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ON RIEMANN-EARNSHAW INVARIANTS AND CHARACTERISTIC
DIRECTONS IN HYPERBOLIC VARIATIONAL MODELS

Abstract

The author has considered the problem on the decomposability of the two-forms
coming into a system of equations which describe two-dimensional extremal manifolds
and investigated the problem on the exactness of the one-forms which are multipliers of
this expansion. The solution of the first problem leads to the classification of variational
models (hyperbolic, elliptic, degenerated) and helps to find characteristic directions
(characteristic velocities) in the configuration space for hyperbolic models. The solution
of the second problem helps us to find for each characteristic direction a family of
Riemann-Earnshaw invariants having a functional degree of freedom. By this way, in the
applications, the author has received families of Riemann-Earnshaw invariants and
characteristic velocities for models of dynamics of an elastic pivot and for gas-dynamic
models describing isothermal flows of ideal gas and adiabatic flows of polytropic gas.
The characteristic velocities and Riemanmn-Earnshaw invariants are received for
equations both in Lagrange and Euler coordinates.

For the descriptions of two-dimensional extremal manifolds in paper [1] were
obtained systems of variational equations in the differentials of states space coordinates
which have following form:

g, =0,
{ ; *)

a, =0,
where &, and &, are fields of linear independent two-forms in state space of two-
dimensional manifolds. Such method of description is the most natural and has simple
geometrical interpretation. The system of equations (*) single out at each point of state
space the subspace of admissible bivectors (which describe infinitesimal elements of
two-dimensional manifolds), i.e. those bivectors, which can represent the infinitesimal
elements of integral (extremal) manifolds, passing through this point of state space. It is
clear, that this subspace of available bivectors can be determined also by any pair of
linear independent two-forms from subspace {4,G, + 4,5, }, where 4, and A, are any
real numeric functions of state space coordinates. If chosen pair of two-forms from
{46, +4,G,| has special properties, then it promote to answer to some questions
relying upon integral manifolds.
Now consecutively consider the following questions:

1) If forms o, and &, are not simple, then under which conditions on coefficients of

these forms in the space {45, + 4,5, there exist simple two-forms?
2) What are conditions of existence of exact one-form among multipliers of simple two-

forms?

By resolving these questions there arises a problem of the constructive
description of:

1} The whole set of fields of simple two-forms from the subspace {iL,Er'l + }{251} -
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2) the set of exact one-forms, which are multipliers of simple two-forms, and a set of
potentials of these exact one-forms.

Below we shall give the answer to the first of above-mentioned questions for the
system of variational equations in general case. However, the constructive description of
a set of simple two-form fields and the answer to the second question in general case are
not simple tasks. Therefore for these questions separate paper should be written. That is
why here we shall consider a class of models for which it is not difficult to obtain objects
that interest us and at the same time covering a number of models, which are used in
dynamics of continuum.

Consider the system of variational equations in differentials of states space
coordinates (see [1])

dPy, ndx® +dP,, A dx' +5—P‘:dx' ndx® =0

ax 1
d[ﬂ)ndxz—-d[ﬂ]hdrl =0 ’
dh, & Pyy

where B, = Hg(ﬂg,%;f,x:,x’], and function iﬁ: is independent explicitly on x°.

For simplification we introduce the following denotations x' =y', x? = y?, B, =)°,
P23=.},‘1 52P|1_A' 52"012_3’ éz'pll = ‘?Z-PIZ =L az-Pi;l_
oR;

% = N . With these denotations the system (1) is represented in the following form:
X

s

f"ﬂzﬂpzs_ Py : 0 Pydx’

g =dy* ady’ +ady’ ady' + Ndy' ndy® =0
&, = Ady® ndy® + Cay* ndv? - Cay® ndy' - (2)
- Bay* ndy' —{L 4 M]dyz Aafy' =0
Let us use E. Cartan criterion [2, p. 19] to find conditions on coefficients of forms &,
and o, under which in the subspace {31&] + HQEFZ} there are simple two-forms.
According to this criterion for the simplicity of two-forms

d=Yyaad' ndy’, (i,j=1234)

=y

it is necessary and sufficient that the equality

Q)03 — )38y, +d)dy =0 (3)
holds. Substituting coefficients of two-form A,a, + 4,7, into equality (3), we obtain
(- 48)22 -7 -o. )

From the equality (4) it follows that: 1) in subspace {A,&", +AZEFI} there exist simple
two-forms if and only if C* - 4B>0; 2) two-form g, in the system of equation (2) is
not simple; 3) two-form &, in the system of equations (2) will be simple if and only if
C*? -~ AB=0 and in this case all simple two-forms from {46, + 4,6, will have form

4,0, 4) when C? - AB>0 there exist ( accurate to arbitrariness, different from zero,
numerical multipliers) two linear independent simple two-forms generated basis in
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{J,&", + JIQEE} , and these simple two-forms can be obtained for the following two values
of ratio A, and A,
-;1- =+JC? - 4B .

Definition. Variation models given by function B, = Hz(ﬂg,PH;xl ,xl,xzj,
satisfying the condition C* — AB>0 (cz - AB < u) we shall call hyperbolic (elliptic)
models.

The models with unfolding determinant surfaces (C : —ABEI]) apparently

should be named degenerated, so as in mechanical interpretation they describe either
dynamic of absolutely rigid one-dimensional continuum, or statical deformed state of
one-dimensional continuum, all points of which have one and the same constant velocity.

For the finding simple two-forms from subspace {1,0,+ 4,0, } we will use the
following identity

G b= (ad +d? + ad + ady' In(bdy + by + B + b )=
= 4@ AP+ Ad + N A dy®)+ A (A A b + Cdy* ndy? -
~Cdy* ndy' - Bdy* Ady' —(L+ M)dy* ndy' )+ (aby — by - AN - A (L + M))x
xdy' ndy’ +(a —ash + 4 —CA )" nay’ +(ab, —ab ~ By ady' +
=(1--ﬂ'3rfr2 + AL ) A dy +(.E:r4 - a.h, + 4, +|"_','.3.?}||:i‘y2 ndy? +[asb¢ —a )y’ adyt,
(5)

where coefficients of one-forms @ and » should satisfy the condition of linear
independence of these forms.

Remark 1. As in considered question we are interested in the form @A b with

aceuracy up to arbitrary numeric multiplier, so at each form @ and 5 one of coefficients
chosen equal to unit.

Identity (5) gives the conditions for coefficients of forms & and 5 and A, and

4, . Excluding from these conditions 4, and A,, we obtain conditions for coefficients of
forms &@ and b

b, —a, =0

ab, - b, +%N{a] —ab +by—ab,)-(L +M}:1§{a,b¢ —ah)=0

Alab, - a,b)+ B(1 - asb,)=0

B{(‘ﬁ o ﬂabl}_ {3’4 T ‘745‘1)]“ 2C{a|b¢ —ayb, ]='U
So, for determination the coefficients of forms & and b we obtain system of four

algebraic equations of the second order with six unknowns. Further, in present paper we
will consider the models for which conditions L= M=N=0 holds. In this case,

substituting expressions b, and a,, obtained from the first two equations of system (6),
into third and fourth, and taking into account condition (1 —ash,) # 0 (in opposite case,
tikmg first two equations of system (6) we obtain a linear dependence of forms & and
b ), we get a simple system of equations for a, and &,

(6)
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a — b, g
A (7)
B
ﬂ]b :-;

which have two real solutions for C* — 4B>0

gt a—CEINC -4B ., C2C'-4B
e L] i = R T
A A

Returning to the first two equations of system (6), we find expressions for @ and

b
a, =ajdy' +dy’ +aydy’ +bjady', b, =alb,dy' +b,dy" +d’ +bidy’,
where b, and a, are arbitrary functions of coordinates (y’, e ys, _p"], receiving any

values not from parabola a,b, = 1 (parabola of linear dependence of forms @ and b ). In
present paper we will use only that class of forms for which a; =b, =0 .

The constructed two-forms &, Ab, and & A b_ are linear independent, so as
(&,, A b, )n [E;_ A 5_) =(1- a3bz}2(b; - E:;][a]' —-a; }a’y' ady® nady* ady' =

42
=4(1—a352)3%dy1 Adyt ndy® ndy' 20
The objects known as a Riemann-Earnshaw invariants appear by resolving

question on the proportionality of one-form b to exact one-form and by finding a
potential of this form. For this, in general case, it is necessary to verify the equality

badb = 0, which put conditions on coefficients of forms b . However, in considered
case b, =0, this equality identically holds and decision of question reduces to finding an

integrant multiplier. The integrant multiplier It ( ¥ y4) must be a solution of equation
g = & fri7
S —5—y3(b4ai)- (8)

If the function b; depends only on the argument y’, then it is convenient to make
substitution in equation (8) E::Ii = A, and then we obtain equation for the function

Ay’

b —h =0, (9)
which has the solution Z,(y’,y*)= ¢=(y4 +m*(y3]), where m*(y’) s the
antiderivative of function (b: [Jﬁ))_] ,and @, (-) are arbitrary differentiable functions.

Functions R*(y*,y*) determined by the equation
dR*(y*,y*)= 2.5, (10)

are called Riemann- Earnshaw invariants in continuum dynamics, and functions a; ,
which give characteristic directions of system of equations (1), are called characteristic
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_bd__E
A (7)
B

a|b4 = _;

which have two real solutions for C* = AB >0
a,_—Ci-JCI-AB bt_cﬂcz—xg
| e ? e T s L
A A
Returning to the first two equations of system (6), we find expressions for @ and

b

a, =a‘dy' +a@" +ad’ +biady’, b, =a’bdy' +bdy? +dy’ +bidy*,
where b, and a, are arbitrary functions of coordinates (y N ), receiving any
values not from parabola a,b, =1 (parabola of linear dependence of forms g and b ).In
present paper we will use only that class of forms for which a; =56, =0 .

The constructed two-forms &, A b, and & A b_ are linear independent, so as
(a, nE]n(&_ ,-\E:_,]={l—a3£=2]2[b: by Jay - a7 )" Ady? Ady’ Ay =
= 4(1-a,b Z]JC A'Baja ady? ady® ady* 20

The Db_}ccts known as a Riemann-Eamshaw invariants appear by resolving

question on the proportionality of one-form b to exact one-form and by finding a
potential of this form. For this, in general case, it is necessary to verify the equality

b adb = 0, which put conditions on coefficients of forms b . However, in considered
case b, = 0, this equality identically holds and decision of question reduces to finding an

integrant multiplier. The integrant multiplier 2_& ( v, }r‘) must be a solution of equation

.%" ( L) (8)

If the function b; depends only on the argument y°, then it is convenient to make
substitution in equation (8) b j_.i = A, and then we obtain equation for the function

)

[Tt W A 9)
which has the solution 4 (y%,y*)= rpi(y' + m=(y-")), where m*(y*) s the
antiderivative of function (b: (»’ )]' ,and @, (-) are arbitrary differentiable functions.

Functions R*(»”,y*) determined by the equation
dR*(y,»*) = 2.5, (10)

are called Riemann- Earnshaw invariants in continuum dynamics, and functions a]*,
which give characteristic directions of system of equations (1), are called characteristic
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velocities. In the case when the function b, depends only on the argument y°, it is easy
to find functions R* (yﬁ, yd) from equation (10)

Rt()zs,y‘*]: mi[yq o ()’JD,
where @, () are arbitrary twice differential functions. And so, in considered class of
hyperbolic systems of equations (1) for each of two characteristic directions, given by
functions a; , there exists family of Reimann-Earnshaw invariants having functional

power of freedom. In applications, as far as the author knows, there use only one function
®(#) = 7. through the system of equations

(a]'dy' +dy2)nfiﬁ*(y3,yd)=ﬂ }
11
(a;dy'+dy2)ndﬂ (yz' yd)—[} :
is equivalent to system (2) for any invariants R’(y3, y‘*) from mentioned- above
families, if 7, (y*,y*) = 0.
The Jacobian of the system of functions

R'=R' [yj,y“]

R =R (y.»')
is equal to ii(b; - by ], therefore for those R®, generated by A, # 0, it is possible to
express (at least locally) y° and * by R* and R™.

Consider the model of dynamics of longitudinal displacements of an elastic
pivot. The equation of determinant surface of this model B, = P,(R;,Pys), after

introduction of denotations P, =h, F; = o, PB; =g has the form

h=ﬁq2 —u'ﬁf[giﬂ) ; [cr{,f"[aiﬂ] >n],

and system of equations (1) for x' =¢, x* = £, will be rewritten in the form:
dgrds+dondt=0
d(h, ) ndg—d(h, ) adt=0

The physical sense of introduced symbols and the method of receiving of equations are
shown in [1]. For this model we have

A=_if~[i] SR T
Ty Ty Ao
therefore from (7) we obtain

-
e 42z’
0 0

and consequently, the solution of equation (9) is

Lt o106 )m]

(e
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where n=—, and ¢,(-) are arbitrary differentiable functions. Riemann-Earnshaw
0y
invariants are determined from the system of equations

R:= -E-]y[f[iDy { —Lzaslre® arz]
| %[(ﬂnaﬂ}yqﬂwﬂm}

wiuch have a solution
(g0)= ()0 [ el ;ﬁ],

®,(-) are arbitrary twice differentiable functions. For example, for

f(n) = expn, we obtain a model with state equations g = p,v, o =0, h;—ié , where v

is velocity of pivot’s element in viewer’s space and X is a coordinate of viewer’s space.
The second equation could be written in the foorm o=g, Lu(l+ u{}, when we chose
those coordinates of viewers space, which has elements of pivot in non-deformed state,
as Lagrangian coordinates, where u, describes relative prolongation of elements of pivot
(deformation tensor). The characteristic velocities and Riemann-Earnshaw invariants are

S

Consider gas-dynamic models, more exactly, the model of isothermic flows of
ideal gas and the model of adiabatic flows of polytropic gases. The equation of
determinant surfaces of these models are (see [1])

h=Lq=+&kT £]+h[J :
20 m E,
r-i
1 ¥ P
h= g +——BP ( ) +hy, (r>1
2p, y =i £y =1
correspondingly. The system of equations (1) after introduction of denotations F,, = h,

By=-P, P, =q, x' =1, x* = &, will have a form
T, =dgadi—dPrndt=0
{a =d(h,)ndé—d(h)ndt =0
where the arrangement of signs (plus, minus) is different from the arranggement of signs
in the system of equation (1). Applying the E.Cartan criterion to forms in the subspace
{4T, + 4,7,} we again obtain equality (4), where A=h,,, B=h,, C=h, . Making

(12)
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the same actions for the system of equations (12) as it was done for the system (1), we
obtain for one-forms & and b the following expressions:

d, =a‘dt+dé+adp+biadg, b, =aibydt+bdé+dp+bidg,
where functions a; (p,q) and b (p.g) are the solutions of system of equations

ﬂ', +b¢ :E

(13)

ﬂ] 'b_4 =

-1

and functions a, and b, are arbitrary functions, which hold the condition a;b, #1. As it
was done above, supposing a, = b, = 0 and finding the integrant multiplier with the help

of equations (8), we get for the model of isothermal flows of ideal gas the characteristic
velocities and Riemann- Earnshaw invariants

1 1 1
alt - 1[&)2 ij R* = pu(ﬂ)z [I)I (£)2 iq + -‘f_
kT ) py m kT ) po R
and for the model of adiabatic flows of polytropic gases
I+

1 1 Lir
=i ZF(BJ(E]".
B) \ po f
1

.
¢ =t g 2 (Y[ 1)

R ANIAY

Remark. Obtained characteristic velocities are velocities with respect to
Lagrange coordinates. For the finding the characteristic velocities with respect to Euler
coordinates (frequently use in mathematical literature) it is necessary in one-form
d, =a;dt+dé , taking into account £ = £(z,x), calculate the differential d¢ and use the
equalities s =h, v E% =h,.

The characteristic velocities and Riemann-Earnshaw invariants were obtained
above for the equations in Lagrange coordinates (¢,£). To find these objects for

equations in Euler coordinates (r,x} (for «pure» equtions in Euler coordinates [1]) it is
necessary to use system of equations (6) of paper [1], from which it is easy to obtain the
following system of equations for gas-dynamic models:
dg ndx —dhndt=0
(14)
d(B)Adx+d(P)ndt=0
where the function P = P(g,h) is obtained from the equation of determinant surface of
in it model, if the quantity P is expressed via g and h. The system of equations (14)
coincides with the system of equations (12) with accuracy up to the interchange of

denotations P :h, therefore coefficients ai and bf are determined by the system of

equations (13), where it is necessary to put
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A=‘92—‘:’, g B8 oo OB -
Ah aq* 3qEh

The system of equations in Riemann-Earnshaw invariants has the form
(@' dt + dx) AdR* (g.5) =0
(@ de +dx) ndR™(g.h) = 0

where @

=C3F«.|"C2—AB
A

multiplier, which is the solution of equation (8). For example, for the model of
isothermal flows of ideal gas we have

m 1 2
P=P,exp| ——| h-—q¢?||.
““{Hpﬂ[ 2;1,}'?”

Calculating the second partial derivatives of this function by ¢ and h, solving of
equations (13) and equation (8), we get

-{iu(2)
Po i
L

B2 | = _,_ ’”lqli[ﬂ)’l_q
m kTp, kTp, kT ) py

,and R*(g,h) are founded with the help of the integranting

bt | =

where @, (-) are arbitrary twice differentiable functions.

Mote, that Riemann- Earnshaw invariants in systems of equations with respect to
Lagrange and Euler coordinates are «symmetricy» to each other with respect to equation
of determinant surface of a model. The numerical values of these invariants coincide (for

identically chosen functions @ (-)), but for the equtions in Lagrange coordinates these

invariants are expressed via the density of impulse and pressure; and for the equations in
Euler coordinates («pure» equations of Euler coordinates) these invariants for the
isothermal flows of ideal gas are expressed via the density of impulse and density of
termodynamic potential of Gibbs, and for adiabatic flows of polytropic gases via the
density of impulse and density of enthalpy. In the literature on gas-dynamics as a system
of equations in Euler coordinates it is considered the system of equations (in partial
derivatives) of Euler. This system of equations deduced from the system of equations (in
differentials) (1) (see [1]), therefore working with the system of Euler equations we
obtain Riemann-Eamshaw invariants expressed via the density of impulse (or via
velocity) and pressure. From here one usually makes not exactly conclusion, that when
we pass from description of flows in Lagrange coordinates to description of flows in
Euler coordinate, Riemann-Earnshaw invariants do not change not only numerically, but
by form of expression via gas-dynamic quantities.

Mow consider a question on the correspondence of characteristic velocities for
the equations in Euler and Lagrange variables to real velocity of propogation of
perturbations (non-shoke) in medium with respect to medium itself. In gas-dynamics for
equations in Euler coordinates it we obtain characteristic velocities of the type v + a(p)

{or v a_{p] ), where v is velocity of gas particle with respect to a viewer's system of
coordinates, and the quantity a(p) is called velocity of propagation of perturbations in
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gas with respect to gas it-self (see, for example, [3], [4]). On the other side, considering
the same flows in Lagrange coordinates, we obtain characteristic velocity a,(p) (or

a@,(P)), which is called some times acoustic impedance, although the quantity a,(p) also
we can call velocity of propagation of perturbations in gas with respect to gas itself (as in
dynamics of an elastic pivot). The quantities a(p) and a,(p) are different from each
other, therefore the following question arises: which of the quantities a(p) and a,(p)
should be called velocity of propagation of perturbations in gas with respect to gas itself?
Consider, for example, characteristic velocities obtained for equations in Lagrange and
Euler coordinates for the model of isothermal flows of ideal gas. Characteristic velocity
1
obtained for equations in Lagrange coordinates is equal to a,(p)=a,(P)= (%] il
Py

3

and for equations in Euler coordinates is equal to v+a@(P)=v J:(Ejz , hence we can
m

see that &,(P) coincides with @(P) only if pressure P is equal to background pressure
1
kT X : ; . kTYz2 . ' .
F, =— p, . The perturbations propagating with velocity | —| is called in acoustics
m m

the perturbations with infinitely small amplitude and these perturbations described by a
system of linear equations obtained after linearization of exact equations. The author
thinks, that characteristic velocity obtained for equations in Lagrange coordinates, which
in the considered model depends not only on temperature, but on density of gas at present
moment of time as well, should be called the velocity of propagation of perturbations in
gas with respect to gas it-self. Note that in dynamics of a pivot the characteristic velocity
obtained for equations in Lagrange coordinates is called velocity of propagation of
perturbations along the pivot.

For those manifolds (or parts of manifolds), which uniquely projected to the

plane (f, y“) from the system of equations (11) it is easy to obtain the system of linear
equations in partial derivatives of the first order for functions y'= y1(R' ,R-],
yz = yz(R+,R_]

af(R*,R')g—yl+iJi=U

R-  BR
a'(ﬂ* R')£+ 24 0
o T T

which in gas-dynamics describe solutions which are not simple waves.
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