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VARIETIES WITH DEFINABLE PRINCIPAL CONGRUENCES: HOW
CONGRUENCES IN A (SUB)DIRECT PRODUCT ARE DETERMINED BY
FACTORS

To Professor L.N. Shevrin, on the occasion of his 65 birthday.
Abstract

The key result is a characterization of varieties with definable principal
congruences (and with CEP) by some conditions on the congruences of (sub)direct
products. In passing we give a generalization of Magari’s idea of ideal congruences for
(sub)direct products of algebras in a variety. AMS Subject Classification: 08B99.

1. Introduction

A variety K of algebras has definable principal congruences (DPC) if there-is a
first-order formula in the Janguage of K that defines all principal congruences for the
algebras in K . This concept was introduced by J.Baldwin and J. Berman [1] in the study
of cardinality estimates for subditectly irreducible algebras in a variety. There are a
number of results characterizing DPC in different kinds of algebras, a visual example is
due to K.Baker [2]: a locally finite variety of groups has DPC iff it is satisfies the
commutator identity [x, y,x]. J. Baldwin and J, Berman [3] considered notions both
weaker and stronger than DPC (for arbitrary classes of algebras). In particular (see [3],
p.259) if there is only one disjunct (or congruence scheme) in the (equivalent form of the)
defining formula then DPC is reduced to E. Fried, G. Gratzer, and R. Quackenbush’s
notion of uniform congruence scheme [4]. In {5] we considered the general case: a finite
number of disjuncts (or congruence schemes), it turned out that for DPC- varieties there
is a likeness with the situation around the uniform (restricted) congruence scheme. Also,
we had seen how principal congruences in a (sub)direct product are determined by the
factors. Now our aim is to extend this to arbitrary congruences.

For terminology we shall generally follow G. Gratzer [6] with the exception. that
we shall refer to his algebraic functions as polynomial fumctions and to his polynomials as
terms.

2. Preliminaries

This section presents some definitions and resuits that are needed later in the
papet. For the sake of conveniences we also repeat basic definitions and results of [5].

Mal’cev’s Lemma (see {6]) gives a description of principal congruences in
universal algebras and the general scheme contains many parameters. E. Fried, G.
Gratzer, and R. Quackenbush [4] defined a uniform congruence scheme (see details
below): a variety K has a uniform congruence scheme if in the whole class K Mal’cev’s
Lemma is applied with the same permament parameters.

Definition 2.1 ([4]). A congruence scheme S for a given type t is given by
m+1-ary (m20) terms ty,.., 4., (k21) and by a map f:{0,...k~13>{1} . Ler #
be an algebra whose type includes t and let aj,a,,b,,b, € A. Scheme S is satisfied in
A for ay,a,,by.b, (or Sla,,a,,b,.b) holds in +#; in notation A']:S[ao,al,bo,bl)) iff
there exist c,, ...,c, € A satisfying

by =15\ () G5 --n €
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!‘i(al_f(”, €Yy e c,,,)= f,-+1(af(,-+]), Clsrren CM) , i=L1..,k-2,
L\ B f(k1)s €15 2 O =b.

Obviously, by Mal’cev’s Lemma, ¢ =d{0(a,)) in an algebra # iff there exists a
congruence scheme § such that +#|=8(a,,a,,80,5,) .

Definition 2.2. A variety K has n congruence schemes (nCS), n21, iff there
exist congruence schemes S,,....S, such that for any algebra #<cK and any elemenis
a, b, c,d in A4 thereis a congruence scheme S, € {S, geresd ,,} such that

c=d(0(a,b)) « #=S(a,b,c,4).
As noted in [4), p. 257, if a variety has DPC then, in fact, it has nCS for some ».

Definition 2.3 ([5]). 4 variety K has n_equationgily definable principal
congruences (nEDPC) iff there are n sets of equations

s=a)lie s o b =gilie s}
such that for any algebra #cK andany a,b,¢,dc A, thereis J, & {J,,..‘,Jn} such that
c =d(@(a,b)) is equivalent 1o the existence of e, e,,...c A such that

{o}(«a,b,c,d’,eo,el -J=gi{ab.cdeye,.)jel, .
Definition 2.4. 4 variety K has n_factor determined principal congruences
- (nFDPC) gn direct products iff whenever A#,cK for jeJd, a;b,c,.d,€A; and
c; Edj(a(aj,bj)) Jor a{;’ JeJ, then there are subsets J|,..,J,<J such that the
Jollowing conditions hold:
() JU--UdJd,=J, and
(i) forany J, € 4., ..., J, } there holds ¢y, =d, (Q(aJ‘,bJ[ )) in the algebra
#,, =1'I(;¢j|je J,-), where x; =< x,|jed, > for xe {a,b,c,d}.
Definition 2.5. 4 variety X has x algebras with universal principal congruences
(mAUPC)  iff there exist algebras 4.4, in K and elements
a,b,c.d €A, ..., a,b,c,d,<cA, suchthat '

o =07 (@b, .. ¢, =d,(0"(a,.,) |
and for any algebra £ ecK and elements a',b',c',d'e B if ¢’ Ed'(é?“'(a',b')) then there
exists an algebra A, €{#,, ... #,} and a homomorphism @ of #, into £ satisfing
a'=gla), ¥'=9lb), ¢'=9lc), and d'=gld,)

Theorem 2.6 ([5]). Let K be a variety. There is nz1 such that t fa.e.. (i) K has

DPC; (ii) K has nCS; (iii) K has nEDPC; (iv) K has nFDPC on direct products; (v) K
has nAUPC. ‘ '

We shall also consider relationship of DPC and CEP (congruence extension
property). However, first at all we remind of the definition of CEP: a variety K is said to
have CEP iff for any algebra # K, subalgebra £ of #, and congruence & of £, there
exists a congruence @ of 4 whose restrictionto £ is @.

Definition 2.7. n restricted congruence schemes (nRCS) is a nCS (as in 2.2) with
the requirement that in all congruence schemes m=4 and ¢, =a, ¢, =b, ¢,=c, and

c,=d.Ifin23all p\.q},..p}.q] are 4-ary, then K is said to have nREDPC (R means

restricted). nRAUPC stands for nAUPC with the additional requirement that &, is
generated by a,.,b, c,, and d, forall i =1,...,n.
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Definition 2.8, 4 variety K has nFDPC on_subdirect products iff whenever
A,k jor jeJ, a;b,cded;, ¢ zdj(f?(aj,bj)) Jor all jeJ, and
~ SH(A‘ f | jeJ ) is a subdirect representation then there are subseis J,,....J, < J such
that the following conditions hold:

(i) J,U---UJ,=J, and

(i) for every J, e {J,,...,.J,, there holds c; =d; (B(a_,‘ by )) in the subalgebra

.4;‘ SH, = I'I(;f F | jed i) such that ,4_;‘ is the projection of # fo the ail
coordinates in J,.
Definition 2.9. Let T be g join-semilattice. An ordered pair (a,b} in ExI is
said to be n dually Brouwerian (nDB) iff there exist ¢,,...,c, in L such that for any t€ £
avtzh & t2¢ forsome ¢ e {cl,...,cn'} :
Z is called multi-valued dually Brouwerian (MVDB) iff any pair in ZxZ is nDB for
some n (n is changing for different pairs, maybe).

Theorem 2.10 ({5]). Let K be a variety. There is a natural number n>1 such

that the following conditions are equivalent.

(i) K has DPC and CEP,

{ii) K has nCS and CEP,

(iii) K has nRCS,

(iv) K has nREDPC,

v) K has nEDPC on subdirect products,

(vi} K has nRAUPC,

(vii)  forevery £ €K the join-semilattice Comp{(£) of compact congruences
is MVDB, moreover the generating set for Comp(#) consisting of all
principal congruences has the property: every pair of principal congruen-
ces is nDB in Comp(#).

3. A generalization of ideal congruencies
The idea of ideal congruences is due to R. Magari (see [6)): let # = H(ﬁ’ | jed; )

and let T be an ideal of the join-semilattice [I(Comp(fﬂ] je J), where Congo( j) is the
join-semilattice of compact congruences of .# ;- Then a E'b(ﬂf" ) iff there is a
9=<t9!]je.1 >el satisfying a; Ebj(é?j) for all jeJ, where a=<a_,-|jeJ> ‘and
b=<b,|jeJ>. @ iscalled an ideal congruence.

Definition 3.1. A variety K is said to have n_ideal congruences for direct
products (nICDF) iff for every <K, for any direct product representation
A =11 A'J-] jeJ}, and for any congruence @ of & there exists a cover o=

= {1,,...,J,,|J =, U ...UJ,,} of J and there exist ideals 1,,...,1,, respectively, in join-
semilattices H(CompLﬁ] jed ), (Comp( ] jed ) such that

Ova, [rn, =6, forall i=1, .., n,
where m, is the congruence of s induced by the projection homomorphism

A —‘”"1—-)1’1(;1 ; | jeJ; ) ; we shall also say that 8 is an »n- ideal congruence.
An analogue of 3.1 for subdirect products is as follows,
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Definition 3.2. A variety K is said to have n ideal congruences for subdirect
products (nICSubDP) iff for every <K, for every subdirect representation

A <T1 ,4‘,-|j EJ), and for any congruence @ of £ there exisis a cover o=
= 1,...,J’,,|.,lr=.;"1 U...UJ,,} of J and there exist ideals 1, ..., I, respectively, in join-

* T n!

semilattices H(Comp(;f j] jed, ), . H(Comp_(,f 1‘1 JE Jﬂ) such that

ﬁvaf|,/7rJil,,:6;‘|,,J‘ Jorall i=1,
where CD| x 18 the restriction of @ fo X and A, is the image of A& under the
projection homomorhism H(,—f |jes )__22'3__) II(.vsf Hied; )

4. Characterizations of RICDP and nlCSubDP
In the previous section we have defined our key notions and now we are ready to
state first result,
Theorem 4.1. The equivalent conditions (i)-(v) of Theorem 2.6 are equwa!enr to
the following
vi) K has nfCDP.
Proof. We shall prove the equlvalcnce (2.6 (1v))¢>(vi). Let K have nICDP and

let ;€=I'l(/(j|]e.f), abeded with ¢, =d, 9"’(aj,b_,.) for all jeJ. Then for
6(a,b) there is some cover o ={/,,....J,} of J and there are some ideals I, ..., I, of,
respectively, H(Comp( ] J eJ,) - (Comp( ] jel ) such that
6(a,b)v z, [7;, =6, forall i=1,..,n. Consequently a, ab_,‘(ﬂlj) forall i=1,..,n.
Next, there are &, =<6”|je.f, >e I, such that g, Ebj(é?i_j) for jeJ,, where i=1,..,n.
So 9"‘( )<0 ’( _,,bj)séi'_;? for jeJ, and for every /=1, ..., n. Thus

¢ Ed..fl(g J,sbJ,)), s G Ed.r,,(a(a.;ﬁb.r,))-

Note: here we can even beforehand take 7, :(<9(aj,b}-] jel, >]=. for every
i=1,...,n, aprincipal ideal,

Conversely, let K have nFDPC on direct products. Let # =TI(#,|jcJ) be a
direct product representation of . Then for a,b,c,d € 4 with ¢; = dj(e(aj,bj)), jed,
there exists some cover o of J, so that for 6(a,b) we have:

0(a, b)v w7, =6, i=1,.
where 1 -(<9( a;.5; ]_}EI] >], od, (<9(aj,b ]]EI >] pnnclpal ideals. Thus every

principal congruence of 4 is an »- ideal congruence.
Then, take some two elements e, g € 4. It is easy to show that

&a,b)v 0, g)v (7, =6;,
where T, = (< G(aj ,bj)v G(ej,gj]j eJ, >] simultaneously forall i =1, ..., nn . For, clearly
&a.b)v ole,g)v w7, =6 v (B(e,g)v;r;i /xJI)S o,
s0 et u, v be an elements of 4 such that
ug =v i ). uy, Ean(t?];).
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Consequently u, =v, (S(af,bj)v E(ej,gf)) for all jeJ. Then there is a congruence
scheme S; over | =;€,/9(aj,bj) such that ;s’}]— (ej,gf,uj, J) where x denotes
the image of x in A#). So, if J; (1J; is nonempty then for all jeJ; UJ; these §,'s
are automatically the same. Moreover, if some J; is “isolated” from others, then we can
give a common continuation of corresponding congruence schemes. In all cases, in fact,
there works only one congruence scheme, so that u =v(8{(a,5)v 8le, 1))

The same arguments imply that every compact congruence of # is an n-ideal
congruence. Since every congruence is a set union of compact ones, it follows readily that
every congruence is an n-ideal congruence. This completes the proof of the theorem.

The analogy of 4.1 for subdirect products is as follows.

Theorem 4.2. The equivalent conditions (i)-(vii) of Theorem 2.10 are equivalent
fo the following

(viti} K has nfCSubDP,

Proof. Let K have nCS+CEP. Then K has nICDP by 4.1 and thus CEP implies
nICSubDP,

Conversely, suppose K has nICSubDP. Let <#,,a,,b.,c,,d,>, jeJ be all

algebras in K, up to isomorphism, satisfying ¢, =d, (Q(aj,bj )) for alt jeJ, and
Ajz[aj,bj,cj,dj]. Then we form H(Af}.\je.f), a=<ajjeJ>, b=<bj]jel>,
c=<c,|jed>, d=<d,|jeJ>, and A={a,b,c,d], # a subalgebra (morcover, a
subdirect representation in) I](,-i f jeJ). Thus for 67 (a,b) there exists a cover & of J
and there exist ideals 7,,..,7, in, respectively, I‘I(Comp(;fj) jeJi),...,

H(Comp(rf 1) Jje J’,,) such that

6"(a,b)v ”J,-{n/’r.f,'n =014,
where #, is the image of # under the projection homomorphism onto 1'1(,—4}.| jeJ f).
Then a, =4, (6,1), ~,anda, =b; (61,'). Consequently there are 8,€1,,...,0, 1, such
that a,=b,(0,;) for all jeJ,i=1..n. Therefore c,=d,(6,) for all jeJ,,
i=l..,n. Ths ¢, =d, @),... ¢, =d, (6,), s ¢, =du,1(9,l),..‘, ¢, EdJH(BI_). Now
we sum up: we have venfied that <.¢,.a;.5;.¢,.d; > <Ay 0,00, 6, ,d, >

satisfy nRAUPC and so by 2.10, K satisfies all equivalent conditions (i)-(vii) of 2.10,
completing the proof of the theorem,

forall i=1..,n,
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