VOL. XI (XIX)

QULIYEV C.X.

STRONG GENERALIZED SOLVABILITY OF FIRST BOUNDARY VALUE PROBLEM FOR GILBARG-SERRIN EQUATION

Abstract

In present paper the class of elliptic equations of the second order of Gilbarg-Serrin's type was considered. The strong generalized solvability of first boundary value problem for such equations is proved.

Let D be bounded domain in n-dimensional Euclidian space E_n of points $x = (x_1, ..., x_n), n \ge 3, 0 \in D$, and ∂D be boundary of D. Consider in D Gilbarg-Serrin's operator

$$L = \Delta + \mu(r) \sum_{i,j=1}^{n} \frac{x_i x_j}{r^2} \frac{\partial^2}{\partial x_i \partial x_j},$$

where $r = |x|, b_1 \le \mu(r) \le b_2, b_1 > -1, b_2 < \infty$.

It is easy to see, that operator L is uniformly elliptic in domain D. However, if $\inf_{x\in D}\mu(|x|)>n-2$, then solutions of equation Lu=0 find the series of qualitative new properties extrinsic, for example, for solutions of Laplace equation (see [1-2]). The aim of present paper is to prove the uniqueness of strongly generalized Dirichlet problem for class of equations of Gilbarg-Serrin's type. It must be noted, that in case if $\mu \equiv const$ the analogous results was obtained in [3-5]. The paper [6] could be used as reference for the question on weak solvability of first boundary value problem for considered equations.

Now we will describe some denotations and definitions. By $L_{2,y}(D)$, $W_{2,y}^1(D)$ and $W_{2,y}^2(D)$ we will denote Banach spaces of functions, giving on D, for which final norms are

$$||u||_{L_{2,r}(D)} = \left(\int_{D} r^{\gamma-2} u^{2} dx\right)^{1/2},$$

$$||u||_{W_{2,r}^{1}(D)} = \left(\int_{D} \left(r^{\gamma-2} u^{2} + r^{\gamma} |\nabla u|^{2}\right) dx\right)^{1/2}$$

and

$$||u||_{W_{2,\gamma}^2(D)} = \left(\int_{D} \left(r^{\gamma-2} u^2 + r^{\gamma} \left| \nabla u \right|^2 + r^{\gamma+2} \sum_{i,j=1}^n \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right)^2 \right) dx \right)^{1/2}.$$

Here ∇u is vector of gradient of function u(x). By $\dot{W}_{2,\gamma}^2(D)$ we will denote subspace $W_{2,\gamma}^2(D)$ the dense set in which are all infinitively differential in \overline{D} functions, which vanishes on ∂D , the corresponding norms of which are finite. For $i,j=\overline{1,n}$ $u_i=\frac{\partial u}{\partial x_i}$, $u_{ij}=\frac{\partial^2 u}{\partial x_i\partial x_j}$. Everywhere further under the record c(...) we will

understand that constant c, which depends only on content of brackets. Suppose for function $\mu(r)$ following conditions

$$b_0 \le \mu(r) \le b_2; \ b_0 > 2n - 3, \ b_2 < \infty,$$
 (1)

$$|\mu'(r)| \le \frac{c_1}{r}; -\frac{c_2}{r^2} \le \mu''(r) \le 0; r \in (0, diam D).$$
 (2)

We will use following lemma, that what was proved in [6].

Lemma 1. Let D be bounded domain in E_n , in which the coefficients of operator L satisfying to conditions (1)-(2) are determined. Then if $\gamma = 1 - n$, then for any function $u(x) \in W_{2,\gamma}^2(D) \cap C_0^{\infty}(D)$ the following estimation is valid

$$-\int_{D} r^{\gamma} u L u dx \ge C_{3} \left(\mu\right) \int_{D} r^{\gamma} \left|\nabla u\right|^{2} dx . \tag{3}$$

Lemma 2. If conditions (1)-(2) holds with respect to coefficients of operator L, y = 1 - n, then for any function $u(x) \in W_{2,y}^2(D) \cap C_0^{\infty}(D)$ inequality

$$||u||_{H_{2,\nu}^{-1}(D)} \le C_4(n,\mu) ||Lu||_{L_{2,\nu+2}(D)} \tag{4}$$

holds.

Proof. We fix k, $1 \le k \le n$ and suppose in estimation (3) ru_k instead of function u. We have

$$\sum_{k=1}^{n} \int_{D} r^{\gamma} |\nabla (ru_{k})|^{2} dx = \sum_{k=1}^{n} \int_{D} r^{\gamma} u_{k}^{2} dx + \sum_{i,k=1}^{n} \int_{D} r^{\gamma} x_{i} (u_{k}^{2})_{i} dx +$$

$$+ \sum_{i,k=1}^{n} \int_{D} r^{\gamma+2} u_{ik}^{2} dx = \sum_{k=1}^{n} \int_{D} r^{\gamma} u_{k}^{2} dx - (\gamma + n) \sum_{k=1}^{n} \int_{D} r^{\gamma} u_{k}^{2} dx +$$

$$+ \sum_{i,k=1}^{n} \int_{D} r^{\gamma+2} u_{ik}^{2} dx = \sum_{i,k=1}^{n} \int_{D} r^{\gamma+2} u_{ik}^{2} dx .$$

$$(5)$$

So as $\gamma = 1 - n$. From the other side,

$$L(ru_{k}) = rLu_{k} + u_{k}Lr + 2\sum_{i,j=1}^{n} a_{ij}r_{i}u_{kj}$$
(6)

where $a_{ij} = \delta_{ij} + \frac{\mu(r)x_ix_j}{r^2}$. Here δ_{ij} is Kroneker's symbol. Moreover, $Lr = \frac{n-1}{r}$,

$$2\sum_{i,j=1}^{n} a_{ij} r_{i} u_{kj} = 2\sum_{i=1}^{n} \frac{x_{i}}{r} u_{ki} + 2\mu(r) \sum_{j=1}^{n} \frac{x_{j} u_{kj}}{r} . \text{ Thus, from (6) we get}$$

$$I = -\int_{D} r^{\gamma+1} u_{k} L(r u_{k}) dx = -\int_{D} r^{\gamma+2} u_{k} L u_{k} dx - \int_{D} r^{\gamma+1} u_{k} \frac{n-1}{r} u_{k} dx - 2\sum_{i=1}^{n} \int_{D} r^{\gamma+1} u_{k} \frac{x_{i}}{r} u_{ki} dx - 2\sum_{i=1}^{n} \int_{D} r^{\gamma+1} u_{k} \frac{x_{i}}{r} u_{ki} \mu(r) dx = i_{1} + i_{2} + i_{3} + i_{n}.$$

$$(7)$$

It is easy to see, that

$$i_2 = -(n-1)\sum_{i=1}^n \int_{\Gamma} r^{\gamma} u_k^2 dx$$

$$i_{3} = \sum_{i=1}^{n} \int_{D} (r^{\gamma} x_{i}) u_{k}^{2} dx = \gamma \sum_{i=1}^{n} \int_{D} r^{\gamma-2} x_{i}^{2} u_{k}^{2} dx +$$

$$+ n \int_{D} r^{\gamma} u_{k}^{2} dx = \int_{D} r^{\gamma} u_{k}^{2} dx ,$$

i.e.

$$i_2 + i_3 = (\gamma + 1) \int_D r^{\gamma} u_k^2 dx = -n \int_D r^{\gamma} u_k^2 dx \le 0$$
 (8)

We have further

$$i_{4} = \sum_{i=1}^{n} \int_{D} (r^{\gamma} x_{i} \mu(r))_{i} u_{k}^{2} dx = \int_{D} r^{\gamma} \mu(r) u_{k}^{2} dx + \int_{D} r^{\gamma+1} \mu'(r) u_{k}^{2} dx.$$

$$(9)$$

Finally,

$$i_{1} = -\int_{D} r^{\gamma+2} u_{k} (Lu)_{k} dx + \int_{D} r^{\gamma+2} u_{k} \mu'(r) \frac{x_{k}}{r} \sum_{i,j=1}^{n} \frac{x_{i} x_{j}}{r^{2}} u_{ij} dx +$$

$$+ 2 \int_{D} r^{\gamma+2} u_{k} \mu(r) \sum_{i=1}^{n} \frac{x_{i} u_{ik}}{r^{2}} dx - 2 \int_{D} r^{\gamma+2} u_{k} \mu(r) \sum_{i,j=1}^{n} \frac{x_{i} x_{j}}{r^{4}} u_{ij} dx =$$

$$= j_{1} + j_{2} + j_{3} + j_{4}.$$

$$(10)$$

But from the other side, according to conditions (1)-(2)

$$j_{1} = \int_{D} r^{\gamma+2} u_{kk} L u dx + (\gamma + 2) \int_{D} r^{\gamma} x_{k} u_{k} L u dx \le$$

$$\leq \int_{D} r^{\gamma+2} u_{kk} L u dx + |\gamma + 2| \int_{D} r^{\gamma+1} |u_{k}| \cdot |L u| dx, \qquad (11)$$

$$j_2 \le C_1 \sum_{i,j=1}^n \int_D r^{r+1} |u_k| \cdot |u_{ij}| dx , \qquad (12)$$

$$j_3 \le 2b_2 \sum_{i=1}^n \int_D r^{\gamma+1} |u_k| \cdot |u_{ik}| dx, \qquad (13)$$

$$f_4 \le 2b_2 \sum_{i,j=1}^n \int_{D} r^{\gamma+1} |u_k| \cdot |u_{ij}| dx.$$
 (14)

Taking account of (5)-(9) and (11)-(14) in (10), we obtain that for any $\varepsilon > 0$

$$C_{3} \sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx \leq \sum_{i=1}^{n} \int_{D} r^{\gamma+2} u_{ii} L u dx +$$

$$+ (c_{1} + b_{2}) \sum_{i=1}^{n} \int_{D} r^{\gamma} u_{i}^{2} dx + |\gamma + 2| \sum_{i=1}^{n} \int_{D} r^{\gamma+1} |u_{i}| |L u| dx +$$

$$+ c_{1} \sum_{i,j,k=1}^{n} \int_{D} r^{\gamma+1} |u_{k}| |u_{ij}| dx + 2b_{2} \sum_{i,k=1}^{n} \int_{D} r^{\gamma+1} |u_{k}| |u_{ik}| dx +$$

$$+ 2b_{2} \sum_{i,j,k=1}^{n} \int_{D} r^{\gamma+1} |u_{k}| |u_{ij}| dx \leq \frac{\varepsilon}{2} \sum_{i=1}^{n} \int_{D} r^{\gamma+2} u_{ii}^{2} dx +$$

$$+ \frac{n}{2\varepsilon} \int_{D} r^{\gamma+2} (L u)^{2} dx + (c_{1} + b_{2}) c_{6} \int_{D} r^{\gamma+2} (L u)^{2} dx +$$

$$+ \frac{n-3}{2} \int_{D} r^{\gamma} |\nabla u|^{2} dx + \frac{(n-3)n}{2} + \int_{D} r^{\gamma+2} (L u)^{2} dx +$$

$$+ \frac{c_{1}\varepsilon n}{2} \sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx + \frac{c_{1}n^{2}}{2\varepsilon} \int_{D} r^{\gamma} |\nabla u|^{2} dx +$$

$$+ \frac{2b_{2}\varepsilon}{2} \sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx + \frac{2b_{2}n}{2\varepsilon} \int_{D} r^{\gamma} |\nabla u|^{2} dx +$$

$$+ \frac{2b_{2}\varepsilon n}{2} \sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx + \frac{2b_{2}n^{2}}{2\varepsilon} \int_{D} r^{\gamma} |\nabla u|^{2} dx \leq$$

$$\leq \varepsilon c_{\gamma}(\mu, n) \sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx + c_{8}(\varepsilon, \mu, n) \int_{D} r^{\gamma+2} (I_{i}u)^{2} dx .$$

Now we choose and fix $\varepsilon = \frac{c_3}{2c_7}$. Then

$$\sum_{i,j=1}^{n} \int_{D} r^{\gamma+2} u_{ij}^{2} dx \le c_{0} (\mu, n) \int_{D} r^{\gamma+2} (Lu)^{2} dx$$
 (15)

From the other side from (3) it follows that for any $\varepsilon_1 > 0$ it is valid inequality

$$\frac{\varepsilon_1}{2} \int_D r^{\gamma - 2} u^2 dx + \frac{1}{2\varepsilon_1} \int_D r^{\gamma + 2} (Lu)^2 dx \ge c_3 \int_D r^{\gamma} |\nabla u|^2 dx. \tag{16}$$

Morcover, according to [6]

$$\int_{D} r^{\gamma - 2} u^{2} dx \le c_{10} (\mu, n) \int_{D} r^{\gamma} |\nabla u|^{2} dx.$$
 (17)

Fix now $\varepsilon_1 = \frac{c_3}{c_{10}}$. Then from (16) and (17) we have

$$\int_{D} r^{\gamma} |\nabla u|^{2} dx \le c_{11}(\mu, n) \int_{D} r^{\gamma+2} (Lu)^{2} dx$$
 (18)

Thus, from (15), (17) and (18) follows the requested estimation (4). Lemma is proved. For $x^0 \in E_n$ and R > 0 we denote by $Q_R^{x^0}$ the ball $\{x : |x - x^0| < R\}$.

Lemma 3. Let $\overline{Q}_R^{x^0} \subset D$, $\gamma = 1 - n$ and with respect to coefficients of operator L conditions (1)-(2) hold. Then for any function $u(x) \in W_{2,\gamma}^2\left(Q_R^{x^0}\right) \cap C^{\infty}\left(\overline{Q}_R^{x^0}\right)$ for any $r \in (0,R)$ inequality

$$||u||_{W_{2,r}^2(Q_r^{x^0})} \le C_{12}(R,\mu,n) \left(1 - \frac{r}{R}\right)^{-2} \left(||Lu||_{L_{2,r+2}(Q_R^{x^0})} + ||u||_{W_{2,r}^2(W_{2,r}^{x^0}(Q_R^{x^0}))} \right). \tag{19}$$

is valid.

Proof. Let $u(x) \in W_{2,r}^2(Q_R^{x^0}) \cap C^{\infty}(\overline{Q}_R^{x^0})$. Consider auxiliary function $\eta(x)$ such that $\eta(x) = 1$ for $x \in Q_r^{x^0}$, $\eta(x) = 0$ for $x \notin Q_{R+r}^{x^0}$, $0 \le \eta(x) \le 1$, $\eta(x) \in C_0^{\infty}(Q_R^{x^0})$. For this

we could assume, that for $i, j = \overline{1, n}$

$$\left|\eta_{i}\right| \le \frac{C_{13}(n)}{R-r}, \ \left|\eta_{ij}\right| \le \frac{C_{13}}{(R-r)^{2}}.$$
 (20)

Suppose $v(x) = u(x) \cdot \eta(x)$. It is clear, that $v(x) \in C_0^{\infty}(Q_R^{x^0}) \cap W_{2,\gamma}^2(Q_R^{x^0})$. Therefore for this function we can apply estimation (4). We have, taking account of (20)

$$||u||_{W_{2,r}^{2}\left(\mathcal{Q}_{r}^{s^{0}}\right)}^{2} \leq c_{14}(n,\mu) \left(\int_{\mathcal{Q}_{R}^{s^{0}}} (Lu)^{2} |x|^{r+2} dx + \frac{c_{15}(n)}{(R-r)^{4}} \int_{\mathcal{Q}_{R}^{s^{0}}} u^{2} |x|^{r-2} dx + \frac{c_{16}(n,\mu)}{(R-r)^{2}} \int_{\mathcal{Q}_{R}^{s^{0}}} |x|^{r} |\nabla u|^{2} dx \right).$$

From here immediately follows the requested estimate (19). Lemma is proved.

Lemma 4. If conditions of previous lemma are valid, then for any function $u(x) \in W_{2,y}^2(Q_R^{x^0}) \cap C^{\infty}(\overline{Q}_R^{x^0})$ for any $r \in (0,R)$ following inequality is true

$$||u||_{W_{2,r}^{2}\left(Q_{r}^{s^{0}}\right)} \leq c_{17}(R,r,n,\mu) \left(||Lu||_{L_{2,r+2}\left(Q_{R}^{s^{0}}\right)} + ||u||_{L_{2,r+2}\left(Q_{R}^{s^{0}}\right)}\right). \tag{21}$$

Proof. Suppose $A = \sup_{r \in (0,R)} \left\{ \left(1 - \frac{r}{R}\right)^2 \|u\|_{W_{2,r}^2(Q_r^{x^0})} \right\}$. Then there exists

 R_1 , $0 < R_1 < R$ such that

$$A \le 2 \left(1 - \frac{R_1}{R} \right)^2 \| u \|_{w_{2,r}^2(Q_{R_1}^{2^0})}.$$

According to previous lemma for any $R_2, R_1 < R_2 < R$ we have

$$\begin{split} A &\leq 2 \bigg(1 - \frac{R_1}{R} \bigg)^2 C_{18} (\mu, n) R_2^{-2} \bigg(1 - \frac{R_1}{R_2} \bigg)^{-2} \times \\ &\times \bigg(\big\| Lu \big\|_{L_{2,r+2} \left(\mathcal{Q}_{R_2}^{\bullet^0} \right)} + \big\| u \big\|_{W_{2,r}^1 \left(\mathcal{Q}_{R_2}^{\bullet^0} \right)} \bigg) \leq 2 C_{18} R_2^{-2} \times \\ &\times \bigg(1 - \frac{R_1}{R} \bigg)^2 \bigg(1 - \frac{R_1}{R_2} \bigg)^{-2} \bigg[\big\| Lu \big\|_{L_{2,r+2} \left(\mathcal{Q}_{R}^{\bullet^0} \right)} + \big\| u \big\|_{W_{2,r}^1 \left(\mathcal{Q}_{R_2}^{\bullet^0} \right)} \bigg]. \end{split}$$

Applying now interpolational inequality, we have for any $\varepsilon > 0$

$$A \leq 2C_{18}R_{2}^{-2} \left(1 - \frac{R_{1}}{R}\right)^{2} \left(1 - \frac{R_{1}}{R_{2}}\right)^{-2} \left[\left\| Lu \right\|_{L_{2,y+2}\left(\mathcal{Q}_{R}^{0^{0}}\right)} + \varepsilon \left\| u \right\|_{\mathcal{W}_{2,y}^{2}\left(\mathcal{Q}_{R_{2}}^{0^{0}}\right)} + C_{19}\left(\varepsilon, n\right) \left\| u \right\|_{L_{2,y+2}\left(\mathcal{Q}_{R_{2}}^{0^{0}}\right)} \right] \leq$$

$$\leq 2C_{18}R_{2}^{-2} \left(1 - \frac{R_{1}}{R}\right)^{2} \left(1 - \frac{R_{1}}{R_{2}}\right)^{-2} \left(1 - \frac{R_{2}}{R}\right)^{-2} \varepsilon A +$$

$$+ 2C_{18}R_{2}^{-2} \left(1 - \frac{R_{1}}{R}\right)^{2} \left(1 - \frac{R_{1}}{R_{2}}\right)^{-2} \left\| Lu \right\|_{L_{2,y+2}\left(\mathcal{Q}_{R}^{0^{0}}\right)} +$$

$$+ 2C_{18}C_{19}R_{2}^{-2} \left(1 - \frac{R_{1}}{R}\right)^{2} \left(1 - \frac{R_{1}}{R_{2}}\right)^{-2} \left\| u \right\|_{L_{2,y+2}\left(\mathcal{Q}_{R}^{0^{0}}\right)}$$

$$(22)$$

Suppose that $\delta = 1 - \frac{R_1}{R}$ and choose $R_2 \in (R_1, R)$ such, that $1 - \frac{R_2}{R} = \frac{\delta}{2}$. Now we fix this R_2 . It is easy to see, that $\frac{\delta}{2} < 1 - \frac{R_1}{R} < \delta$. Choose now ε such that

$$32C_{18}R_2^{-2}\delta^{-2}\varepsilon = \frac{1}{2}.$$

Taking account of fact that $C_{19} = \frac{C_{20}(n)}{\varepsilon}$, from (22) we obtain estimation (21). Lemma is proved.

Corollary. Let for $\rho > 0$ $D_{\rho} = \{x : x \in D, dist(x, \partial D) > \rho\}$. Then if conditions of lemma are satisfied, then for any function $u(x) \in W_{2,\gamma}^2(D)$ for any sufficiently small ρ the following estimation is valid

$$\|u\|_{W_{2,r}^2(D_\rho)} \le C_{21}(D,\rho,\mu,n) (\|Lu\|_{L_{2,r+2}(D)} + \|u\|_{L_{2,r+2}(D)}).$$

Lemma 5. Let conditions (1)-(2) holds with respect to coefficients of operator L and $\gamma = 1 - n$. Then for any function $u(x) \in \dot{W}_{2,y}^2(D)$ for any sufficiently small ρ inequality holds

$$||u||_{W_{2,r}^{2}(D\setminus D_{\rho})} \le C_{22}(D,\rho,\mu,n) (||Lu||_{L_{2,r+2}(D)} + ||u||_{L_{2,r+2}(D)}). \tag{23}$$

Proof. It is enough to prove estimation (23) for functions $u(x) \in W_{2,\gamma}^2(D) \cap C^{\infty}(\overline{D})$, $u|_{\partial D} = 0$. We will use method of local straightening of boundary (see [7]). Now let $x^0 \in \partial D$ and ρ is fix enough small number. So as boundary ∂D belongs to class C^2 , then there exists coordinates transformation $x \leftrightarrow y$ such, that if y^0 is image of point x^0 , then in some neighbourhood of y^0 the image of boundary is determined by equation $y_n = 0$. Denote by $\hat{Q}_{2\rho}^{x^0}$ the subset D, which for such mapping will maps to the half ball $Q_{2\rho,+}^{y^0} = \left\{ y : y \in Q_{2\rho}^{y^0}, y_n > 0 \right\}$. For this the operator L will transforms to the some elliptic operator L of second order with continuous coefficients, so as $x^0 \neq 0$. Let $\tilde{u}(y)$ be image of u(x) for such mapping. We continue function $\tilde{u}(y)$ by odd order through hyperplane $y_n = 0$ into half ball $Q_{2\rho}^{y^0} \setminus Q_{2\gamma,+}^{y^0}$ and denote obtained continuation again by $\tilde{u}(y)$. According to previous lemma

$$\|\widetilde{u}\|_{W_{2,r}^2\left(\mathcal{Q}_{\rho}^{y^0}\right)} \leq C_{17} \left(\|Lu\|_{L_{2,r+2}\left(\mathcal{Q}_{1\rho}^{y^0}\right)} + \|u\|_{L_{2,r+2}\left(\mathcal{Q}_{2\rho}^{y^0}\right)}\right).$$

Taking into account fact, that function $\tilde{u}(y)$ continues by odd order, returning to variables x and covering $\overline{D \setminus D_{\rho}}$ by sets $\hat{Q}_{2\rho}^{x^{0}}$, we obtain estimation (23). Lemma is proved.

Corollary. If conditions of lemma holds, then for any function $u(x) \in \dot{W}_{2,\gamma}^2(D)$ inequality

$$\left\| u \right\|_{W^{2}_{2,r}(D)} \leq C_{23} \left(D, \mu, n \right) \left(\left\| Lu \right\|_{L_{2,r+2}(D)} + \left\| u \right\|_{L_{2,r+2}(D)} \right)$$

is true.

Theorem 1. Let with respect to coefficients of operator L conditions (1)-(2) satisfies. Then for any function $u(x) \in \dot{W}_{2,r}^2(D)$ the following estimation holds

$$||u||_{W_{2,r}^2(D)} \le C_{24}(D,\mu,n)||Lu||_{L_{2,r+2}(D)}.$$
 (24)

Proof. As it follows from [6], the inequality (3) is valid for any function $u(x) \in W_{2,y}^2(D) \cap C^{\infty}(\overline{D})$, $u|_{\partial D} = 0$. From (3) for any $\sigma > 0$ we have

$$\frac{\sigma}{2} \int_{D} r^{\gamma - 2} u^{2} dx + \frac{1}{2\sigma} \int_{D} r^{\gamma + 2} (Lu)^{2} dx \ge C_{3} \int_{D} r^{\gamma} |\nabla u|^{2} dx.$$
 (25)

Taking into account (17), from (25) we obtain

$$\frac{1}{2\sigma} \int_{D} r^{\gamma+2} (Lu)^{2} dx \ge \left(\frac{c_{3}}{c_{10}} - \frac{\sigma}{2} \right) \int_{D} r^{\gamma-2} u^{2} dx.$$
 (26)

Choosing now $\sigma = \frac{c_3}{c_{10}}$ and taking into account that $r^{\gamma-2} \ge (diamD)^{-4} r^{\gamma+2}$, from corollary

of lemma 5 and (26) we obtain requested estimation (24). Theorem is proved.

Theorem 2. Let in domain D are determined coefficients of operator L, satisfying to conditions (1)-(2) and $\gamma = 1 - n$. Then first boundary value problem

$$Lu = f, x \in D; u \in \dot{W}_{2,r}^{2}(D),$$

is uniquely solvable in space $\dot{W}_{2,\gamma}^2(D)$ for any $f \in L_{2,\gamma+2}(D)$. For this for the solution of u(x) the following estimation is valid

$$\|u\|_{W_{2-(D)}^2} \le C_{24} \|f\|_{L_{2,1,2}(D)}$$
 (27)

Proof. For proof of this theorem it is enough to apply standard procedure (see, for example, [3]). Using theorem 1 and estimation (27) becomes a corollary of inequality (24). As a conclusion, author express gratitude for its supervisor doctor of physical-mathematical sciences, professor I.T.Mamedov for statement of the problem and useful discussions.

References

- [1]. Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. М., Наука, 1973, 576 с.
- [2]. Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, N.-Y., 1977, 401 p.
- [3]. Bass R.F. The Dirichlet problem for radially homogeneous elliptic operators. Trans. of AMS, 1990, v.320, №2, p.593-614.
- [4]. Мамедов И.Т., Мамтиев Т.Р. Коэрципивная оценка для эллиптических операторов 2-го порядка с однородными коэффициентами. В сб. трудов I Республиканской конференции по математике и механике, Баку, "Элм", 1995, ч.П, с.140-148.
- [5]. Мамедов И.Т. Об устранимых множествах решений задачи Дирихле для эллиптических уравнений 2-го порядка с разрывными коэффициентами. Труды ИММ АН Азербайджана, 1998, т.VIII(XIV), с.137-149.
- [6]. Quliyev C.X. Week solvability of the first boundary value problem for Gilbarg-Serrin equation. Proceedings of Inst. Math. Mech. Acad. Sci. Azerb., 1999, v.X(XVIII), p.132-137.
- [7]. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными. М., Мир, 1996, 351 с.

Quliyev C.X.

Nakhichevan State University named after Yu.G. Mamedaliyev. 1, A.Aliyev str., 373630, Nakhichevan-city, Azerbaijan. Tel.: 5-23-66.

Received September 16, 1999; Revised December 22, 1999. Translated by Panarina V.K.