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MUSHTAGOY EM.

THE UNIQUENESS OF SOLUTION OF CAUCHY PROBLEM FOR THE
SECOND ORDER PARABOLIC EQUATIONS WITH NONUNIFORM DEGREE
DEGENERATION

Abstract

An article deals with Cauchy problem for a class of the second order parabolic
equations with nonuniform degree degeneration. The uniqueness of solution in a class of
slow growing Tikhnov type functions has been proved.

Let R be {n+1)- dimensional Euclidean space of points (x,t)=(xl,...,x,,,r),
R, =R, N{x):t>0}, S =R N{x0):t<T}, where Te(0,0). We consider

n+l
+

Cauchy problem in R,
Lu=Y a,(cthy, ~u, =0, ®)eS,; . o=rlx) (1)
1 f=1 .
We suppose, that for all (x,f)eS, and for any n- dimensional vector
&=(&,....£,) the next condition is fulfilled

.“g, (0 < iaif (x,f)f.-f; S#_]’Z:l:&(x,r)ﬁf . (2)

#,7=1

2
where ue(0,1] is constant, 4,(x,f)= (1+|r{a + \f;)'a‘ . 4, =i|x,- [za , a=(a,....a,).
i=1
62
Ox,0x;
i,j=1,..,n. Moreover without loss of generality we can assume that a; (x,0)=a p {x,1).

The aim of this paper is to find a class of uniqueness Cauchy problem {2). We note, that
for the heat equation the uniquencss solution of Cauchy problem in the class of
slowgrowing functions was established by AN Tikhonov. [1] and S. Taclind {2]. This
result was carried to the arbitrary uniforms second order parabolic equations of the
_ nondivergent structure in [3] (look also [4]-[5]). More complete review of literature by
subjects of researches it is possible to find in monographies [6] and [7].

At first we agree in some denotes and definitions. For »-dimensional vector x°

and positive mumbers R and k we donote through K5 () next ellipsoid

n _ 0 2
{x:Ei’%Z<(kR)z} and through C;:"‘R(k) next (7+1)- dimensional cylinder

for

a,e[0,2); i=1_.,n. We denote through u, -g- and through u;

EZ (k)= (' #2). Everywhere further (D) is parabolic boundary of the domain D and
writing C(...} denotes, that positive constant C depends only on contain of parentheses.
For positive numbers R, s, 8 weset
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ex y 4Bt |, if >0
F&)(e.r)= [ S ]
0, if <0
Definition 1. Function 9(x,t), defined in layer S, , is called a -slow growing, if

there are constants ¢, >0, ¢, >0 such that for all positive R
sup ]S(x 1)< e
0.3

c

Definition 2. Function S(x,r), defined in layer Sy, is called L- subparabolic
(L- superparabolic), if 8(x,t)e C* (S, )NC{x,1):¢=0INC{x,t):¢=T} and
L3(x,£)20( 0) for (x,r)e ;.

Lemma 1. Let A% = (E2Q)\ ES()x{0,R?). If coefficients of operator L, satisfy
to condition (2), then there are S(u,a,n) and flu,a,n) such that for R21, (y,r)e A"

L, OF B (x -yt —7)<0; (e 42 1) 3)
Proof. Taking into account {2) we have

i

S A - P R Zﬁ(t r) P f-1
3 2 -,
i Vi R™
_ E(x b4 ) / < Fl®) E’L( \( ) o @
e AT L T

Z": A1) s g(xi‘ ~n /R

S R% t-t ape-y

| o
Since x € Ex(2), then Z% < (ZRZ) and therefore for i =1,...,n |x,]<2R"™/

i=l

»

2
|xf[ﬁ <27 R=C,(a)R , where o* =max{a,,...,}.
Consequently
I_<nC,R. )
Moreover, because of t e (O,Rz), then
JE<R. ' ©)
From (5) and (6) we get, that for R>1 '
1+|xLr + J;S(Z +nC;)R .
Frow the last we obtain
4,02 Q+nC)Y " R =C,(a,m)B™; i=1,. . .,n. (7)

-+
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L

2
Other wise because of x ¢ £(l), then Z%zﬁ'z . From here we obtain existing i,,

n @
=1
I—ﬂm;‘jz 2
1<j, «<n such that |x,.0i2 , Le. |x, IE“% z ACs(a nR .
n nz-*ﬂ*
Hence
2
4, 2% |72 2CR. (8)

From (8) we deduce, that for R=1

1+]d, +Vr 2GR,

and thus
/’L,(x,r)SC;“_R'“‘ <Cyla,n)R™™; i=1,.,n, )]
where @ = min {al,...,an}. From (7) and (9) we conclude that for {x,¢)e Af
c, <’1;§_x;)<c i=1,..n. (10)

Taking into account (10} in {4) we get

u*;@;km{ e }_1(5 m]}'

Be-TE R |

2 2
Now choosing §= G L8 :ii%i’[i— we obtain demanding estimate (3). Lemma
M 8
is proved.
2
Let E=min< T, __L ,where A =22<" 8 is constant of lemma 1.
64C, pA?

Lemma 2. Let u(x, t) be L- subparabolic in Sy function, nonpositive for t =0.
So that, if u(x,t) - a - slow growing function, then
Tim <
chl_n:ou(x,f) <0.
Proof. For arbitrary R >1 we consider subsidiary function
> &)/R™

3, (x,1)=Me® [(t+5)" exp| - 2
R( ! an;(l} 4ﬁ(f+3)

ds¢+

- 36 - g)/Re
+M.e aﬁ?;!’(Et)+£) exp| - 5 e) ds, ,

where s and f are chosen according to previous lemma, but positive constant M, will
be defined later. :
According to lemma 1 function S;(x,f) is L- superbarabolic in Bf = 4R )
N {(x,£): 0 <t <&}. At the lower base of domain B (for r=0) 8, (x,1)>0
For (x,t}e SE2(1)x(0,£)
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( ) J;VI—IQC,R2 _Z](xi - éi)z /R-a‘
G lx, )= exp| — %5 e (rn
R @2} sy 4ps

We fix xedkS(1) and denote through E' set {5 & edkd), Z(x;{‘f)<4ﬂg} It is

=1

clear, that exists R,(u,e,n) such that for R= R, mes, , (Ej )21 .

Then
z":(x,- _‘f-:f)2
j exp = S 5 2 Ie"dsg ze
as30) 4ps
that together with (11) give
Meo®

3o (x,0)> o

If choose and fix M, =Ce(2s), then 8,(x,1)2Ce®* . So that, for

(x,t)e BES (1) % (0,&) inequality 8,(x,1)zulx,t) is true. Now we fix xedE(2) and

n _ 2
denote through E; set {é‘ 1 e DKL (2), ZL’%—ji < 4,8.&“} . It is clear, that for R= R,
i=1

mes,_, (E; )2 1. Then again

I ‘“Z(xs _‘fa)z/R_a’
exp| —= ze
aEx(2) ABE ‘

and that’s why
.l’l‘ffec"';t2 R? CLA2Rt
I (et} 2 ——— = C "
e(2e)
On the other band by virtue of choice A Eg(2)c £5,(1), that involve
sup  ulx,t)<C,e“*®  Thus we show, that everywhere on [ (BR) S, 1) 2 ufx,1).

aE(2)v,s}
By maximum principle this inequality is true for (x,f)e BY. Now let (x,#’) is an

arbitrary point on OI:.R( ) (0,£). If &£ e BES(1) then
J @y, J Y l;}f; =3

But if £ € 0E5(2), then
Jz(x ‘5)2 J & Z(x )2

=1 i=1 R-

Therefore
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R 2 CAR? 2
u(x',f’)SMles I exp|:— R gilds¢+M‘es jcxp[H R ]dsgs

£ a0
~C,R? AR
M e, (OB M s, (083(2))= DIR) . ' (12)
& &
It is easy to see that LhnD(R):o.
So that, from (12) we deduce
sup u(x’,)< D(R).
as}.'{%]x(o,s}

Now it is enough to transit in last incquality to lim for R —oc and lemma is
proved. :

Corollary. If a - slow growing function u(x,t) is L- superparabolic in Sg and
u|,=0 20, then
limu(x,1)= 0.

In particular if @« slow growing function u(x,r) is solution of equation of
equation Lu=0 in S, and u|,_o =0 then lim u(x,1)=0.

e

Lemma 3. Let u(x,r) be solution of equation Lu=0 in Sy, ul,_,=0.If
u(x,r) —a - slow growing function then u(x,t) =0,

Proof. We fix arbitrary § >0 and point (x',#')e S, . According to corollary of
previous lemma there exist M >0 such that ju(x,t] <& for [x{=M . We denotc through
M, max{M,!x’| + 1} and consider cylinder C = {x,r): |x} <My, 0<t < s} . It is clear that
(x'¢}eC and u|;(cy<d. By maximum principle u(x,1)<8 for (x,)eC and in
particular

u(x,t')<4d. (13)
By the same way we prove that

u(x',t')> -5 . ' (14)
From (13)-(14) we obtain that ju(x',#')<J. Because & is arbitrary we deduce that
ux’,t')=0. Now it is enough to usc arbitrariness of point {x’,#') in Sp and lemma is
proved.

Theorem. Cauchy problem (1) has no more than one solution in class of a - slow
growing functions.

Proof. We consider layer S;. Let u,(x,t} and u,(x,r) are two solutions of

Cauchy problem (1). Then function u(x,f)=u,(x,f)—u,(x,7) is solution of problem
Lu=0, (x,t)eS;; “ir:o =0.

According to Lemma 3 #(x,/)=0 in §;.If £=T then theorem is proved. But if
& <T then we consider layer S, =R?, N {{x,f):£ <t <2¢}. Function u(x,f) is solution
of problem

Lu=0, (x,0)eS;; u| g =0.

According to lemma 3 u(x,1)=0 in S5, ie. u(x,t)=0 in §,,. If 2627 then

theorem is proved. But if 2£ <t then we continue process by the same way. Let m be
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least natural number for which ms 27 . In m steps we obtain that u(x,f)=0 in S,,. So

theorem has been proved.
Tn conclusion author thanks to Prof. I T. Mamedov for value consultations and s
encouragement,
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