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THE MULTIPARAMETER ANALOGUE OF THE RESOLVENT OPERATOR
Abstract

Let the multiparameter system
{A,-(ﬂ)xi =0
i=12,.n, A=(3,.,4,)eC,
be given. Operators E,—A(A) act in separable Hilbert spaces #,, completely
continuous, polynomially dependon 4,,....4,,.

The multiparameter analogue of the resolvent operator is introduced. It is proved
the form of the expansion of the general part of this resolvent operator in the
neighbourhood of the isolated eigenvalue of the (1).

Let the multiparameter system
A (@), =0
{i:l,z,‘..,n; A=(4,..,4,)eC, M
be given, where 4, (A) are bounded, polynomially depending on A operators acting on a
separable Hilbert space #; . # =%, ® %, ®-.-@ %, is a tensor space of spaces %, .
Denotc by A; (1) linear operators on %, induced by the operator 4, (1) by the
following way: on the decomposable tensor x =x, &+ @ x, € # we have
A(A=x8-®x ,®4()x, @ Qx,
and in all other elements of the space % , the operator A7 (1) is defined on linearity and
continuity.
A° =(ﬂ$,...,l‘,’,)e C" is the eigenvalue of (1), if there exist nonzero elements
Xy € #, such that

42k, =0, i=12,..n
are fulfilled.

Decomposable tensor x, , =X, ®x, @R x, & is the eigenelement of (1),
responding to the eigenvaluc 2°.

Denote by o, a set of all eigenvalues of (1).

The tensor x,, _, isthe {m,m,,...,m,)-th associatcd to the eigenelement x,

with eigenvalue A° ={42,...,2°), if for all #=12.... the following equalities are fulfilled
A1+ (Ao}xo...o =0

, 10 (o), _
4 (’10}:10...0 + FBZA- (’?' )ro...o =0

A7 (2,0)):0_“01 "'% ain A (’1'0)‘0...0 =0
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(k12...k,), ki <m,, i=1n is some arrangement from the set of entire non-negative

members on n with possible repetitions and zeros.
The presence of zero in the arrangement (s,,...,s,), corresponding to the

associated element x,, . =x, for instance s, =0 means that in presentation of the

associated element differentiation by A, is absent.

We can convince oneself that by virtue of continuity of all derivatives on
parameters, the sequential differentiation order is indifferent and it makes possible by
denotation of the mixed derivative to collect all differentiations on the same variable.

The number of all equations from (2) having the solution we call the multiplicity
of the eigenelement x, . ‘

With each associated element x,, , we connect some direction a(x,;l,-z___,-u)z
=liyiyye i, )= (B ). BG,)), where B(i)=0 for i=0 and A(f)=1 for i 0.

Consequently, each direction oc(x,l, " ) is a vector from R” with coordinates 0

and 1. Directions a(OO R ..,0) denote by «, (s=],2,...,n), where s is the
member of vector coordinates. The greatest member of linearly independent associated
elements in direction &, we denote by m, .

The quantity m, +1 we call the multiplicity of the cigenvalue A° in direction
a,.

Multiplicities of associated clements in all possible directions @(,...;,) are

introduced similarly.

We say that the set

fonihae,  6=17)

is the chain of associated elements [Zi > 0} to the cigenelement (21‘,‘ = OJ . Following
; 1 '

M.V Keldysh under a canonic system of cigen and associated (i.a.) elements for
A= (Af - ..,/1?,) we understand the system

v

ii:)---i.. }Osi,Sm: o $=L2.00 @
possessing the following properties:
a) elements x%*), form a basis of its own subspace M (,1")
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b) x&ia is an eigen clement, whose multiplicity achieves the possible maximum p, +1
in all directions a(s,,...,s,);

¢) xg‘,)‘o is an eigen element not expressed linearly by xg?_g,...,xf(fj}, whose sum of
multiplicities in all directions achieves the possible maximum p, +1;

d) elements (3) form a chain of associated elements.

The product { J(p, +1) we call the multiplicity of the cigenvalue A° in possible
1

directions, The space stretched on elements from (3) forms root subspace of system (1)

corresponding to the eigenvalue A°. In the case of one equation and one parameter, the
definition coincides with definition in [1].

Now we give some analogy of the resolvent for our system (1).

The problem on the existence of the resolvent for the operator 4 is closely
connected with the existence of the inverse operator 4 - AE (A€ C), that exists if and

only if A is not the eigenvalue of the operator A . In addition, the inverse operator may
be both bounded and unbounded.
If the inverse operator exists and bounded, the 2 is the point of the resolvent set

Ae p(4).

In multiparametric case the matter is some otherwise. Even if A° e C” is not an
eigenvalue of system (1), nevertheless by the given system from # of clements
Visens ¥, Where y, € R A} it is not always succeeded to reestablish preimage of this

system, i.e. A° may be an eigenvalue even if of one equation from (1).

Now show that if A° is not an eigenvalue of (1), it is possible to reestablish the
tensor x, ® x, ®...® x, by a unique way.

For this purpose, define some analogy of a resolvent for our system (1).

By means of system (1) construct the operator 4*(1) , acting from the space

#=%Q...@%, 1o the space #" =?(7Zf1 ®--® %, Jcomposed of clements that may
be presented in the form of linear combinations of elements of the following set

{v, Rx,®..8x,,58y,8x,3..8x,,...x,x, ®...®yn}. 4)

Denote by the M the space, stretched on these linear combinations, We have
from (4)

AR .8 ={A1+(;L)f;x{ ®..0x, 4 (A« ®...®x;J=
1 1 1

,—_[23}1"@x;®...®x;,...,2xf®x§®...®y;], (5)

=l
where yi = A4, (A)x),i=12..,5; k=12_.n.
Let A¢o,, then A is not an eigenvalue even if one of operators 4, (%), that is
sufficient for reestablishment of the element > x| ®...Q x} .

i=l




40 Dzhabar-zadeh R M.

If ieo,, then the kemel A*(1) is not zero, 0¥ eker4*(4), [A*(A)r
doesn’t exist and conversely, from the fact that ker(A*(;L)) is not zero, it follows that A
is an eigenvalue of 4*(1).

Consequently, (A+ (A))'l exists if and only if 4 is not an eigenvalue of (1).

Under the resolvent of system (1} we understand the operator acting from %" to
M and satisfying the condition

R (A)=E,
A" (R (A)=E,
where E and E are unit operators in % and M correspondingly.

Theorem. ZLet all operafors of A,(ﬁ.)—~ E, be completely continuous

(I' =12,...,n), X =(2$ ,...,2,2) is the isolated eigenvalue of (1). Then the main part of

resolvent expansion of system (1) in the neighbourhood of the isolated eigenvalue 2 has
poles in each direction a, of order m, +1 and may be represented as

(k) =
Z}’u, 001 0F 0,0, 0,5, Orrnl)

Zz Z — (/'Lr _ l{:)‘n,-&,ﬂ 3 A7)

r=l k O<mptng

6

ALxX
where my +1is the multiplicity of the eigenelement y&g‘}_.o in direction a,, and y("}
y((,* ?50,1.0,...,0 2evvs J}f}'_‘_?ﬁo‘m"r o...0 15 a system of eigen and associated elements of system (1) in
direction a, .
If ye®#, ze M, under the expression yZ we understand the operator B acting
Jfrom M to %, which is defined on the element feM by the rule Bf = []‘ V2 ]y
Proof. Let A° be an eigenvalue of system (1), then A° =( °,...,ﬁ.?,) is also an
cigenvalue of the operator 4,(4). Consider the points of the form (A.l,/’!g . .,}tf,) from the
neighbourhood of the eigenvalue A°. The operator 4, (Al Ay ..,A‘,’,) under the fixed 4, =
=454, = A depends on one parameter, since by the condition of the Theorem
A{’(A ,Zg...,,?,?,) it has a discrete spectrum, Use the expansion of the resolvent of the
operator 4" (/'11 A ..,/’!f,’,) in the neighbourhood of the point (/'Ll A .,Af',) under the fixed

B2
This expansion has the form of [1}

(g (IJ :
R, 22 =R E L f +R(Mq,-..,zﬂ)f, ®)

G

where ﬁ(zq,zg,...,zﬂ) is analytic at the point /11 = }L? , RY are finite-dimensional
operators, X € #" .

Further, since the set of regular points of the system A*(4) is an open set, there
exists some neighbourhood of the point (11,2.3...,/1.?,), namely, the neighbourhood
3 (/’I.1 A .,,1‘,’,) of points for which the resolvent exists.
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Therefore, the expansion R(ﬂ.,,ﬂ.z,...,l,,) in the neighbourhood &, of the point
(’11 A -,A?.) has the form

Rl(ﬂ.l,.az,...',),,,)f=R(ﬁ!q,ﬂg,-»uli)’?*
+Z(112 "ﬁg)Z __.(/1" _;Lgyn St R(}{,l,}{,z,__,,ln*

©)

i=2,m

i), oAz ...0A

By substituting the expression for R(/'l1 )12, ‘e .10) from (8) 1o (9) we get
RUx RV%

R o v L

+Z(ﬂr%l!m% -2) aﬁ;::i.;‘;:R(%’ZZ"""A")EL:&"’ €8, (10)

k=2.n

The latter is valid for all (A.l 2. ;L") for which (8) is valid. We can write similar
for the neighbourhood &, of the point (ﬂ.l Ay A ) or rather for such points from
9, , for which (11) is valid, have the second coordmate A,=1.

Indeed,
R e L L I P
E vrua g ;{2 Zz)m) 1 _Ag » r LR A
(=&f (g, -2 g _
22 ATXIEN oA OAS .. DA R(ﬂ"a”""ﬂ”)x&:ﬁ' b
For arbitrary n
RYE RF s p
R(A,,A,z...,}t,,)f=m+---+ = R, 28+
SR .
+z("= ‘")il (; y %) 6;: i (ﬂ»,,ﬂ.,,...,/’l.,,)fj&ﬁ, =Ll (12)

i=ln-1
Now, let (ﬂ.l ,/'12...,}{,,) be some point from the neighbourhood (33,13...,1?,) in
which the resolvent exists (4, = A for all 7).

Then we have
R(A,.... 4, )——{':R(Al, A - R, 2)- R, 28, 2 )i
R, 4,,.. AH,A.")+R(°,,12,..., ) R(2,2,..., )+ 4
] AN (R 2, ) RO ) 13
+ R, A2 20 )] é[R(A,...,An)—R(A,,...,/li,...,;t,,)]} .
The operator

3 (& 8- Bl B 2= RO 2,)- RO, 2, )




42 Dzhabar-zadeh R M.

+[ROGy,...2)- R, 22 e+ [ROG A,,- 1)~ R A, 20 )]
Each operator in square brackets of the last expression by virtue of the choice
A, 2,,...,A, may be arbitrarily small by the norm at the expense of the choice of the

neighbourhood of the point (;J,’,zg,z,?,) Further, we have for the operator

R(E 2.3,

R(# by, )=~ {R(ﬂq" LI 1Y {3 NP U 3 Pt

+ R Aoy ﬂ»“} > (/G2 ) R 1 2 0) 14)
Similarly |

{8 b A R )
+R(11,...,Ag,zh,,,12“,...,,1,,)+ +R(A1,...,/?,",,?,M,...,A,,_I,Aﬂ)+

¥ _;[R(A;’,;g,...,zg,zm,...,,1,,)- RIS, 2 s 2 A B2 )| - (15)

By substituting in (13) the expressions for R(ﬁ1 N ..,Z.n) from (14) we get

R(/'Ll - ..,)lk,.. .,ﬂ.n)—’: ﬁ{R(ﬂngsﬂar . ',;I'n)'i' R(ﬂ?,ﬂg,ﬂg,. ":J”n)+ et

+R(]f,’,ﬂq,...,An_,,,1?,)+;[R(Af,ﬂ.z,...,ﬂ.,,)—~R(Af,ﬂq,...,li,ﬂu”_l,lﬂ)}+
IR0, )+ RO, A8 2 2, RS B2 20
SRl 28 ) R B 2 ) R 2 )
+R(73,8,.. ) ot R A 8,22 RO A B BN 16)
Z[ s Ao 2y )= RO 2, 28 20 A oo+ RS Ay, 22) 4

k¢3

4 RGBS A BV Rl A ) Z[R(ﬂn% i)-
—R(AI,...,A?,...,z?.)]}ﬁg[fi(ﬂq,zq,...,A,,)~R( A

By substituting in (16) the valucs for R{h,Ay,.0, 20,0 40,0, 4,) for (i k;
k,i=1,2,...,n) from (15) when k=2 we get

R(’q‘b“"z’n)‘“ ( X ){[ ( ﬂ'g jg _,,,/’l,n)»i"R(ﬂ,ﬂg,;’g,ﬂﬁ,...,in)“i""‘*'
R A2 B SR A2 ) RO A, 2 2, )

k21,2

+RUE, 2,2, 4,0 0, )+ RO, f'!mﬂf‘ )+ +R(2, w% o) am
+2[R()L?,ﬂz,2,3,..., n)_ ( )+ } (n l)

k21,3




The multiparameter analogue of the resolvent operator 43

SR, 2,02 ) - RS R )]+ [R(ﬂ-l,...;t,,)_R(Aq,...,zg,...z,,)].

=k
By substituting in (17) the expressions for R{L,...,A2 ..., &2 ..., 42, ,..., 4, ) from
1Sk, ky, by <,k #k, #k, from (15) we get for R(4,,...,4,) expressions by

R 8,22 R g ).
Consequcntly, by substituting expressions for R(ﬂ,1 N R ) from
(15) we at last get expressions for R(4,,...,4,) by means of R( A4, ),

().1 AL, ) and finite number of sums the norms of which may be arbltrary small at
expense of the choice of numbers A,,4,,...,4, chosen from the neighbourhood of the
point (19, 23,...,43).

Thus, representation of the resolvent R(ﬂ,,...,/l,,) at the neighbourhood of the
point A° = (110 . ..,A?,), excluded the points for which even if one of 4, = 4 (: = L_n) is the
sum of expansions of resolvents R(ﬂf,ﬂg,...,lﬁ__l,ﬁk,,lg R l,ﬂf') at the
neighborhood of the point (}L‘l’ .- ..,A‘,’,) and the operators small on the norm. .

The  principal part of the expansion of the  resolvent

().1 I LU L I L ,Z?H,Aﬂ) at the neighbourhood of the point A according to
MYV. Keldysh’s theory may be represented in the form

Zy(k) 0.4,.0,0. .,ahoko) 05—y 0,000

z Z Osd, <1, (A _Ao)"h“”r“ . A, ?ﬁl?.,

k Qs My,

where m, +1 is the multiplicity of the eigen-vector y(*) .o indirection a,, and

y((),g,....(]3yﬂ,0,...,0,].0,...,0 2+ Y0,0,..m, 0.8
is the system of eigen and associated clements of the system (1) in direction ¢, .

By summing the general parts of expansions of resolvents R(A.l,lg,...,ﬂf,’,),

R(Af,’ Ay, A5, }."), R(/’Ll Aeeis Ao 1,4 ) where sequentially all parameters are fixed

except one, we get the expansion (7) corresponding to the statement of the theorem,
The theorem has been proved.
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