Besarion DOCHVIRI, Omar GLONTI, Omar PURTUKHIA, Grigol SOKHADZE

RADON-NIKODYM DERIVATIVE OF SOLUTION OF NONLINEAR EQUATIONS WITH RANDOM RIGHT SIDE AND APPLICATIONS

Abstract

In Hilbert space H consider the equation $$
A y+B(y)=\xi
$$ where A is an unbounded linear operator, B is a bounded smooth operator and ξ is a random element in H with smooth distribution measure μ_{ξ} Specifically we suppose that μ_{ξ} possesses a logarithmical derivative along the directions of vectors from the dense subspace $H_{+} \subset H$.

We study the problem: when the distribution μ_{y} of the solution of the given equation y possesses a logarithmical derivative, and under what conditions this measure is equivalent with respect to a simpler measure. In the case of equivalence we calculate the Radon- Nikodym density. We cite examples when A is a differential operator.

Before going on to the main problem we cite a theorem on nonlinear transformation of smooth measure in Banach space from the paper [1], that we'll need in future.

Let B be a separable real Banach space; H be Hilbert space compactly imbedded on B and the imbedding $i: H \rightarrow B$ be the Hilbert-Schmidt operator. Therewith $i^{*}: B^{*} \rightarrow H^{*} \sim H$ and therefore we'll assume that $B^{*} \subset H \subset B$. Denote by $\langle\cdot, \cdot\rangle$ a coupling of elements from B and B^{*}. Let μ be a measure (a real- valued finite function of the sets) on a Borel σ-algebra \mathfrak{B}, and $z(x): B \rightarrow B^{*}$ be a vector field in B.

It is said that (see [2]) μ possesses a logarith mical derivative along the vector field z of the form $\rho_{\mu}(z, x)$ if for any function $\varphi \in C_{b}^{1}(B)$ it is valid the equality (the integration by parts formula)

$$
\int_{B}\left\langle\varphi^{\prime}(x), z(x)\right\rangle \mu(d x)=\int_{B} \varphi(x) \rho_{\mu}(z, x) \mu(d x)
$$

We'll denote by \mathfrak{M} a set of measures possessing a logarithmic derivative along any constant directions $z(x)=h \in B^{*}$ of the form $\rho_{\mu}(z, x)=\langle\lambda(x), h\rangle$, where $\lambda(x): B \rightarrow B$ is a continuous function. In particular, Gauss measures and also their smooth images belong to \mathfrak{M}.

Theorem 1. [1] Let a nonlinear transformation $f: B \rightarrow B$ having the inverse of the form $f^{-1}: x \rightarrow y=x+F(x)$ where $F(x): B \rightarrow B^{*}$ is differentiable, act on B. Then if the operator $I+t F^{\prime}(x)$ is inversible for each $t \in[0,1]$: then the
measures $\mu \in \mathfrak{M}$ and $\mu^{f}=\mu\left(f^{-1}\right)$ are equivalent and we can represent the Radon -Nikodym derivative in the form:

$$
\begin{equation*}
\frac{d \mu^{f}}{d \mu}(x)=\left|\operatorname{det}\left(I+F^{\prime}(x)\right)\right| \exp \left\langle\int_{0}^{1} \lambda(x+t F(x) d t, F(x)\rangle\right. \tag{1}
\end{equation*}
$$

Remark. Consider the expression

$$
\beta(t, F, x)=\left\langle\lambda(x+t F(x), F(x)\rangle+\operatorname{tr} F^{\prime}(x)\right.
$$

As it is shown in [2] it has sense also when: $F: B \rightarrow H$, and therefore we can strengthen the theorem, and require this condition on the function F instead of $F(x): B \rightarrow B^{*}$. Therewith (1) takes the form

$$
\frac{d \mu^{f}}{d \mu}(x)=\left|\operatorname{det}\left(I+F^{\prime}(x)\right)\right| \exp \int_{0}^{1} \beta(t, F, x) d t
$$

In a separable real Hilbert space H consider the equation

$$
\begin{equation*}
A \eta+g(\eta)=\xi \tag{2}
\end{equation*}
$$

for which the following conditions are fulfilled:
a) A is a linear unbounded operator with domain of definition $\mathbb{D}(A)$ densely imbedded in H Suppose that there exists a bounded inverse A^{-1} being the Hilbert Schimdt operator. In the domain $\mathbb{D}(A)$ introduce a scalar derivative by the formula $(x, y)_{\mathbb{D}}=(A x, A y)_{H}$. We get an equipped Hilbert space $X_{+} \subset X \subset X_{-}$, where $X_{+}=\mathbb{D}(A), X=H$;
b) g is a differentiable nonlinear mapping, and the operator $I+t A^{-1} g^{\prime}(x)$ is inversible for all $t \in[0,1]$;
c) the random element ξ in X_{-}has the distribution $\mu_{\xi} \in \mathfrak{M}$, i.e..

$$
E\left(\varphi^{\prime}(\xi), h\right)_{H}=E \varphi(\xi)(\lambda(\xi), h)_{H}, \varphi \in C_{b}^{1}\left(X_{-}\right)
$$

In addition to (2) consider the linear equation

$$
\begin{equation*}
A \varsigma=\xi \tag{3}
\end{equation*}
$$

Let μ_{η} and μ_{ς} be measures corresponding to random elements η and ς.
Theorem 2. Let conditions a) b) c) be fulfilled for equations (2) and (3) .Then $\mu_{\eta} \sim \mu_{\varsigma}$ and

$$
\begin{equation*}
\frac{d \mu_{\eta}}{d \mu_{\varsigma}}(v)=\left|\operatorname{det}\left(I+A^{-1} g^{\prime}(v)\right)\right| \exp \int_{0}^{1} \beta\left(t, A^{-1}, g, v\right) d t \tag{4}
\end{equation*}
$$

if $g^{\prime}(v)$ is a Hilbert-Schmidt operator, then (4) takes the form

$$
\frac{d \mu_{\eta}}{d \mu_{\varsigma}}(v)=\left|\operatorname{det}\left(I+A^{-1} g^{\prime}(v)\right)\right| \exp \left(\int_{0}^{1} \lambda(A v+t g(v)) d t, g(v)\right)_{H}
$$

Let Δ be an open, bounded domain in finite -dimensional Euclidean space R^{n}. Denote the boundary Δ by $\partial \Delta$ Everywhere we suppose that $\partial \Delta$ is a smooth surface. Under this we understand the following one: to each point $x \in \partial \Delta$ we can assign n dimensional ball $\Gamma(x)$ centered at the point x such that the part $\partial \Delta$ contained in $\Gamma(x)$ admits the representation with respect to some system of coordinates $\left(t_{1}, . ., t_{n}\right)$ with origin at the point x, of the form

$$
\begin{equation*}
t_{n}=\psi\left(t_{1}, . ., t_{n}\right), \tag{5}
\end{equation*}
$$

where the function ψ is determined in some domain, where it belongs to the class C^{1} and $\psi(x)=\frac{\partial \psi}{\partial x_{i}}=0, i=1, \ldots n$. Therewith at each point $x \in \partial \Delta$ there exists a definite tangential hyper plane T_{x}, given by the equation t_{n}. Say that the domain $\Delta \cup \partial \Delta$ belongs to the class $A^{(k)}$ if the function ψ contained in (5) belongs to the class C^{k}.

For the derivatives (ordinary or generalized) we apply the following denotation:

$$
D_{j}=\frac{\partial}{\partial x_{j}}, j=1, \ldots, n, D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right),|\alpha|=\alpha_{1}+\ldots+\alpha_{n} .
$$

The linear differential expression of order r is written as follows:

$$
L u=\sum_{|\alpha| \leq r} a_{\alpha}(x) D^{\alpha} u,
$$

where $a_{\alpha}(x)$ are real coefficients that are smooth. Under this we mean

$$
a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta) .
$$

Denote the conjugation to L by L^{*}.Thus,

$$
L^{*} u=\sum_{|\alpha| \leq r}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha}(x) u\right)=\sum_{|\alpha| \leq r} b_{\alpha}(x) D^{\alpha} u .
$$

Denote by $\mathcal{L}_{2}(G)$ a space of real valued functions that are integrable together with own sguare with respect to Lebesgue measure and with a scalar product

$$
(u, v)_{\mathcal{L}_{2}(G)}=\int_{G} u(x) v(x) d x, \quad u, v \in \mathcal{L}
$$

As usually $W_{2}^{l}(G)$ denotes a Sobolev space with a scalar product

$$
(u, v)_{W_{2}^{l}(G)}=(u, v)_{\mathcal{L}_{2}(G)}+\sum_{|\alpha|=l}\left(D^{\alpha} u, D^{\alpha} v\right)_{\mathcal{L}_{2}(G)} .
$$

In order to cover a more general situation we follow [3] and introduce the notion of boundary conditions. Denote the set of functions finite with respect to G and ∞ from $C^{l}(l=0,1, \ldots, \infty)$ by $C_{0}^{l}(G)$, the space $W_{2}^{0 l}(G), l=0,1, \ldots$ is determined as a subspace of $W_{2}^{l}(G)$ obtained by the closure in $W_{2}^{l}(G)$ of the linear set $C_{0}^{\infty} \subset W_{2}^{l}(G)$.

It is known that $W_{2}^{0 l}(G)$ for $l \geq 1$ coincides with the totality of all functions $u(x) \in$ $W_{2}^{l}(G)$ for which $\left(D^{\alpha} u\right)(x)=0,(x \in \Gamma)$ for $|\alpha| \leq l-1$.

Any subspace from $W_{2}^{l}(G)$ containing $W_{2}^{0 l}(G)$ is called a subspace of functions satisfying definite boundary conditions and is denoted as $\bar{W}_{2}^{l}(\partial G)$.

Let's consider a triple of equipped Hilbert spaces

$$
\begin{equation*}
W_{2}^{2 p} \subset W_{2}^{p} \subset \mathcal{L}_{2}(G) \tag{6}
\end{equation*}
$$

where G is an open bounded domain of the class $A^{(1)}$. Let $\xi=\xi(x), x \in G$ be a random field with probability 1 belonging to $\mathcal{L}_{2}(G)$ and let the distribution μ_{ξ} in $\mathcal{L}_{2}(G)$ possess a logarithmic derivative along $W_{2}^{2 p}$ of the form $\lambda(x): \mathcal{L}_{2}(G) \rightarrow$ $\mathcal{L}_{2}(G)$. Take a general differential expression

$$
\begin{equation*}
L u=\sum_{|\alpha| \leq r} a_{\alpha}(x) D^{\alpha} u \tag{7}
\end{equation*}
$$

and suppose that for differential operators L and L^{*} the following energetic inequalities are fulfilled:

$$
\begin{equation*}
\|L u\|_{\mathcal{L}_{2}(G)} \geq c\|u\|_{\mathcal{L}_{2}(G)}, \quad\left\|L^{*} v\right\|_{\mathcal{L}_{2}(G)} \geq c\|v\|_{\mathcal{L}_{2}(G)} \tag{8}
\end{equation*}
$$

where $c>0, u, v \in C_{0}^{\infty}(G)$.
We understand the solvability of the boundary value problem

$$
\begin{equation*}
L \varsigma(x)=\xi(x), \quad \varsigma \in \bar{W}_{2}^{\alpha}(\partial G) \tag{9}
\end{equation*}
$$

in the following sense: as is known (details in [3] ,subject to energetic inequalities (8) there exists a resolvable extension of L having a continuous inverse determined on all $\mathcal{L}_{2}(G)$. We'll again write the resolvable extension of L by L. Under the solution of the stated problem it is natural to understand $\varsigma=L^{-1} \xi$. In the similar sense we should also understand the solvability of the nonlinear boundary value problem

$$
(L \eta)(x)+g(x, \eta(x))=\xi(x), \quad \eta \in \bar{W}_{2}^{\alpha}(\partial G)
$$

as the solvability of the equation

$$
\eta(x)+L^{-1} g(x, \eta(x))=L^{-1} \xi(x)
$$

where $g(x, y)$ is a smooth function in $\mathcal{L}_{2}(G)$.
Consider the nonlinear boundary value problem

$$
\begin{equation*}
(L \eta)(x)+g(x, \eta(x))=\xi(x), \quad \eta \in \bar{W}_{2}^{\alpha}(\partial G) \tag{10}
\end{equation*}
$$

In (9) and (10) $\xi(x)$ is a random field satisfying the conditions:

$$
\begin{equation*}
\int_{G} E \xi^{2}(x) d x<\infty \tag{11}
\end{equation*}
$$

and its distribution μ_{ξ} possesses a logarithmic derivative along the constant directions $W_{2}^{2 p}$. This means that for amy smooth functional $\varphi \in C^{-1}\left(\mathcal{L}_{2}(G)\right)$ we have

$$
\begin{equation*}
E\left(\varphi^{\prime}(\xi), h\right)_{W_{2}^{p}(G)}=E \varphi(\xi)(\lambda(\xi), h)_{W_{2}^{p}(G)}, \tag{12}
\end{equation*}
$$

where $\lambda: \mathcal{L}_{2}(G) \rightarrow \mathcal{L}_{2}(G), h \in W_{2}^{2 p}$.
Let μ_{ξ} be the distribution in $\mathcal{L}_{2}(G)$ of problem (10) and μ_{ς} be the distribution in $\mathcal{L}_{2}(G)$ of problem (9). From theorem 2 it followers.

Theorem 3. Let Δ be an open bounded domain of the class $A^{(1)}$ with the boundary $\partial \Delta, L$ be a differential operator determined by equality (7) with smooth coefficients $a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta), \xi(x)$ be a random field satisfying conditions (11) and (12), $g(x, u)$ determined on $G \times \mathcal{L}_{2}(G)$ for each u possess derivatives generalized in Sobolev's sense and of order $2 p$ and there exist an operator $F=\frac{\partial g}{\partial u}$ satisfying the relation $\|F\|<\gamma$ where $\gamma=\left\|L^{-1}\right\|^{-1}$.

Then, if for any $u, v \in C_{0}^{\infty}(G)$. and for some $C>0$ the energetic inequalities (8) are fulfilled, then $\mu_{\eta} \sim \mu_{\varsigma}$ and

$$
\begin{align*}
& \frac{d \mu_{\eta}}{d \mu_{\varsigma}}(u)=\left|\operatorname{det}\left(I+L^{-1}(u)\right)\right| \exp \left\{\int_{0}^{1} \int_{G} \lambda\left(\sum_{|\alpha| \leq p} a_{\alpha}(x) D^{\alpha} u+t g(x, u)\right) g(x, u) d s d t+\right. \\
& \left.\quad+(-1)^{p} \int_{0}^{1} \int_{G} \lambda\left(\sum_{|\alpha| \leq p} a_{\alpha}(x) D^{\alpha} u+t g(x, u)\right) \sum_{|\alpha|=p} D^{2 \alpha} u g(x, u) d x d t\right\} \tag{13}
\end{align*}
$$

for $u \in W_{2}^{p}(G)$.
In the special case when $\xi(x)$ is a Gaussion random field, whose correlation operator in the scalar product of the space $W_{2}^{p}(G)$ is $\theta>0$ we have

$$
\begin{gathered}
\frac{d \mu_{\eta}}{d \mu_{\varsigma}}(u)=\left|\operatorname{det}\left(I+L^{-1} F(u)\right)\right| \exp \left\{-\frac{1}{\theta} \int_{G} \sum_{|\alpha| \leq p} a_{\alpha}(x) D^{\alpha} u \cdot g(x, u) d x+\right. \\
\left.+(-1)^{p+1} \int_{G} \sum_{|\beta| \leq p} a_{\alpha}(x) D^{\alpha} u \cdot D^{2 \beta} g(x, u) d x(x, u) d x-\frac{1}{2 \alpha} \int_{G} \sum_{|\alpha|=p}\left(D^{\alpha} u\right)^{2} d x\right\} .
\end{gathered}
$$

Cite application of theorem 3 to theory of prediction and filtration of random fields. Let X be a Hilbert space, ξ be a random variable with values in $X, \Phi: X \rightarrow$ R be a measurable functional. Let E be some linear space with $\sigma-$ algebra of its subsets \mathfrak{E}, and $\mathbb{Q}=X \rightarrow E$ be some linear operator. The problem is in calculation of optimal meansquare estimation $\Phi^{*}(\xi)$ of the function Φ from the random variable ξ by observations of $\mathbb{Q} \xi$. It is known well that such an estimation is given by the equality

$$
\Phi^{*}(\xi)=E\left\{\frac{\Phi(\xi)}{\mathfrak{E}_{\mathbb{Q}}^{\xi}}\right\},
$$

where $\mathfrak{E}_{\mathbb{Q}}^{\xi}$ is $\sigma-$ algebra generated by the random element $\mathbb{Q} \xi$.
[B.Dochviri,O.Glonti,O.Purtukhia,G.Sokhadze]
Suppose that on the Borel σ-algebra of \mathfrak{B} space X another random variable η is given such that the distributions μ_{ξ} and μ_{η} are equivalent $\mu_{\xi} \sim \mu_{\eta}$ and $\rho(x)=$ $\frac{d \mu_{\xi}}{d \mu_{\eta}}(x)$.

Lemma. It $\Phi(x)$ is a bounded μ_{η}-measurable function, then the following formula is valid

$$
\begin{equation*}
\Phi^{*}(\xi)=\left.\frac{E\left\{\Phi(\eta) \rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right\}}{E\left\{\rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right\}}\right|_{\eta=\xi} \tag{14}
\end{equation*}
$$

Proof. By definition of conditional mean, for any measurable bounded function h on E we have

$$
E \Phi(\xi) h(\mathbb{Q} \xi)=E\left\{E\left[\Phi(\xi) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right]\right\} h(\mathbb{Q} \xi)
$$

hence

$$
E \Phi(\eta) \rho(\eta) h(\mathbb{Q} \eta)=E\left\{E\left[\Phi(\xi) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right]_{\xi=\eta}\right\} E\left\{\rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\eta} h(\mathbb{Q} \eta)\right.
$$

but as

$$
E \Phi(\eta) \rho(\eta) h(\mathbb{Q} \xi)=E\left\{E\left[\Phi(\eta) \rho(\eta) / \mathbb{E}_{\mathbb{Q}}^{\xi}\right]\right\} h(\mathbb{Q} \eta)
$$

then because of arbitrariness of $h(x)$ we get

$$
E\left[\Phi(\xi) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right]_{\xi=\eta} E\left\{\rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right\}=E\left[\Phi(\eta) \rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right] .
$$

hence we get (14).
We can simplify formula (14) if η is a Gaussian variable in X and \mathbb{Q} is a continuous linear mapping of the space X in X. For that we represent η in the form $\eta=\eta^{*}+\bar{\eta}$, where $\eta^{*}=E\left\{\eta / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}$ is an optimal in the meansquare sense linear prediction of Gaussian random variable η by observations $\mathbb{Q} \eta$, while $\bar{\eta}$ is a Gaussian variable independent of $\mathfrak{E}_{\mathbb{Q}}^{\eta}$. Then from (14) we can write

$$
\begin{gather*}
\Phi^{*}(\xi)=\left.\frac{E\left\{\Phi(\eta) \rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}{E\left\{\rho(\eta) / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}\right|_{\eta=\xi}=\left.\frac{E\left\{\Phi\left(\eta^{*}+\bar{\eta}\right) \rho\left(\eta^{*}+\bar{\eta}\right) / \mathfrak{E}_{\mathbb{Q}}^{\xi}\right\}}{E\left\{\rho\left(\eta^{*}+\bar{\eta}\right) / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}}\right|_{\eta=\xi}= \\
=\left.\frac{E\{\Phi(x+\bar{\eta}) \rho(x+\bar{\eta})\}}{E\{\rho(x+\bar{\eta})\}}\right|_{x=\eta^{*}=E\left\{\eta / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}, \eta=\xi} \tag{15}
\end{gather*}
$$

where (unconditional) mean value is taken with respect to $\bar{\eta}$ and is substitutied by turns $x=\eta^{*}=E\left\{\eta / \mathfrak{E}_{\mathbb{Q}}^{\eta}\right\}$ and $\eta=\xi$ (this last substitution is assumed to be a substitution of observation ξ).

Let the solution of problem (10)- $\eta(x)$ be observed in some subdomain $G_{1} \subset G$. It is required to find an optimal in the meanquadratic sense estimation of the functional Φ from the solution of $\eta(x)$ at the point $x=x_{0} \in G_{2}=G-G_{1}$.

To this end, in addition to problem (10) we consider the linear problem (9)

$$
L \varsigma(x)=\xi(x), \quad \varsigma \in \bar{W}_{2}^{\alpha}(\partial G)
$$

By combining theorem 3 with the lemma we get
Theorem 4. Let in open, bounded domain G of the class $A^{(1)}$ with the boundary ∂G we consider a partial equation with boundary conditions (10) in which the coefficients of the operator L are sufficiently smooth, $a_{\alpha}(x) \in C^{|\alpha|}(\Delta \cup \partial \Delta), \xi(x)$ is a Gaussian random field whose correlation operator in the scalar product of the space $W_{2}^{p}(G)$ is $\theta I, \theta>0 ; g(x, u)$ is a function determined on $G \times \mathcal{L}_{2}(G)$ and possessing for each x generalized in the Sobolev sense derivatives of order $2 p$, the operators $F=\frac{\partial g}{\partial u}$ satisfy the relation $\|F\|<\gamma$, where $\gamma=\left\|L^{-1}\right\|^{-1}$. Then if for any $u, v \in C_{0}^{\infty}(G)$ and some $C>0$ the energetic inequalities (8) are fulfilled, then optimal prediction $\Phi^{*}(\eta)\left(x_{0}\right)$ is given by the formula:

$$
\begin{gathered}
\Phi^{*}(\eta)\left(x_{0}\right)=\left\{E \Phi\left(z\left(x_{0}\right)+\bar{v}\left(x_{0}\right)\right)\left|\operatorname{det}\left(I+L^{-1} F(z(x)+\bar{v}(x))\right)\right| \times\right. \\
\times \exp \left\{-\frac{1}{\theta} \int_{G} \sum_{|\alpha| \leq p} a_{\alpha}(x) D^{\alpha}(z+\bar{v}(x) g(x, z(x)+\bar{v}(x)) d x+\right. \\
+(-1)^{p+1} \int_{G} \sum_{|\beta| \leq p} a_{\alpha}(x) D^{\alpha}(z(x)+\bar{v}(x)) \cdot D^{2 \beta} g(x, z(x)+\bar{v}(x)) d x- \\
\left.-\frac{1}{2 \alpha} \int_{G} \sum_{|\alpha|=p}\left(D^{\alpha}(z(x)+\bar{v}(x))\right)^{2} d x\right\} \cdot\left\{E\left|\operatorname{det}\left(I+L^{-1} F(z(x)+\bar{v}(x))\right)\right| \times\right. \\
\times \exp \left\{-\frac{1}{\theta} \int_{G} \sum_{|\alpha| \leq p} a_{\alpha}(x) D^{\alpha}(z+\bar{v}(x) g(x, z(x)+\bar{v}(x)) d x+\right. \\
+(-1)^{p+1} \int_{G} \sum_{|\beta| \leq p} a_{\alpha}(x) D^{\alpha}(z(x)+\bar{v}(x)) \cdot D^{2 \beta} g(x, z(x)+\bar{v}(x)) d x- \\
\left.\quad-\frac{1}{2 \alpha} \int_{G} \sum_{|\alpha|=p}\left(D^{\alpha}(z(x)+\bar{v}(x))\right)^{2} d x\right\}\left.^{-1}\right|_{\eta=\xi} .
\end{gathered}
$$

References

[1]. Daletskii Yu. L., Sokhadze G. Absolute Continuity of Smooth Measures. Functional Analysis and Its Applications. 1988, vol. 22, No. 2/April, pp. 149-150.
[2]. Belopolskaya Ia. I., Daletskii Yu. L. Stochastic Equations and Differential Geometry. Springer. 1990. 280 p.
[3].Berezanskii Ju. M. Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Monographs, 1968, vol 17, 809 p.
[4].Daletskii Yu. L., Shatashvili A. D. On Optimal Prediction of Random Variables Nonlinearly related to Gaussian. Theory of Random Processes, 1975, Issue 3, pp. 30-33.

Besarion Dochviri, Omar Glonti, Omar Purtukhia,

I.Javakhishvili Tbilisi State University, Tbilisi, Georgia

Grigol Sokhadze

Applied Mathematical Institute of TSU, Tbilisi, Georgia Tel.: (99412) 539-47-20 (off.).

Received February 26, 2014; Revised April 24, 2014.

