ &\times \exp\left\{ -\frac{1}{\theta} \int_G \sum_{|\alpha| \le p} a_\alpha(x) D^\alpha(z + \overline{v}(x)g(x, z(x) + \overline{v}(x))dx + \right. \\ &+ (-1)^{p+1} \int_G \sum_{|\beta| \le p} a_\alpha(x) D^\alpha(z(x) + \overline{v}(x)) \cdot D^{2\beta}g(x, z(x) + \overline{v}(x))dx - \\ &\left. -\frac{1}{2\alpha} \int_G \sum_{|\alpha| = p} (D^\alpha(z(x) + \overline{v}(x)))^2 dx \right\}^{-1} \right|_{n=\ell} . \end{split}$$

References

[1]. Daletskii Yu. L., Sokhadze G. Absolute Continuity of Smooth Measures. Functional Analysis and Its Applications. 1988, vol. 22, No. 2/April, pp. 149-150.

[2]. Belopolskava Ia. I., Daletskii Yu. L. Stochastic Equations and Differential Geometry. Springer. 1990. 280 p.

[3].Berezanskii Ju. M. Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Monographs, 1968, vol 17, 809 p.

[4].Daletskii Yu. L., Shatashvili A. D. On Optimal Prediction of Random Variables Nonlinearly related to Gaussian. Theory of Random Processes, 1975, Issue 3, pp. 30-33.

51

52_____[B.Dochviri,O.Glonti,O.Purtukhia,G.Sokhadze]

Besarion Dochviri, Omar Glonti, Omar Purtukhia,

I.Javakhishvili Tbilisi State University, Tbilisi, Georgia

Grigol Sokhadze

Applied Mathematical Institute of TSU, Tbilisi, Georgia Tel.: (99412) 539-47-20 (off.).

Received February 26, 2014; Revised April 24, 2014.