MUSHTAGOV F.M.

THE UNIQUENESS OF SOLUTION OF CAUCHY PROBLEM FOR THE SECOND ORDER PARABOLIC EQUATIONS WITH NONUNIFORM DEGREE DEGENERATION

Abstract

An article deals with Cauchy problem for a class of the second order parabolic equations with nonuniform degree degeneration. The uniqueness of solution in a class of slow growing Tikhnov type functions has been proved.

Let R_{n+1} be (n+1)- dimensional Euclidean space of points $(x,t)=(x_1,...,x_n,t)$, $R_{n+1}^+=R_{n+1}\cap\{(x,t):t>0\}$, $S_T=R_{n+1}^+\cap\{(x,t):t< T\}$, where $T\in(0,\infty)$. We consider Cauchy problem in R_{n+1}^+

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x,t)u_{ij} - u_{t} = 0, \quad (x,t) \in S_{T}; \quad u|_{t=0} = f(x).$$
 (1)

We suppose, that for all $(x,t) \in S_T$ and for any n-dimensional vector $\xi = (\xi_1, ..., \xi_n)$ the next condition is fulfilled

$$\mu \sum_{i=1}^{n} \lambda_{i}(x,t) \xi_{i}^{2} \leq \sum_{i,j=1}^{n} a_{ij}(x,t) \xi_{i} \xi_{j} \leq \mu^{-1} \sum_{i=1}^{n} \lambda_{i}(x,t) \xi_{i}^{2} , \qquad (2)$$

where $\mu \in (0,1]$ is constant, $\lambda_i(x,t) = (1+|x|_{\alpha} + \sqrt{t})^{-\alpha_i}$, $|x|_{\alpha} = \sum_{i=1}^{n} |x_i|^{\frac{2}{2-\alpha_i}}$, $\alpha = (\alpha_1,...,\alpha_n)$,

$$\alpha_i \in [0,2); i=1,...,n$$
. We denote through $u_i = \frac{\partial u}{\partial x_i}$ and through $u_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j}$ for

i, j = 1,...,n. Moreover without loss of generality we can assume that $a_{ij}(x,t) = a_{ji}(x,t)$.

The aim of this paper is to find a class of uniqueness Cauchy problem (2). We note, that for the heat equation the uniqueness solution of Cauchy problem in the class of slowgrowing functions was established by A.N Tikhonov. [1] and S. Taclind [2]. This result was carried to the arbitrary uniforms second order parabolic equations of the nondivergent structure in [3] (look also [4]-[5]). More complete review of literature by subjects of researches it is possible to find in monographies [6] and [7].

At first we agree in some denotes and definitions. For n-dimensional vector x^0 and positive numbers R and k we denote through $E_R^{x^0}(k)$ next ellipsoid $\left\{x: \sum_{i=1}^n \frac{\left(x_i - x_i^0\right)^2}{R^{-\alpha_i}} < (kR)^2\right\} \text{ and through } C_{x^0,R}^{t^1,P}(k) \text{ next } (n+1)\text{- dimensional cylinder}$

 $E_R^{x^0}(k) \times (t^1, t^2)$. Everywhere further $\Gamma(D)$ is parabolic boundary of the domain D and writing C(...) denotes, that positive constant C depends only on contain of parentheses.

For positive numbers R, s, β we set

$$F_{s,\beta}^{(R)}(x,t) = \begin{cases} t^{-s} \exp\left[-\sum_{i=1}^{n} \frac{x_i^2}{R^{-\alpha_i}} / 4\beta t\right], & \text{if } t > 0 \\ 0, & \text{if } t \le 0 \end{cases}$$

Definition 1. Function $\mathcal{G}(x,t)$, defined in layer S_T , is called α -slow growing, if there are constants $c_1 > 0$, $c_2 > 0$ such that for all positive R

$$\sup_{C_0,T(1)} \left| \mathcal{G}(x,t) \right| \leq C_1 e^{c_2 R^2}.$$

Definition 2. Function $\vartheta(x,t)$, defined in layer S_T , is called L-subparabolic (L-superparabolic), if $\vartheta(x,t) \in C^{2,1}(S_T) \cap C\{(x,t): t=0\} \cap C\{(x,t): t=T\}$ and $L\vartheta(x,t) \ge 0 \le 0$ for $(x,t) \in S_T$.

Lemma 1. Let $A_1^R = (E_R^0(2) \setminus E_R^0(1)) \times (0, R^2)$. If coefficients of operator L, satisfy to condition (2), then there are $S(\mu, \alpha, n)$ and $\beta(\mu, \alpha, n)$ such that for $R \ge 1$, $(\gamma, \tau) \in A_1^R$

$$L(x,t)F_{s,\beta}^{(R)}(x-y,t-\tau) \le 0; \quad (x,t) \in A_1^R \setminus \{(y,\tau)\}. \tag{3}$$

Proof. Taking into account (2) we have

$$LF_{s,\beta}^{(R)} = F_{s,\beta}^{(R)} \left\{ \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{(x_i - y_i)(x_j - y_j)}{4\beta^2 (t - \tau)^2 R^{-\alpha_i - \alpha_j}} - \frac{1}{2\beta (t - \tau)} \sum_{i=1}^{n} \frac{a_{ii}(x,t)}{R^{-\alpha_i}} + \frac{S}{t - \tau} - \frac{1}{2\beta (t - \tau)^2 R^{-\alpha_i - \alpha_j}} \right\}$$

$$-\frac{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}/R^{-\alpha_{i}}}{4\beta(t-\tau)^{2}} \right\} \leq F_{s,\beta}^{(R)} \left\{ \frac{1}{4\mu\beta^{2}(t-\tau)^{2}} \sum_{i=1}^{n} \lambda_{i}(x,t) \frac{(x_{i}-y_{i})^{2}}{R^{-2\alpha_{i}}} - \frac{n\mu}{2\beta(t-\tau)} \times \right. \tag{4}$$

$$\times \sum_{i=1}^{n} \frac{\lambda_{i}(x,t)}{R^{-\alpha_{i}}} + \frac{s}{t-\tau} - \frac{\sum_{i=1}^{n} (x_{i} - y_{i})^{2} / R^{-\alpha_{i}}}{4\beta(t-\tau)^{2}}$$

Since $x \in E_R^0(2)$, then $\sum_{i=1}^n \frac{x_i^2}{R^{-\alpha_i}} < (2R^2)$ and therefore for i = 1,...,n $|x_i| < 2R^{1-\alpha_i/2}$,

$$\left|x_{i}\right|^{\frac{2}{2-\alpha_{i}}} \leq 2^{\frac{2}{2-\alpha^{+}}}R = C_{3}(\alpha)R, \text{ where } \alpha^{+} = \max\{\alpha_{1},...,\alpha_{n}\}.$$

Consequently

$$|x|_{\alpha} \le nC_3 R \,. \tag{5}$$

Moreover, because of $t \in (0, R^2)$, then

$$\sqrt{t} \le R$$
 (6)

From (5) and (6) we get, that for $R \ge 1$

$$1+\left|x\right|_{\alpha}+\sqrt{t}\leq\left(2+nC_{3}\right)R.$$

Frow the last we obtain

$$\lambda_i(x,t) \ge (2 + nC_3)^{-\alpha^*} R^{-\alpha_i} = C_4(\alpha,n) R^{-\alpha_i}; \quad i = 1,...,n.$$
 (7)

Other wise because of $x \notin E_R^0(1)$, then $\sum_{i=1}^n \frac{x_i^2}{R^{-\alpha_i}} \ge R^2$. From here we obtain existing t_0 ,

$$1 \le i_0 < n \text{ such that } \left| x_{i_0} \right| \ge \frac{R^{1-\alpha_{i_0}/2}}{n}$$
, i.e. $\left| x_{i_0} \right|^{\frac{2}{2-\alpha_{i_0}}} \ge \frac{R}{n^{\frac{2}{2-\alpha^+}}} = C_5(\alpha, n)R$.

Hence

$$\left|x\right|_{\alpha} \ge \left|x_{i_0}\right|^{\frac{2}{2-\alpha_{i_0}}} \ge C_5 R. \tag{8}$$

From (8) we deduce, that for $R \ge 1$

$$1+|x|_{\alpha}+\sqrt{t}\geq C_5R_n,$$

and thus

$$\lambda_i(x,t) \le C_5^{-\alpha^-} R^{-\alpha_i} \le C_6(\alpha,n) R^{-\alpha_i}; \quad i = 1,...,n,$$
 (9)

where $\alpha^- = \min \{\alpha_1, ..., \alpha_n\}$. From (7) and (9) we conclude that for $(x, t) \in A_1^R$

$$C_4 \le \frac{\lambda_i(x,t)}{R^{-\alpha_i}} \le C_6; \quad i = 1,...,n.$$
 (10)

Taking into account (10) in (4) we get

$$LF_{s,\beta}^{(R)} \leq F_{s,\beta}^{(R)} \left\{ \frac{1}{4\beta(t-\tau)^2} \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{R^{-\alpha_i}} \left[\frac{C_6}{\mu\beta} - 1 \right] + \frac{1}{t-\tau} \left[5 - \frac{n^2 C_4 \mu}{2\beta} \right] \right\}.$$

Now choosing $\beta = \frac{C_6}{\mu}$; $s = \frac{n^2 C_4 \mu^2}{2C_6}$ we obtain demanding estimate (3). Lemma is proved.

Let
$$E = \min \left\{ T, \frac{1}{64C_2\beta\lambda^2} \right\}$$
, where $\lambda = 2^{\frac{2}{2-\alpha^2}}$, β is constant of lemma 1.

Lemma 2. Let u(x,t) be L-subparabolic in S_E function, nonpositive for t=0. So that, if $u(x,t)-\alpha$ - slow growing function, then

$$\overline{\lim} u(x,t) \leq 0.$$

Proof. For arbitrary R > 1 we consider subsidiary function

$$\mathcal{G}_{R}(x,t) = M_{1}e^{C_{2}R^{2}} \int_{\partial \mathcal{E}_{R}^{0}(1)} (t+\varepsilon)^{-s} \exp \left[-\frac{\sum_{i=1}^{n} (x_{i}-\xi_{i})/R^{-\alpha_{i}}}{4\beta(t+\varepsilon)} \right] ds_{\xi} + \\
+ M_{1}e^{C_{2}\lambda^{2}R^{2}} \int_{\partial \mathcal{E}_{R}^{0}(2)} (t+\varepsilon)^{-s} \exp \left[-\frac{\sum_{i=1}^{n} (x_{i}-\xi_{i})/R^{-\alpha_{i}}}{4\beta(t+\varepsilon)} \right] ds_{\xi},$$

where s and β are chosen according to previous lemma, but positive constant M_1 will be defined later.

According to lemma 1 function $\mathcal{G}_R(x,t)$ is L- superbarabolic in $B_s^R = A_1^R \cap \{(x,t): 0 < t < \varepsilon\}$. At the lower base of domain B_s^R (for t = 0) $\mathcal{G}_R(x,t) > 0$ For $(x,t) \in \partial E_R^0(1) \times (0,\varepsilon)$

$$\mathcal{G}_{R}(x,t) \ge \frac{M_{1}e^{C_{2}R^{2}}}{(2\varepsilon)^{s}} \int_{\partial \mathcal{B}_{R}^{0}(1)} \exp \left[-\frac{\sum_{i=1}^{n} (x_{i} - \xi_{i})^{2} / R^{-\alpha_{i}}}{4\beta\varepsilon} \right] ds_{\xi}. \tag{11}$$

We fix $x \in \partial E_R^0(1)$ and denote through E_1^+ set $\left\{ \xi : \xi \in \partial E_R^0(1), \sum_{i=1}^n \frac{(x_i - \xi_i)}{R^{-\alpha_i}} \le 4\beta \varepsilon \right\}$. It is clear, that exists $R_1(\mu, \alpha, n)$ such that for $R \ge R_1$ $mes_{n-1}(E_1^+) \ge 1$.

Then

$$\int_{\mathsf{a}\mathcal{B}_R^0(1)} \exp \left[-\frac{\sum_{i=1}^n \frac{(x_i - \xi_i)^2}{R^{-\alpha_i}}}{4\beta\varepsilon} \right] ds_{\xi} \ge \int_{\mathcal{B}_1^+} e^{-1} ds_{\xi} \ge e^{-1}$$

that together with (11) give

$$\vartheta_R(x,t) \ge \frac{M_1 e^{C_2 R^2}}{e(2\varepsilon)^t}$$
.

If choose and fix $M_1 = C_1 e(2\varepsilon)^s$, then $\mathcal{G}_R(x,t) \ge C_1 e^{C_2 R^2}$. So that, for $(x,t) \in \partial E_R^0(1) \times (0,\varepsilon)$ inequality $\mathcal{G}_R(x,t) \ge u(x,t)$ is true. Now we fix $x \in \partial E_R^0(2)$ and denote through E_2^+ set $\left\{ \xi : \xi \in \partial E_R^0(2), \sum_{i=1}^n \frac{(x_i - \xi_i)^2}{R^{-\alpha_i}} \le 4\beta E \right\}$. It is clear, that for $R \ge R_1$ $mes_{n-1}(E_2^+) \ge 1$. Then again

$$\int_{\partial B_R^0(2)} \exp \left[\frac{-\sum_{i=1}^n (x_i - \xi_i)^2 / R^{-\alpha_i}}{4\beta E} \right] ds_{\xi} \ge e^{-1}$$

and that's why

$$\vartheta_R(x,t) \ge \frac{M_1 e^{C_2 \lambda^2 R^2}}{e(2\varepsilon)^s} = C_1 e^{C_2 \lambda^2 R^2}.$$

On the other hand by virtue of choice λ $E_R^0(2) \subset E_{\lambda R}^0(1)$, that involve $\sup_{\partial E_R^0(2) \cap (0,\varepsilon)} u(x,t) \leq C_1 e^{C_2 \lambda^2 R^2}$. Thus we show, that everywhere on $\Gamma(B_\varepsilon^R)$ $\theta_R(x,t) \geq u(x,t)$. By maximum principle this inequality is true for $(x,t) \in B_\varepsilon^R$. Now let (x',t') is an

arbitrary point on $\partial E_R^0\left(\frac{3}{2}\right) \times (0,\varepsilon)$. If $\xi \in \partial E_R^0(1)$ then

$$\sqrt{\sum_{i=1}^{n} \frac{(x'-\xi_{i}')^{2}}{R^{-\alpha_{i}}}} \ge \sqrt{\sum_{i=1}^{n} \frac{(x'_{i})^{2}}{R^{-\alpha_{i}}}} - \sqrt{\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{R^{-\alpha_{i}}}} = \frac{R}{2}.$$

But if $\xi \in \partial E_R^0(2)$, then

$$\sqrt{\sum_{i=1}^{n} \frac{(x_{i}' - \xi_{i})^{2}}{R^{-\alpha_{i}}}} \ge \sqrt{\sum_{i=1}^{n} \frac{\xi_{i}^{2}}{R^{-\alpha_{i}}}} - \sqrt{\sum_{i=1}^{n} \frac{(x_{i}')^{2}}{R^{-\alpha_{i}}}} = \frac{R}{2}.$$

Therefore

$$u(x',t') \leq \frac{M_1 e^{C_2 R^2}}{\varepsilon^s} \int_{\partial E_R^0((1))} \exp\left[-\frac{R^2}{32\beta \varepsilon}\right] ds_{\xi} + \frac{M_1 e^{C_2 \lambda^2 R^2}}{\varepsilon^s} \int_{\partial E_R^0(2)} \exp\left[-\frac{R^2}{32\beta \varepsilon}\right] ds_{\xi} \leq \frac{M_1 e^{-C_2 R^2}}{\varepsilon^s} mes_{n-1} \left(\partial E_R^0(1)\right) + \frac{M_1 e^{-C_2 \lambda^2 R^2}}{\varepsilon^s} mes_{n-1} \left(\partial E_R^0(2)\right) = D(R) .$$

$$(12)$$

It is easy to see that $\lim_{R\to\infty} D(R) = 0$.

So that, from (12) we deduce

$$\sup_{\partial E_R^0\left(\frac{3}{2}\right)\times(0,s)}u(x',t')\leq D(R).$$

Now it is enough to transit in last inequality to $\lim_{n \to \infty} f(x) = 0$ and $\lim_{n \to \infty} f(x) = 0$ and $\lim_{n \to \infty} f(x) = 0$.

Corollary. If α - slow growing function u(x,t) is L- superparabolic in S_E and $u|_{t=0} \ge 0$, then

$$\underline{\lim} u(x,t) \ge 0.$$

In particular if α - slow growing function u(x,t) is solution of equation of equation Lu = 0 in S_E and $u|_{t=0} = 0$ then $\lim_{x \to \infty} u(x,t) = 0$.

Lemma 3. Let u(x,t) be solution of equation Lu = 0 in S_E , $u|_{t=0} = 0$. If $u(x,t) - \alpha$ - slow growing function then $u(x,t) \equiv 0$.

Proof. We fix arbitrary $\delta > 0$ and point $(x',t') \in S_B$. According to corollary of previous lemma there exist M > 0 such that $|u(x,t)| \le \delta$ for $|x| \ge M$. We denote through $M_0 \max\{M,|x'|+1\}$ and consider cylinder $C = \{(x,t): |x| < M_0, 0 < t < \varepsilon\}$. It is clear that $(x',t') \in C$ and $u|_{\Gamma(C)} < \delta$. By maximum principle $u(x,t) < \delta$ for $(x,t) \in C$ and in particular

$$u(x',t')<\delta. (13)$$

By the same way we prove that

$$u(x',t') > -\delta \tag{14}$$

From (13)-(14) we obtain that $|u(x',t')| < \delta$. Because δ is arbitrary we deduce that u(x',t')=0. Now it is enough to use arbitrariness of point (x',t') in S_E and lemma is proved.

Theorem. Cauchy problem (1) has no more than one solution in class of α - slow growing functions.

Proof. We consider layer S_E . Let $u_1(x,t)$ and $u_2(x,t)$ are two solutions of Cauchy problem (1). Then function $u(x,t)=u_1(x,t)-u_2(x,t)$ is solution of problem

$$Lu = 0$$
, $(x,t) \in S_E$; $u|_{t=0} = 0$.

According to Lemma 3 $u(x,t) \equiv 0$ in S_E . If $\varepsilon \geq T$ then theorem is proved. But if $\varepsilon < T$ then we consider layer $S_E' = R_{n+1}^+ \cap \{(x,t) : \varepsilon < t < 2\varepsilon\}$. Function u(x,t) is solution of problem

$$Lu = 0$$
, $(x,t) \in S'_E$; $u|_{t=E} = 0$.

According to lemma 3 $u(x,t) \equiv 0$ in S'_{E} , i.e. $u(x,t) \equiv 0$ in S_{2E} . If $2\varepsilon \geq T$ then theorem is proved. But if $2\varepsilon < t$ then we continue process by the same way. Let m be

least natural number for which $m\varepsilon \ge T$. In m steps we obtain that u(x,t) = 0 in $S_{m\varepsilon}$. So theorem has been proved.

In conclusion author thanks to Prof. I.T. Mamedov for value consultations and encouragement.

References

- [1]. Тихонов А.Н. Теоремы единственности для уравнения теплопроводности. Матем.сб., 1935, т.42, №2, с. 199-216.
- [2]. Taclind S. Sur les classes quasianalytiques des solutions des équations aux derivéis partielles du type parabolique. Nord Aita Regial Soc. Sci. Uppsallesis, 1936, №10.
- Ландис Е.М. Уравнения второго порядка параболического и эллиптического типов. М., Наука, 1971, 288с.
- [4]. Ильин А.М. О поведении решения задачи Коши для параболического уранвения при неограниченном возрастании времени. Успехи мат. наук, 1961, т. XVI, вып. 2(98), с. 115-121.
- [5]. Репников В.Д., Эйдельман С.Д. Новое доказательство теоремы о стабилизации решения задачи Коши для уравнения теплопроводности. Матем.сб., 1967, т.73, №1, с. 155-159.
- [6]. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М., Наука, 1967, 736с.
- [7]. Фридман А. Уравнения с частными производными параболического типа. М., Мир, 1968, 427с.

Mushtagov F.M.

Institute of Mathematics and Mechanics of AS Azerbaijan.

9, F. Agayeva str., 370141, Baku, Azerbaijan.

Tel.: 39-47-20.

Received September 15, 1999; Revised February 18, 2000. Translated by author.