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YUSUBOY Ch.A.

ON INTER-INFLUENCE OF .TWO CYLINDERS WITH RECTANGULAR
CROSS SECTIONS UNDER THE STABILITY LOSS IN AN ELASTIC MATRIX.

Abstract

In the paper the stability of two cylinders arranged in the infinite elastic matrix
parallel in close distance and whose transverse sections are rectangle is investigated.

Investigations are carried out in frame of piece-wise homogeneous model and
using the equations of the theory of three-dimensional condition is considered. The
materials of the matrix and the cylinders are taken isotropy and homogeneous.

Introduction.

In paper [3] in the frames of the piecewise homogeneous body model, by the
attraction of three-dimensional linearized stability theory (4), for the first time it was
suggested a method to study the stability in a structure of one-directed fibrous composite
materials under the pressure along the reinforcing clements. At present, many results bave
been obtained, and their detailed presentation is in monograph [5]. However, in all these
investigations, the cross sections of fibers conisidered to be circles. Hence, the results of
these investigations are not applicable for tape composites. In these composites the tapes
are shaped as infinite cylinders with non-circular cross-section of different form. So, we
study a stability problem of non-circular cylinders is an elastic matrix for tape composites.
The investigation method of these problems for isolated cylinders is suggested in [6]. In
paper [7] this method is extended to the case when it is considered the inter-influence under
the stability loss between the cylinders with non-circular cross sections, and the cross-
sections of the cylinders are elliptic. In the given paper by method [7], stability of two
cylinders with rectangular cross-sections in an elastic matrix under small sub-critical
deformations with regard to inter-influence of cylinders under the stability loss is
investigated. Note that, the similar problem for two cylinders with circular cross sections
were studied in papers [1,2].

1. Problem statement and solving method.

Consider a problem on the stability of a balance state of an infinite elastic matrix
reinforced by two rectangular parallel cylinders with the same rectangular cross sections
under the pressure «in an -infinity» along the axis of the cylinders with «dead» normal
efforts of intensity 4§ .

We relate the body to Lagrangian coordinates that coincide with Cartesian ones in
deformation. We shall denote the variables belonging to the matrix and filler
correspondingly by super script (2) and (1) and use the denotations from [4]. On the plane
of cross-section of cylinders we connect the local (x,,,x,,) and polar (r,,8,) (¢ =12)
coordinate system (fig.1) with the center of each cylinder. The connection between the
coordinates are expressed as:

r,exp8, = R expig,, +r expif, (g=12, p=12). (1.1
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Here R, = R,, is a distance between the centers of cylinders, ¢, =0, ¢, =7
is an angle between x,, and R, .
It is assumed that a contour of a cross-section of cylinders is described by the

equation .
8 g
(%] +(f§?—) =1, (1.2)

which is the equation of a rectangle with rounded off angles (fig.1)

Fig. 1.

In (1.2), 2a is the length, and 2b is the width of the rectangle. Here, the

constituent orthonormals to the contour of cross-section of the cylinder are of the form:
172
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quncos H{cos 9q+(~b—) sin 0} s

. g 2
N, = (%] sin’ Hlicos“ 2+ [%J sin'* 9:| ) (1.3)

We assume that materials of the matrix and filler are homogeneous and isotropic. And we
adopt that the materials of cylinders are the same. We carry out our research in scopes of
the second version of small subcritical deformations theory [4], when a subcritic
(principal) stress state is determined on a geometrical linear elasticity theory. The
characteristics of the material, i.e. a Young’s module and Poisson’s coefficient for the
matrix correspondingly denote by E¥ and v'®,and for cylinders - by E® and v,
Assume that E® > E® ,
Only, by definition the components of principal (subcritical) stress-state we shall
neglect the stresses arising on the square with normals perpendicular to the axis have ox,,

since these stresses have the order §(v\ ~v'?). Note that under the pressure along
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sufficiently rigid components of the medium, this assumption may be considered valid.

These assumptions are fulfilled exactly, when v’ = v®  Here the variables characterizing
the principal stress-state are determined as:

2) _ 9 . .. 0(2 _ Mg L D(2) 0l __ A,
g;}.g)__ggk_g’ )—0'11)4—0'22 =0y, =0,
o5 20, oM =0, ofP =E% of) =EVe. (1.4)

Assuming that under the stability loss, a complete linking has been realized
between the interfaces of materials of the cylinder and matrix, we can write the following
equality;

2 1 . (2 M (2 (1
PP =2 PPl =2 ) = 2,
z = 4,0 . @y L0 2 A0 '
ul? N = )"|‘q, ug i =g e Uz | U3 %" (1.5)

Investigate the stability loss in a structure of the material when the length of the wave of
the stability loss form is determined not by the length of the sample or the form of
structural clement, but by the relations between mechanical and geometrical characteristics
of the cylinder and matrix. This phenomenon arises in the case, when a curve of
dependence of contraction on the wave formation y =z b/L (lis length of the wave along
the axis ox, of stability loss form) has a minimum, excluding the case 3 =0.

According to the general solution of equations for three-dimensional linearized
stability theory for compressible bodies under small homogeneous subcritical
deformations, the constituents of surface forces and displacements both for the matrix and

cylinder are determined by the functions w'? and x@ [4,5], that are the solutions of the
equations

F O @
(Aq+§1(q "{;3{}9’/" =0,

A, e 2 s g-cz)’ & 2@ =0
ax: ox? :

7
A= '922-1-1 (9+_1?é’2' (1.6)
or; 1,0, r, 20;

)

Here the constants £¥ are defined by the constants of matcrials, and by the
variables of subcritical stress-states.

2, Represeniation of solution and deduction of a characteristic equation.

According to {4] we shall investigate only the bending form of a stability loss of
cylinders, assuming that a perturbation domain in a matrix is damping by moving off the
cylinders. Under these conditions, the solution of equations (1.6) for the matrix is
represented in the form:

w2
™ =ysinp, ZZ[A,{,P‘* cosnd, + B! sinnd, ]K,,(yc_,’,(")rq );
=] g=1

2.3 =
2 = cos ﬁSZZZ[AﬁJ‘? cosnf, + BP?sinng, ]K,.(?’C?}"q) . @1

g=12=2n=0

where K, (x) and are McDonald’s functions.
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The solution to the equation (1.6) for cylinders we choose in the form:
‘P,g‘) =ysinpy 9 1, (yg’l(_?rq )(A,Elt)q sinnf, + B,(,ll)" cos né‘q) N
n-1

200 =cosye,$ 511,60 AL cosnd, + B4 sinm, |, e

n-03=2
where 1,(x) is a pure imaginary argument Bessel function.

Thus, by applying the addition theorem for the function (2.1), and later
substituting the solutions (2.1) and (2.2) into the contact conditions (1.5) and expanding
(1.5) in Fourier series of variable ,, we obtain an infinite, homogeneous system of linear
algebraic equations with respect to unknown constants contained in (2.1) and (2.2). From
the existence conditions of non-trivial solutions of this system we get a characteristic
equation for the definition of critic contraction

D(e,x)=0. (2.3)
We don’t cite the expression for the elements of characteristical determinant. As a result of
solutions to the equation (2.3) we have the dependence &= &(x). A critical contraction
value is determined from the condition: .
Epp = mm{s(;;) . (2.4)

In addition, corresponding critical values of the wave formation parameter y,, is
also determined. _ :

Investigation of different variants of the stability loss of cylinders depending on
what side the bending of the cylinder takes place after the stability loss is of great interest.
Considering that a plane of the least bending rigidity of each ¢ylinder coincides with the
plane x,, x,, we examine two most possible cases of the stability loss.

Case 1. The cylinders are bending in the plane of least bending rigidity x,, x,, in
one direction {the stability loss in a phase, form I).

Case I. The cylinders are bending in the plane of the least bending rigidity x,, x,,
in the opposite direction (the stability loss in a contrary phase, form IT).

The stated stability loss forms that have obvious physical sense settle all possible
forms of the stability loss of two cylinders with rectangular cross-sections in an elastic
matrix.

3. Numerical results,

Thus, consider the obtained numerical results for the stability loss of two
neighboring for the stability loss of two neighboring cylinders with the same rectangular
(rounded off angles) cross-sections in an elastic matrix under small subcritical
deformations in the case, when EV 7 E® =100, v =@ =03

Note that these results were cited in table I for the form I of the stability loss (i.e.
case I), and in table II for we form II of the stability loss {i.e. case II). Besides, note that in

these tables, at different p=R,, / Jab , of a/b the values of &, were cited, and in many
cases under the value of &, the corresponding values of y,, were shown in parenthesis.

We see from numerical results of tables I and II that the growth of @ /b at both
forms of the stability loss of cylinders leads to the decrease of &, and y,,. However, the

growth of distances between the cylinders, i.e. the growth of R, /5 at the form II of the
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stability loss leads to the increase of values of &, and z,, but at the H form of the
stability loss-to the decrease of &,, and y;, and the values &, obtained for the I form of
the stability loss is strictly less than correspouding values of &,, obtained for the Il form of
the stability loss of considered fibers and corresponding values of &,, obtained for one

isolated fiber {6]. Besides, it follows from numcrical results that in both cases with the
growth of Ry, /&the values &,, and y,, approximate to corresponding values of ¢,, and

X Obtained for one isolated fiber [6]. Consequently, in the considered case, a realizable

form of the stability loss of two neighboring cylinders with rectangular cross sections in an
elastic matrix under small subcritical deformations is the I form (i.e. case I) and here inter
influence between the considered cylinders at the stability loss leads to the decrease of
values of critical contractions.

Table 1.
alb
p=R,/dab 1.0 1.2 1.5 1.7 2.0

2.5 0.0737 0.0690 0.0636 0.0610 0.0584
(0.30) (0.30) (0.30) {0.30) (0.30)

3 0.0763 0.0718 0.0663 0.0633 0.0606
{0.35) (0.30) {0.30) (0.30) {0.30)

4 0.0801 0.0761 0.0703 0.0676 0.0643
(0.35) {0.35) (0.30) (0.30) (0.30)

oD 0.0878 0.0828 0.0767 0.0740 0.0704

Table 2.
alb
p=Ry,/Jab 1.0 1.2 1.5 1.7 2.0

25 0.1101 0.1051 0.1000 0.0985 0.0087
(0.45) {0.45) (0.45) (0.40) {0.40)

3 0.1029 0.0979 6.0911 0.0883 0.0857
(0.45) (0.40) (0.40) (0.40) (0.40)

4 0.0962 0.0904 0.0842 0.0808 G.0771
{0.40) (0.40) (0.40) (0.40) (0.35)

o0 0.0878 0.0828 0.0767 0.0740 0.0704
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