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MUKHTAROV ML.A.
EXACT SOLUTION OF YANG-MILLS SELF-DUALITY EQUATIONS
Abstract

The exact A,(SL(2,R)), A,(SL(3,R))- solutions of self- duality equations are
Jound. In the special case the O(4)- invariant with instanton number equal to one arises.

In the last few years a great interest has been paid [1-8] on investigation of self-
dual Yang- Mills equation because it has been shown that a large number of one, two and
(1+2)- dimensional integrable models can be obtained from it by symmetry reduction
and by imposing the constraints on Yang- Mills potentials. The universality of the self-
dual Yang- Mills model as an integrable system has been confirmed in the recent paper
[9] where the general scheme of the reduction of the Belavin- Zakharov Lax pair for self-
duality {10] has been represented over an arbitrary subgroup from the conformal group of
transformations of R,- space. As the result of this reduction one has the Lax pair
representation for the corresponding differential equations of a lower dimension.

In the Leznov- Saveliev approach [11] the cylindricall symmetrric configurations
of Yang- Mills fields are considered, that is the solutions are invariant with respect to the
so- called diagonal group, the generators of which are composed of the generators of a
subgroup ofthe conformal group of coordinate transformations and the SU(2) - subgroup
of the gauge group. In this case the number of different two-dimensional reductions is
defined by nonequivalent embeddings of the SU(2)- group into the gauge group. In
particular, an exactly integrable system of generalized Toda lattice was derived and its
general solution was obtained.

In this work, following the Leznov- Mukhtarov approach [12], we construct the
solution of self-duality equation depending on » - independent lincar self-dual systems,
each of which contains 2@, +1 members, where @, arc the indexes of the semisimple

algebra. The O(4)- invariant solution, having no singularities in the whole four

dimensional space, aries when the solutions of chains of linear systems are simply
numerical constants.

1. From the group of motion of four dimensional space (x,,x,,%,,x,)e R(4) let
us choose the group SU(2) which transforms the pair complex coordinates y,z
(y =x +ix,,z=x, +:'x4) as the components of the two- dimensional (spinor)
representation of this group. The components of conjugated spinor (E,—jz“) and any linear
combination of the form (v+AZ,z—Ay) are transformed at the same way. The
infinitesimal operators of this algebra Z,, L,(H) have the form

Loeyg s L=ifoFZ. Leygorosis 3L ()
The algebra s/(2, R) may be embedded in gauge algebra in many unequivalent ways. In

this work we shall use the so-called principal embedding, the infinitesimals operators of
which are defined as:

J, = Zl,fma)f; . H-= i{a)ghg , @)
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where X, 5, are the generators of the simple roots and Cartan elements of a
semisimple algebra, w, = 22 (k“1 )aﬂ is the set of its indexes, & is the Cartan matrix and
A=1

¥ is its rank. For more details on the principle embedding, see for instance [4] (there it is
called minimal).

The generators of a semisimple algebra can be decomposed into 2 mulnplcts 1.e.,
they may be marked by the quantum numbers (/,n) of irreducible self- dual equations,
which are invariant with respect to the total momentum §=J +L (sec (1-2)). For this
purpose we need our element F, from the algebra which satisfies the condition
[F,.5]=0

To construct such an element let us notice that from the components of a spinor
we may construct (2 +1)- ordered vectors &l =(y+Az)"*(z-13) (O<a<2i)
which are transformed according to the (2/+1)- dimensional representation of the
algebra s{(2, R). Constructing these vectors with generators of gauge algebra, having the
same quantum numbers, we get the invariant F; connected with the /- multiplct.

For instance, three basis vectors (z-A¥),(z-APNy+42), (y -4 z)
transformed according to vector represemtation of the s/{2,R) algebra and the
corresponding invariant has the form:

Fl=(y+Az)J ~(y+AsXz-AF)H ~J (z A¥)

as can verified by direct calculations.

,

In general, Fy =) ¢, Fy" , where summation is over all multiplets of the algebra.

a=l .

As F, is mvariant with respect to the total momentum it is always possible to
transform F, to the coordinate system where y=¥5=0, z=Z=+R, R=zZ+ )y, s0 F,
may be presented in the form

F, T[exp(.} ;L)Zc R J% exp{-J A)JT (3)

o=l

T= exp[~ J. %}cxp(.}_ -yi;z-]exp[Hlni;] »

z

where

J? is highest vector of « - multiplet, having the properties

lruz )20, pre,sr)=o
The last commutativity relations of the highest vectors belonging to different multiplet
distinguish the principal embedding from the others.
2. Let us write the self- dual equations in Yang’s form
]G— .___f‘z > =_fys (4)
where the elements Gand f take values in the gauge group and gauge algebra
respectively.

To integrate equation (4) it is necessary to solve the homogeneous Riemann
problem

e®Ql =Q, 5
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where QOF are the boundary values of analytical functions, taking values in the gauge
group, and are defined outside and inside of the contour ¢, respectively, F, is an
arbitrary function of three independent variables F, = Fy(4,y + AZ,z — A7) taking values

in the gauge algebra. The boundary condition for (5) is Q' —>1 +§ when A —>c0. The

point 4 =0 is inside and the point A=co is outside the contour ¢. Using the usual
methods for the Riemann problem it may be proved that equation (4} are fulfilled if we
take G=Q7|,.,, f=F, where Q°, F are taken from the solution of Riemann
problems.

If we want to find the solution of the self-dual equations, which are invanant with
respect to the total momentum §, we must take F, in form (3), where ¢, are arbitrary
functions of 4:¢, =¢,_(4).

Here we shall consider the more general casc supposing that ¢, =
=c,(1,y+ A%,z - 17). The same arguments will be used for the function F, .

Now we shall solve the Riemann problem for this case. First of all, we include
the element T, which is A independent and rewrtte (5) in the form

(epocaJ; }"U"Q: =e ¥ 0.
From this moment we include the factor R™ (see (3))in ¢, :c, R™ — ¢, .
Let us perform some identical transformations:

0 X, /s b =lexp Ta.; e e = loxp T a0 e ore
Ezz =C, ~'—510:/2’ ® M_IJ;—M =(_ I)GJ‘; .
Taking into account the commutativity of the highest vectors [Jf,.}' s ]: 0 and using the
Sokhotsky- Plemeli formulae, we have

(oo ez ke tar) <(ep Tosu e ar) = pla), ©6)
where ¢} (4)= jzfi%cﬂ () (lez (1)), - (63 (). =2, (4)). All factors of the left-hand side

of (6) are analytical outside the integration contour and the ones on the right-hand side-
inside it. Thus, from the Liouville theorem we may conclude that the function p(/l)
taking values in the group has in any representation the matrix elements, which are
polynomial over A in the hole complex plane.

-

. . E
The asymptotic condition QY —~)1+Z allows us to find the coefficients of

polynomials of each element and to solve the self-dual equations in the case under
consideration.

3. To make the situation clearer we shall use the method of the previous section
in the simplest case of the 4(SL(2,R)) gauge algebra. Let’s parameterize the group
clement ¢™+/*Q3* by Euler’s angles: ¢™*Q" =expat, exprH exp A. and take the

elements J,, H in two-dimensional representation. Under these assumptions equation
(6) takes the form:

Ae’ Afe*

A+r, B
v, 1 T .+, 1 e, 1 o |=PA)= ° ’
;!{01 + A—za]e /1{01 +?a] ﬂe + 'ze p( ) [ Cy 0 ] ? Y
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where we have used the asymptotic expansion of the Cauchy integral at the infinite point

6(A)dA _ 8, L8 e, 1 :
9=t g Dy @, = [(A7) (A7)
ris, A'-A A ,12 A 2::'."];( Yol
and the asymptotical conditions e~+*Q* -1+ F AJ ik
N TR T = 8%
e a-_ml+ 2 e, al—*@,;ﬂl’“ > z/l"“ .
From (7) w have
z c eti-c¢
e —1+; a:lz[i_: 0~01]=——(c,+coro)+%+
ie.
2 012
To=~,  @=-0,+-L
o Ca

1
In the same way we get 3, =- and for f we have:
4]

2
f;hm+H%+L%=J{hJJ—H§4J{ Q+ﬁq. (8)
4

&y

After the necessary transformation f—>T'fT (see (3)) and some trivial gauge
transformation f tums into the Hooft solution in its usual forny

2
f=J+'L_H$L+J—(“q)2 +£Js
Py Po P 1

where @,, ¢,, ¢, are the terms of the chain of the self-dual linear equations which are
connected with ¢, ¢, ¢, (from (3) and see after (7)) by the relations
2
y1 yyl
L oy | S = 9
R P =cC (E] R &)
The instanton charge density g for this solution is
g~0Dnfi - c,R?).

4. In this scction we shall give the explicit form of the solution of equation (4) for

the case of the algebra A,. We keep notation ¢, for the terms of length three chains

{co, €1, ;) and d, for the terms of length five chain (dy,d,, d,,d,,d, ). In these
notations

1
Py =¢ +*§: ¢ =c+

P »-2 Hy
—C OGPy i P A —Cyfhy —Cofly —2
f= 2 2 2 i
‘”d4_(d3—(cj2) n- | ds- gﬁﬁ‘ - - ds_% U
- (dz ~ €6y )Pa - (dz — o6 )J’o —€; - (dz — €€y My

where the pairs (py,2,), (v6,), (it5.,) are the solutions of linear systems of two
equations:
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d, + _(Coz)z_ d, [x) d, +E‘0C)12 [co J (0]
3 =7 ¢y * - » - .
d2 dl _ (C;) Y dS + ) € 1

The right hand side of these equations corresponds to the pairs (p,,2,), (vo,71), (to-44)

respectively.
We see that f may have singularities in the finite points of fundamental space
. R-1
only when the set of the system is zero: Det=(d, )’ R* —dd,R* - LQ@-—E-{)-— .

Writing the expression for the determinant we have in mind the dependence of
¢, on R, which we have included in the determination of ¢, .

If all terms of the chains are constants, we have, as it was mentioned above, O(4)

invariant solution of (4). In this case if we choose ¢, <0 and (d,)* ~d,d, <0 we have
the constant sign of the determinant and the solution of self-dual equation (4) in the case
of algebra A, has no singularities at all points of four- dimensional space.
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