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SOME QUESTIONS OF RIESZ SUMMABILITY OF MULTIPLE FOURIER
INTEGRALS
Abstract

In this paper we study even Riesz summability of multiple Fourier integrals in
Euclidean space. We have proved the following theorem. -

Theorem. Let f{x)e L, (R") have packaged support space R* . If 0 <o <1,

< i .
re+h)- 1) <C mm[r Gl + h)] (@>0),
where r(x)==;u;£|x~y|, x,p,heR*, then by 6=p+{k-1)2+n (0<n<a/2)

complete equation

$86.)-27 15 )0=0(

evenly relatively x € G, on every packaged G < R*, where G ((D W N (@)=

),R-ﬂ)oo

Let f(x)=f(x,,x,,..x, )e LI(R" ) be a periodic function with period 27 in each
variable.
Fourier series of the function f(x) is written as

(x) za n'e i(myx, 4 +-"t-‘t) (1)

where

a

x )ttt )
= 1 T

is a Fourier coefficient of this function.
For 6 =0 it is determined the sum

s :
2
Sf(x,f): 2 (1_%} am“mei(mq%.mm} 2)
being the Riesz mean of order § series (1), where v? =n? +---+n} . If there exists a
fintte limit J%In‘l Sg (x, I ) then it is said that scries (1) is summed up by a Riesz method at
. )

the point xe R* .
Bohner [1] has proved the following representation for the Riesz mean (2) of
Fourier series of the function f(x)

Sale)=2"0(6 + DR* [+ £, (6 5.0, (R 3
0
where ¥, (x)= -{@ , J,(x) is a Bessel function and
X

£.0= %%Jf(lﬂé X HIE TS
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is a spherical mean of the mean function f (x) in a sphere with a center at the point
xeR* and radius ¢, Z:&7 +++- + & =1 is a unique sphere.
K.Chandrasekharan [2] has generalized formula (3) as follows:

$80s.1)- E O I g [ RN, @

where &§>h+ _k_z“ 1, p >0, Ak is the greatest member less than p
? -1
)= B(p; k/g 1p+e-2 I(‘z‘sz)‘u s*7 flx,s)ds
0

is a spherical mean of order p of the function f(x)e I, (R" ), Bla, B) is a Beta function.
In view of ([2], p.217)

H I'ip+k/2
R*+1p J;tHZP—IV:S-rpWZZ(r R)dt = 26—;:—(.\5; - r(6)+ 1)

we find the representation
Sz (e f)- 24 Tk/2)£(x)=
27T (s + z)r(k/z) 2p Fokrzp
r(p+k/2) * 2P_‘.rk 2 2[-f (x t) f(x)]VJ-i-ku‘i-p(tR)dr
In paper [2] Chandrasekhan has studied the Riesz summability of multiple

Fourier series.
In particular, Chandrasekhan has proved that if

fp(x,t)—f(x)=0(t“), F>0, a>0,
then for 5=p+£;—1+ﬁ (8>0)
lim 83 (x, £)=2*V1(4/2)/ (x)

uniformly with respectto xe R* .
In the present paper this problem is studied for multiple Fourier integrals in a
more general form.

Let f(x)e L (R*)and

S~ [ 7 )a (5
R
be its expansion in Fourier integral where
}(u) G ):; jf(x)e_' g, x&R*, ueR*

is its Fourier transformation.

S20./)= | { ——Jf(u)e‘(‘ et (6)
lul<rt
is the Riesz’s spherical mean of order § >0 for Fourier integral (5).
Note that representations (3) and (4) are valid with respect 10 the Riesz spherical
mean for Fourier’s integral.

The following problem is set.
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Let the conditions of K. Chandrasekhan hold for the function f(x)e L, (Rk)
everywhere in R* | except the points of some twice differentiable hypersurface ® c'R” .
Then what can we say about the domain of uniform Riesz summability of Fouriers’s
multiple integrals in the space R* .

Denote by N ((D) a set of curvature centers of rounding points of the hypersurface
. It holds

Theorem. Let f(x)e LI(R*) have a compact support in R* . If for 0 <o <1 it is
Sulfilled the inequality

X+h]— fix)< H >
e B )] >0

where r(x):'ﬂg]x—yf,x,y,heR", then for 5=p+%+q (0<n<%) it holds the

equality

S22 £ )0=o(5k;

uniform with respect 1o xe G, on any compact G  R*, having no generic points with
the set © L N(®).

We use the method developed in papers [3] and [5] to prove the theorem.
We prove the following lemmas beforehand.

et ®cR' be a twice continnously-differentiable compact hypersurface.
F(u)=F(u,,u,,..,4, , ) is a radius-vector of hypersurface.

Lemma 1. Let Ae® be a point of a hypersurface. If dF(4)=0 and
d*F(A)=0, where Flu,uy,. )=|Fl,up, 00 ), then the point Ae®is a

rounding point of the hypersurface ©.
Proof. We have

J, R

dF(A) 5 oF (A)a' JE{% FJ ouy, M

=] J. J=1
1dei 62 k-l k-1
d?F(A)= 222 JF du +2ZZ w,du; . (8)
F=li=) _;r J=li=1 ; au:
Assume that dF{4)=0 and 4:1’2 (A):O simultaneously. Then it follows from

o - . . .
(7), that —auLLr , Le. ¥10O, where (0 is a tangent plane to the hypersurface @ at the
i

point Ae® . As mLQ, where 4 is a normal to the hypersurface at the point 4, hence it
follows that ¥ = A7 . Taking this into account we find from (8): '

k=1 k-1 al-' k-1 k=1
AZZ U, -, +EZ u du; = {9
J_l i=1 | F=1i=l auf
In view of

B{u,du)= iﬁ{ ),au ]du}.duf, Glu, du)_gki[ }4 au,

=1 i=1 =] =1
are the second and first quadratic forms respectively, we find from (9) that
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_Bludu) 1
Y Glu,du) 2
i.e. at the point A on the hypersurface in all directions a normal curvature has the same

value. This means that the point A€ ® is a rounding point of the hypersurface ® c R* .
The lemma is proved.

Lemma 2, Let A€ (<D ~C p), where C, is a sphere with a radius p and with a
center at the point x, € R* and let dF(4)=0 and d*F(A4)=0. In this case the curvature
centers of the hypersurface © and the sphere C, at the point A coincide.

Proof. It follows from lemma 1 that the point A is a rounding point of the
hypersurface @. At this point the equality (10) holds. Consequently, A =-R,, , wherc

R), is a normal curvature radius of the hypersurface at the point A . Hence it follows
Flu)=-Rym and [Flu)=Ry.

In other words, p =R, . This means that the curvature and curvature radius of
the hypersurface @ and the sphere C, at the point A coincide.

Denote by F(s) a radius-vector of arbitrary curve arranged on the hypersurface
& and passing through the considered points, where s is a natural parameter of this
curve. It is obvious that F(s)= li'»"(.s*]2 is a twice-differentiable function. Assume that the
function F(s) satisfies the conditions of lemma 2-5 of paper {3] by E.M. Nikishin and
G.1. Osmanov. By virtue of these lemmas there exists only the finite number of points
$158;5-s8, Such that F(§)=0. Otherwise, the point x, will be the curvature point
center of rounding points of the hypersurface ®. But x, ¢ N(®) . The lemma is proved.

Suppose p; -—-lF(sJ.] and 7(p)=m}'n|p—pj|.

Denote by A(p,w) the distance from the point of the sphere C, with a radius p
and center at the point x, € N(®) up to the hypersurface @.

Lemma 3. For 0<J < p/3 it holds the ineguality

mes{me C, :A(p,m)sé'}s Csp™! +C6pm_‘t[}’_m(p—5)+}"1"’2(p+5)], (11)
where C doesn't dependon p and §.

Proof. The curve lying in hypersurface and passing through the considered point
of the hypersurface divide into finite number of curves p. Assume that A, (p,ca) is the

distance from the point (0, @) to the curve /, . In this case it is obvious that

Alp.0)=min A, (p.0).

(10)

Therefore

mes{or: AMp,w)< &)< Emes{a):Ap(p,co)s5} . (12)

F4
Now estimate p”‘lmes{aJ:Ap(p,w)s 5} .
Draw the spheres C,, 5 and C,, ;. If the hypersurface has no point between the

spheres C, ; and C 5, then

mes{a):AP(p,m)Sc?}:O.
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Otherwise, a set of spherical points (p,a)), distant from the curve /, not
exceeding &, represents a part of the sphere C,. The measure of this part of the sphere
doesn’t exceed the measure of the part of hypersurface hit interior the ring-domain, plus
c8p** . Thus, we have

p"“mes{a):Ap(p,a))sé}S mes{t e®:{p-8Y <Flu)s(p+3) }+ Cép*2.
On the hand we can write .
mes{l e®:(p-5) 5F(u)5(p+§)2}s

supmes{S {p-8) < |F"(s]2 <(p+ 5)2} ,
where supremum is taken along all curves lying on the hypersurface and passing through

the considered points,
Bg virtue of lemma 6 of paper [3] it follows that

mespe®:(p -8 <Fu)<(p+8) }s C&p{py(p —6‘)]'1"2 + [py(p +5)]']’_{2} .
Consequently, _
o mes {’D A, (p,0)< 5}5 Cﬁpip/(p =)W +[oy(p +8)* }+ Cép*.
Hence we find that
mesto: A (p.@)< 8} Cop™ +Cop* {pp(p -8 +[or(p+ S} . (13)
The validity of relation (11) follows from (12) and (13).

Lemma 4. Let 0 <o <1,0<a<w, 4 :—h—aﬁw. Then the integral
26 -2p-k+1

a &

I j _ dw J dp

o\ A (xs P,a))
uniformly converges with regard fo x on any compact G < R*, having no generic points
with the set ® L N(®), where Alx,p,w) is the distance from the points of the sphere

with the radius p and center at the point xe G to the hypersurface @.

Since the compactum G has no generic points with the hypersurface, for any
xe G at small values o, we have

A(x, p,a))a d, where deR,.

Consequently, for the proof of lemma 4 it is sufficient to prove the uniform
convergence of the integral

F dw 8 .
——~ | dp withrespectto x€G.
£[£A (x,p,w)] ’

Choose the number g > % >1, since off <. First estimate the inner integral
dw
j; N (e, p.0)
Put £, = {m P < Alx, p,0)< 3—’0”-} , =123, .,

) 3n+1
E,= {a) : A(x,p,co)l%} :

Then, by virtue of lemma 3 we have
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mE, <C P ,0_1 +C; 93}2 k{?’ \:p[l~§;)i|+}’_m|:ﬁ(l+§1?)}}’ (14)

k/2

2:r

E, < 15
By virtue of Holder inequality we have:
da dw ke
sC . (16)
‘lAa(xspsw) [i‘.‘ Aaﬁ(x?psm)J
Considering the rclations (14) and (15) we find

dw C
[Ftea S s T aam

3P C  C spuf ap [ 1 ] 12 ( 1 J '
C = 1-— 1+— |||t =
+§p{n3m A )T A T
c +CZ o LR e I UL | BT I PO S 1 ) | O
poﬂ 3»1 a;&'} 3n[] aﬂ} p ¥ P 3» 4 P 3n -

S S )] )

Since off <1, then the series ;-3—;5% converges. Taking this into account we
find that

da C v Pmkcﬁj 172 1 a2 1
o R e

By applying Minkowsku s inequality and considering (16) and (17) we find

i)« Aliwisal™)
e ) R L) | I A
] sl It |

Making a change of variable by the formula p(l - %j —¢ in the first integral
=t i 1 ‘
and p(l + %,,) in the second integral we find:

aj
[ - Cap [ Ay {zj dt .
2 A (%, p,0) a P n=l 3”(1—078)12&/3 fw_(m“klum[y(f)]ﬁﬂﬁ .

For the function ;V(r) we can write the following inequality

+
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1 1 _ 1
S =f #i2B + ————e—
FOF S
e dr
Since ——<1 then e S 00
28 2£f3|f—pp|F;2ﬂ
2a df

<+4o0. Then we conclude that

Consequently, , J}a rqu+(k—5f2)ﬂ /B [}, (t)}a!Zﬁ

a L
| [I——d-?-—] dp<+o  uniformly with respect to xeG,  where
K (x,p.@)

G~ (® L N(®))=2 . The lemma 4 is proved.

f(xt) =) k-1

Lemma 5, Ler the conditions of the theorem be fulfilled, Then for h— 0

flo.(t +5)- o ()t = O(h““z”) (n<a/2) is uniform with respect to xe G .
Q

Proof. Since G k/z)‘za‘”* 2 (r S )P s*'ds=1 we have that

e S (N e o 1Y

It follows from the conditions of the theorem that

. dw
|f(x,s) ~ f(x £(Cs i_A" (x,s,m) .

In view of A(x,s,@)2 Alx,?,@) for s <t hence we find:
C ‘ SN . do ]
f, () flx)< Blp k2P I(fz -2 l(s !m]da <

-2 k+2 t
daw P )rlsk_lds - Ctaj_____‘_f_a)_____ .
s A7 (x,t,a))

s;Cr"_[

[ era) B

We have
o h o
”(px(!‘ +h)— o, ()t =“(px(r +h) -, ()at + “(px(t +h)-(e)dt =4+ 4,. (18)
4] 1] h

Estimate the integrals 4, and A, separately

4 ﬂ%(”h) (px(th<f‘f‘u st +h)- f(x]) Hflfp(x,f)*f(x]dr:B] 5,

)5 p—kf2+32 & pokf243f2
Taking into account ’fp(x f+h)- f(x]<C(t+h)“I————-—--~Aa( cjco o) we find for

the integral B,

h
B <C[(r+nyoersi [I%dm J dt
]

T A"(x,t + h,m)
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By applying Holder’s inequality for %+ﬁ=l, where u =55_:5§H:Fc—ﬁ and
e 2 wefind |
1-25+2p+k
/i H u
20— 25+: +E=3 h
B <C j(t+h) . j j—%dal—w— dt} <
o3 A (x,t + how)
144
228542 prk-3
{ () e "dr} = Olp=). (19)

By the same way we prove

B, =T|fp(X,‘)“f(x)| " :O(h“"z”)‘

PR (20)

Considering (19) and (20) we find 4, =O{h*?7} for 40 uniformly with
respectto xe G, where G (@ U N(@)=2.
Transform the integral 4, by the following way:

x,t+ x X, x [0t +h)- 1, (x,
4, j%f(tah)st)-(r:-ﬁz)‘f«(spi)(kaf()% hj\ ((r+h)‘5 ngtjdw

| 1
ﬂ 7,050~ flx) } Y e } dt=FE, +E,.

By virtue of the conditions of the theorem we have

o ( dow
E, <Ch* [t + By P02 _—%]dr.
] { \iA"(x,r,a))

By applying Holder’s inequality and considering lemma 4, we find

o0 VAL o PRERN'/
E < Ch“( [+ ) Sitalad s dt] I[j__.‘f‘"__J dt] <
Y :

uniformly with respect to xe G .
Now it remains to estimate the integral E, .

By viewing that f(x) has a compact support in R, , represent the integral £, as

! |dt+

P 1
El = j ff ?(x’t) _f (x]}(r + h)J—p—k/2+3;’2 N rﬁ—p—k}'2+3/2,
1
+ ﬂf(x tl}(t h)s p~k,r2+3,fz T p—k,n"2+3f2|dt—F +15.
It is easy to show that
l 1 1 | cn

- <
‘(t + Ry PRI T -k I“‘ prRCTEP
Hence it follows that
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ﬂolfp(x,r)—f(x Po do
F <Ch < Ch (e o522 [ 99 i<
1 ! (FH5%-2p)/2 g {t iA"(x,r,a))

o i 6 H Yy
< C}{ JeleoCrzaimdige ) | f [ f ma—‘@-w] dr| <
h 1 R\EL A (xa r:a))

o _ 12
<CH [Hles-k20ihigy | =1 < CH
h

uniformly with respectio x€ G,
We have for the integral F,:

T h
SC!W;':CP&
Fe .

Thus, we proved that
4, = O(h“”z'?) for h—>0
uniformly with respectto xe G .
Then from (18) follows, that

Tlout+ )= 0, @) dr = 0= ) for 20
0

uniformly with respect to x € G . The lemma is proved. ‘
Now we proved the theorem. We have:

S8 . )= 22T /2) 1) =
=R [0 (5.0)~ S}V puale RYEE =

i v
= CR*?? [yb+2v [fp(x,t)— 15 A o2t R+
0

+CR¥?P [F2p] [fp(xsf)_f(x)] Vssprapelt RYAE =M, + M,

/R

First, we estimate the integral A, . For 0<¢ s}li we¢ have

IJ,5+p4-k;2 (IRX _ O((rR)me) = O(l)-

l%+p+k;"2l = (rR)5+P'*'kf2 - (1‘}2)5+m"k}‘2

Considering this inequality and applying Hélder’s inequality for -i—+l =1 we
J7,
find

YR d. ?
‘M1 < CRE+2P ‘l'ra-l-i:-l-Zp-l IWL dt <
o 3 A% (x,t,0)

Yp

M
< CR*+2? th{u+k+2p—1}i dt f J‘ P <
o o \z A7 (x ¢ m)
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YR 114 :
< CRk-th( Ir(a+k+2p—]}ler - CRk+2p . R—(a+k+2p~l)-l,r‘l = O[R:_,q ] R->w,
G

uniformly with respectto xe G .
To integrate the integral M, we use the the asymptotic representation of Bessel’s

function
J,(x)= ‘ cos x-ﬂ}-ﬁ£)+0( 3'!2) for x »>o.

Viewing this representation, expand the integral M, in sum of two integrals as
follows

cos[tR—~£(p+5 +k/2)«~%)

. 2
M SCRRHZP Irk ZP—IU‘ (x [) f(x)] (IR)P+¢§‘+(#+1)‘!'2 dl‘ +

/R

+CRM2 [1#27 £ (1) - f(x)]O['—-Wdele"'Nz'

R
Considering that f{x) has a compact support in R, , we represent the integral
N, as: '

N,<C RE/2+p-5-3f2 ‘j‘“tkm p—6~5,"2‘ f_p (x, t) _ f(xl dt+

YR
+ CRM?Po-302 I ;kf2+ﬂ-'5"5f2| f(x){ di=1+T1,.
Po
Hence we have

T2 éCRk}2+p—6-—3f2 Trkf2+p—6—5g‘2 dtr< CRk,-’2+p-6—3j2 =O[ 1 J
R]+rj'

Py
uniformly with respectto xe G .
For the integral 7, we have

T < CR** 7532 ?ta+p+k!2—-8~—5;’2 [IJ_@“__
YR gA“(x,t,w)

By virtue of the incquality -;—+ 21 we find
U

R i o y Vi
T, SCR***po-%2 It(ﬂ+kf2+p—6—5f2}/t dr I I do al <
YR zAa(xaf:fO) _

R

A
< CR¥*p5-32 {?t(mkfm p-5-5/2}2 dt) = CRM?e-6-32p e+kf2ar p-8-5/241/2) _

/R
=CR™ =O( 1 ]
R
Conseguently,
N, =O( l_ ) for R—>w
R*T
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uniformly with respectto xe G .
It remains to estimate the integral N,
To this end first of all estimate the integral

D = CRE> P52 hﬁkf 2rpS-3fira .I'#——Ei-w— dt <
g A7 (x, t, a))

0
I

<Cngz+p—5-uz lTr(a+kf2+p—6—3,-’2}£ dt f J‘ g <
B 3 s\ A7 (x t a))

UR /4
< Cka2+p~'5——If2[ j‘r(rz+k;"2+p"5-'-3f2}idr} = O[ 1 } .
R
0

uniformly with respectto xe G.
Considering the last remark instead of the mtcgral N, it is sufficient to study the

integral
N =CR"’2+H“f3‘[Mcos[tR-—%(p +8 +.’§_} __Z_Jdt_ @n
a

¢5-p-k/243/2

Put

()= (px(t) for t20
Ve for <0’
Then instead of integral (21) it is sufﬁcient to estimate the integral

R P52 TW (tyﬂm dt

for any value (+) and (-1). )
By virtue of lemma 5 for the function _(¢) we have
Tloae + 1) w0 = 0=} for h—>0

uniformly with respect to x € G, where C ~ (@ U N(@))= 2.

For h= z we have
R
] oo
(e®d1 “Tmh 5 _j;, [w, ¢ +n)-w ()le?d| =

_1 _]’J [%(f + %) - y/x(t)}e"ﬂdr

5 = O(R"”'”’?) for R>ow

uniformly with respectto xe G .
Consequently,

kaz"'P-J—lr’z - O(ka2+p—~6—1,"2R—a+2r;¢ )___ O(R—a’+!?)

o

uniformly with respectto xe G .
So we have proved, that
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s iodot) ot

uniformly with respectto xe G .
In particular from this theorem it follows that

Jim SR (x.f)=2 € r[ )f(x)

uniformly with respectto x € G, where C {® v N{®))=2 . The theorem is proved.
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