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BABAYEY A.M.—B.

THE INVERSE THEOREM IN THE APPROXIMATION
OF PRODUCTS BY SUMS

Abstract

The problem of approximation of the functions of several variables by the sums
of functions depending on the groups of fewer variables is investigated. Existance of the
solution of one functional equation system comnected with the structure of approximated
Junctions is established,

In [1] the best approximating element in the approximation of the product of
functions by sums of the functions of less number of variables was constructed. In the
present work it is established that this method of construction of the extremal function of
the best approximation reduces to existence of the solution of some system of functional
equations connected with the structure of the apprommated function.

Let £=(f,,....2, ), where

l‘,-(xkj_l“,Ik‘_l+3,...,xk‘), i:l,_”;; Ozko (kl <"‘<km =R
represent some division of a set of variables t(x1 ,...%,) into m groups. Let us consider a
real function f = f(f)=f(4,..,t,) determined in the parallelepiped [z,,b,;-;a,.,5,],
which we will denote by T, =[c, ,dl;---;c,,,,d,,,], where ¢ =la, .9, ),
d,=lby, by ), i=Tm.

Let’s denote the best uniform approximation of function f by sums ). ¢, ,
function of m -1 groups of variable @, = @, {t,,...8, 1,110 ofm) =@, [\ 1,)

lr.zre,.1, )= inf sl -0, o),

where the below side are spread for the class of all bounded real functions of view I, .
The function for which this below side is reached is called the best approximating function.
We will say that function f increases f T (decreases f 1), if it is an increasing
(decreasing) one by every variable. Let’s denote by ITI1 the class of functions of view
S =11/.(t.), for which even number (or zero) of functions are f, ¥, and the rest of them
v=]
are T, v=1m

Theorem. Let function f=]] f,(t,) increases and the sum
v=l

2= $atl )= 7014 6)- £,6)

is the best approximating function for f, where T =(,,...,f, ) is some point from the
determination domain T, . Then t is the solution of the system of equations

£6)=5106)+ 1), v=Tm. 0
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Proof. We will need a row of auxiliary results. Let A = {l,...,m} I J oM.

Lemma 1. The correlations are valid
a) INT=I\{(INJ);
5 JNI=M\IN[MADNMNI);
o ININJ)=INJ;
d MATZNUAD=(M\DNGL\J);
e M=(I\JHUW\NUM\DNGS);
f) if the number of elements of the sets I and J of different
evenness then mes(I\J)# mes(J\I).

All these correlations are easily proved. For example let us prove d) and f).
Proof of d).
xeM\]
MNIWJIN )= -
re(MA) {er\I:x¢J:>xeM\J=»er\I)ﬂ(M\J)’
. xeM\I
M\1 \J)= .
e NG ) {xe‘M\J:>er::-xEJ\I::-xe(M\I)\(J\I)
Proof of f). If INJ =@, then mes(I\J)=mesI, mes(J\I)=mesJ and f) is
valid. But if JNJ#&, then denoting mesINJ=r#0 we will obtain
mesI\J = mesl —r, mes(J\I)=mesJ —r that again reduces to validity of f).
Let’s consider the expression

LUOZC 10),
where @, are all possible tops of the “parallelepiped”

Q=i tn]e T,
8, is the number #/,i=1,m which are the coordinates of point Q,, £/ < t{ means x; <x7,
X;et;.

Let’s determine the function
g= g(r):Lm(f,K), K:[c,,t};...;cm,tm].

It is not difficult to be persuaded that for a function of the view f =[], /() the
function g can be represented in the form '

g?ﬁUWJ—ﬂ@J @

and so g(rl,...,cv,.‘.,rm)=0, V=i,—??_l.
Let 7 ={f,....F, Je T, be the point from the formulation of the theorem .

Let’s determine the fonction
R()=L,(g,D), D=[f t,;.if.t,] 3)
Let’s denote
g)=70)-£6). v=im. @)

It is easy to note that for a function of the view f =[] f,(,) the function R can be

v=]

represented mn the form
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RO=Tils. €.)-2. 6 )] ©)
v =]
According to the representation (2) the function g distinct from function f for the sum of

the view 3, {t\#,) and according to (3) function R distinct from function g for the
function of the same view:

g=r-Yele,), R=g-Y¢'(\1,),
v=1 v=l
where
df m df m
=Y t\r,) and V=Y (\r,)
v=l

v=1
are the concrete sums, So
E[R’E(Pv ]= E[g’ztpv ]= EV’E(PV]

Further by virtue of (2) and (4) g=]]g, (t,,) and according to the condition of theorem
v=]

the functions g, , v = L,m are increasing ones. Then by virtue of the representation (5) onc

can confirm that function R gets its maximal and minimal values only on the tops of the

“parallelepiped” T, . Moreover, sup R{t) can be reached in those tops where even (or zero)
T,

number from the groups of variables f, gets values ¢, , and the others get ~d, (in these
points R=0), E}f R(r) can be reached in those tops 7,,, where odd number ¢, gets values

¢, and other get -4, .
The above-said can be written in the form
sup R(t)=max é

[ 321:’ ﬂzpu’ " a)

mfR(r) min {R(c,ﬁ5 versCpy 5lg, g, )} (6)

Here(a:l, ol m), \s->f3y,) @re arbitrary transpositions of numbers L..,m, and
Rt ...t ), Rltg....t5 | is the conditional note of the value of function R in the

corresponding points; 1< p< [«'g?] , 1£g< [m;—l

i is clear that max and min in (6) are achieved. Let’s denote by
I= {'z{’ , ,agm} the set of indices from M which sup is achieved for and by

J= {6, yoos 2 0 ]}the set of indices which inf is archived for in (6). Here p, and g, are
the fixed numbers; it is obvious 1,0 <M ={l,...,m}. According to (6) we have

> R )
R(Ca{’""’cag,n ,calf%c’+l ,..‘,dg_‘ ] 2 Rle, s-rsCa,, ’dazw seeesl

R(cﬁo,...,cﬁ:qo_t Ay ,...,dﬁ"]s;e(cﬂ),...,cﬁm,dﬁu,...,dﬁ,]
Woe will need the following confirmation.

:[, [a] is the integer part a .

)
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Theorem A (f1}, p.18). Ler | xﬁ 7.0, )Tl and each of functions £,{t,),

v=l

v =Lm increases and decreases.

Toen £ 7 850, 010)] -2 [114@)- 560 ).
1 =l
As it was above mentioned the functions g,{t,), v=Lm increase and

g=]]g.(,). Then using Theorem A the best approximation of function g by

v=i

diversification of functions of the form i(pv (t\2,) can be calculated by the formula
v=l]

g eFne)-2 Tl @)-2.6)
1 v=]
and as far as by (4) g,(c,,)zO, v=1m, then
E[&Z%]ﬂ‘"‘f[gy(dv)- (®)
1 v=t
By the condition of the theorem the sum Z; is the best approximation for / and by
definition of functions g and R have the form g=f-X', R=g-Z%, where T° and
" are the concrete sums of the form i(p,, (£\2,). Then it is not difficult to be certain in
vl ’
. 0¥ o . 0 ¥ o = .
that the functions X, =%.~X and Zz=% -Z  are correspondingly best

approximations for g and R.
Let show it for example for function g . We have

;mfuf Z(pv||~ﬂf % L| ﬂf = +z }:0 —"g

Taking it into account we obtain
of |/ -Zof=jnf|f -2" -2 -To. =

=ﬁ]|g~(2%- ]|=g11g—z%||=ijg—(z§-z*1|,
that’s the sum I} =X% -Z’ is the best approximation for g. Let us show that

R=g~3%). As far as R=g-X", then for that it is sufficient to be certain in that
T, =Z". Let’s do it. By virtuc of the representation of function g in (2) we have

e=[10n6)- A6 7~{7-TI1A6)- A6} -

v=l
whence

== -1 6)- 56

v=]

The above-said the conditions of the theorem let write
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9= -2 ={7-TTl6)- 4G -{ Tl 6)- 26 -

&)
#I:'I[fv(n)—fv(cv)]—I?I[ﬂ(rv)—fv(ﬂ)] .

Further,
R=[Tle. )-8, Glg - {o Tl 6)- £, G =67,
whence and by virtue of (9)
2 =[IA6)- 46 11le.6)- 8. 0)=2.

Therefore, R = g — Z; and so

IRl=£,=2"]]e.@,). (10)
v=l
Comparing (10) with (6) we obtain

m
— I Tl
supR = R(cu]o,...,cagpo B, ez ) =2 Hg,(d,,). (11)

T,

As for as the set X = {Z o, (t\e, )} has the property: for an arbitrary constant ¢

v=l
2.0, e=¢) ¢, €2,
then (see [1], p.26) for the difference g ~ I it takes place the equality

Sgp{s-zﬁ}=*igf{8—zi}

or
supR=—-inf R,
T T

whence by (5) and (11)
R(Cﬂf ""’c%_l’dﬁuu ""’dﬂu ] = _2”"'Hgv (dv) (12)

=l

Using the denotations 7=$P,..a, } and J={60,..8%, .}, and also the

representation of function R from (5) the correlations (11) and (12) can be written in the
form

T1le.e.)- 26 TTle ) - 2. G)l=2"TT8. ().

[1le:(e) -5 Ilese)- 20@)1=-2"1T2. ().

But g,(c,})=0, ie M, moreover, as it was above mentioned, the set / contains the even

number and the set J contains the odd number elements, so these equalities can be written
in the following form

[e6) lec@)- 2. G)=2"[1s.@), a3)
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ggf(ﬁ)kel;llgk(dk)—gk(ﬂ)]=2""1’:’[gv(dv)- (14)

The correlations (7), (11)-(14) let write

]._.[gr'(fi) H[gk(d ) 8&(’&)]21_[8 (‘) H[g,,(d ) gk(tic)] (15)

el keld '] kg

) i)~k T80 [Nls -5, 09

ieX
where 4 and JK are an arbitrary subsets M | Let’s denote by a, the set containing P

elements.
Lemma 2. Let A mean one the subsebts I,, <1 or J,, < J, and B mean one

of the subsets I,, cM\I or J,, cM\J. The inequalities are valid:

ggf(ﬂ)zgki(di)_gf@)]s (17)
[1le:(@.)- 2.6 112 6). (18)

Proof. Let 7,, be some subset I containing an even number of elements. As ¢
wetake 4=1\17, and write the inequality (15)
Hgs(t ) H[gk(d ) gk(tk)]> ng(t )keMl\_j'[[gk(d ) gk(rk)]
ey, 2,.

Abbreviating by cancellation the same products from both parts of this inequality (they are
positive) we will obtain (17). If A=, , then it should take JK =J\J,  containig on odd

number of elements and write (16)

Hgf(f)H[gk(d )-2.E)> Tla() H[g;(d) &),

jeJ\Ty, ke (S )

that after cancellat:on of thc terms will reduce to (17).
For proof of (18} it should take

J=1UL,, X=JUJ,,,
where I,, c M\, J;, cM\J and act as in the case of proof of (17).

Lemma 2 has been proved.
Corollary. For an arbitrary couple of indices (i,k) belonging o the sets I and
J itisvalid
FAS (i-k)‘)‘ [gf (di)— A0 )] [gk(dk)_ 8 (fk )] (19)
and for any couple {i,k) belonging M\ 1 or M\J itis valid
[gf (di)"” 41 (‘_i )] [gk (dk)‘“ Bk (’Tk )]2 £; (?:r )gk (fk)' (20)
Lemma 3, For icI\J and ke J\1 it takes place the equality
£ (t: ng (d,,)- & (Fk )]= [gf (di)"‘ g; (?; )]31- (Fk)* 2hH

Proof. Let iy €] and &, e M\ 1. Supposing #° ={I\i, )UK, we write (15)

[le, @ ) H[gk {.)-2.@))=> Hg. @) Tlge @)~ 2.6}
keAryg”
whence after cancclla{:_ we will obtain
g'o iy ( ko)_ g"o (tkn)] [glo( la)_ g!n(tlo kko (_kg] (‘2‘2‘)
It is clear, that in (22) instead #,, k, we can put arbitrary i e! kye M\ I, Making
analogous operations with (16) we will obtain for arbitrary
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gi(ﬁ‘lgk(dk)_gk(-t_k)]z[gi(df)_gi(?i)]gk(fk)' . (23)
Not assume ieI\J, keJ\I.  Asfaras iel\J=>lel; keJ\Ikel=
=>keM\JI then for these i and & (22) is valid. As far as ieJ\J =>ieM\J;
keJ\I=>keJ, thenin (23) ;i has a role of ¥ and £ has a role of 7. So from (23) we
obtain for je I\J, keJ\1
gk(kagi(di)‘gl(?;)]Z[gk(dk)_gk(ﬁc)]gf(di)' 24)
Comparing (22) with (24) we obtain for (21) Lemma 3 has been proved.
Lemmad. Let I\NJ # &, mes(J\I)>1 or J\I #D, mes(I\J)>1. Then

gi(fi)zgi(di)_gf(ff)s ie(I\J)U(J\I)- (25)
Proof. Let 7\J # &, mes(J\I)>1. Assume for some i; € I\J in spite of (25)
it takes place the inequality

2,6.)<e.6,)-2,6). (26)
Write (21) for i =i, and all ke J\J
6‘ )[gk(d ) gk(‘k)] [81,,( :0) g,,(f,o)]gk(tk
Then by (26) we wﬂl have forall ke J\J
gk(dk)—gk(Fk)>gk(r_k)
and then for the couple 7,k € J\ 7 we obtain
l.(@.)- 2.G)] le. (@)~ €. G)]> 2.6 )2 )

that contradicts to (19) from consequence of lemma 2. The second case is considered by
analogy. Lemma 4 has been proved.
Let’s go on with proof of the theorem. The equalities (13) and (14} let write

gg,(t) H[gk(dk) g.6)= Hg;(fi) H[gk(dk) gl (27)
In (27) there are the same multipliers g,-(fj) for reIﬂJ and gk(dk) Sk(’-t) for
ke(MADN@GL\T).

After cancellations these multiplies in (27) the equality is obtained

I1e.) [gk(dk) 8;(%)]—

e\I)  ke(a g B[{A A AR )]
= I—_[gf(ti [gk(dk) gk(tk)]
eIy kel Wivu N
which by Lemma 1, a and 1, b can be written in the form

H&(‘)H[gk(d) gk(’t)] H&(f)H[gk(d) g&'(tk)]

el feJ\J kelvg

or redenoting 7 and & :

Hgi(ri)H[gk dt) gk(tk)] H[g,(d) g,(f )]Hgk(ik) (28)

icIvf ielJ ket

Let mesI\J=p, mesJ \7=gq. For determinity let assume p>g (by virtue of
lemma i, p#gq)

FAWET TR NN AV =5 T B
Let us consider the product ¢ of the equalitics of the form (21):

Hg,(t) [lec@:)-2.@)= Tle)- g.(r)] Hgk(rk) (29)

S TR Spitealpeg =ty k=l Ipeg

Canceling {28) for (29) we obtain

Hgf(r;)— H[g d)-2.G). 30)
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As far as {'Q+l,...,1'P}cI\J,tlleuby lemma 4
g‘(t)>g‘(d)“g!(f) I.=iq+l’ ’iq+p
Let for some i, € {iq,,, I | } the strong inequality has place:

2.6.)>5.60.)-5.6)

Then for saving of (30) it must exist

I“ q+1’ ’Iq+p}

g. b )<g.ld.)-2.6.).

that contradicts lemma 4. Consequently, for arbitrary i e { grisod p}
&(0)=2.)- () (1)

for which

or

-y 1
8.()=58.d). (32)
It is clear that instead of {l, ol } selected other subset from {1, ol P} consisting of ¢
elements and repeating the above-given procedure we will obtain that the equalitics (31)

and (32) are valid for all i € §,,...,i ,§ oriel\J.
Now by (31) we obtain
[1e:G)= H[g;(d) g:@)]. (33)
el

Canceling (28) for (33) we obtain

I1 [gk(dk)_ gk(ﬂr)]: Hgk(ﬁ:)

ked\ ked\
Hence, as above, by Lemma 4 it is obtained ]
g.G)=g.d)-g.(), keJ\I
or

|
8k(fk)=§gk(dk), ked\I.

Combining the last two equalities with {31) and (32) we obtain, that the next lemma
is valid.

Main lemma. For I\J O, mes(J\I)>1 or J\I#Q, mes(I\J)>1 the
equalities are valid

26)=52.(), ke(\NUE\D). (34)

In order to obtain the equahtles of the form (34) also for other i e M let us use the
correlation

Eg, @ )ml;l\l[gk(dk) g )]=2 "'Hgy(d ). (35)
Write (33) in the form
8@~ 20)=38.(d). kel \NUD), (36)

Canceling the equality (35) to (34) for keJ\J (in this case in (34) index k was
substituted by index 7 ) and to (36) for £ e JJ\J we obtain

e g @)= Gz meme TTe.(@.). 37)

ie\Iv)  ke(MANSY) seM I X )
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Using Lemma 1,d and 1,¢ the equality (37) can be written as

[e6)  [lled)-5 62 [Te@). o8

il keldd M) seM{T AT
Lect for the conditions of the Main lemma iel\J, rel()J. By virtue of the Main
lemma
8;‘(ﬁ)=gi(dﬁ)_gi(‘};): (34%)
and by the corollary of Lemma 2 {(as faras i,re7)
&8, 6)2e.0d) - 243 ) [e.@,)- 2, €, )]-
Cancelling the last inequality for (34) we obtain
g )zg,,)-¢G), vreInJ. (39)
Let iel\J (it is clear that onc of the sets /\J and J\/ is not empty for
determinancy let I\J 2@), let us take ke (M \J)N{M\J). By the main lemma the
equality (34) is valid and as faras ie I\ J => ke M \J, by the corollary of Lemma 2 it is

valid
[g.‘ (df)_ i (‘: )] [gk(dk)'" Ex (f_k )]2 gf(a)dk(fk)'
Cancelling the last inequality for (34) we obtain
gk(dk)“gk(Fk)ng(fk) (40)
for all ke (M \N(M\JT). | -
Let’s assume that for some i, € I (}.J the strong inequality has place:

g, )> %g,-o {.). (a1)
Then for saving of (38) it must cxist the index 7, € 7 [}J, which for
8.6.)<5e.(0) @
or it must exist the index . & (M \ I)N (M \ J), which for
8, (dk.)“" e, (fk.){ “;‘gk. (dk. ) _ (43)

However, (42) contradicts (39) and (43) contradicts (40). Consequently, it must not be the
strong inequality (39) and we have
.y 1
g.()=5z8.(d) (44)
forall ieIf1J.
By analogy, it there exists the index & & (M \ 7)({AM \ J), which for

-y 1
gk(dk)‘“gk(tk)>'igk(rk)’
then it must exist 7, € /(\.J, satisfying (42) or k. e (M \ONMANT ) satisfying (43),

which as it was above mentioned can not have place. Thus, for all ke (M \I)N(A7\.J ) it

is valid (44). By Lemma 1,¢ the Theorcm has been proved for all i € A/ for the conditions
of Lemma 4. Consideration of the rest of the cases has a technical character.
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