VOL. XI (XIX)

GULIYEV N.A.

ON ONE GENERALIZED BALLISTIC PROBLEM IN HILBERT SPACE

Abstract

In this work the problem on existence and absence of solution of the problems of one generalized ballistic problem for the non-linear abstract differential equation of the second orde which has linear general part is studied.

Let us consider in Hilbert space H the differential equation

$$\ddot{u}(t) + Au(t) = f(t, u(t)), \ t \in (0, T], \tag{1}$$

where A is the positive determined self-conjugated operator in H, f(t,u) is the given function.

It's desired to find such a couple $(u(t),\tau)$ that $\tau \in (0,T]$, and $u(t) \in C^{(2)}([0,T];H)$ and satisfies the equation (1) in [0,T] and the following supplementary conditions

$$u(0) = a , (2)$$

$$u(\tau) = b \tag{3}$$

under the condition

$$\int_{0}^{t} \dot{u}^{2}(t)dt = \vartheta , \qquad (4)$$

where a, b are the given elements from space H, $\theta > 0$ is the given number.

Let's denote the energetic space of operator A as H_A .

For the first time the problem of (1)-(4) type was formulated and investigated by Shamilov A.Kh.

In the suggested work the existence and absence of the solution of the problem (1)-(4) are established.

First let's consider the following auxiliary corresponding to (1) linear non-homogeneous equation

$$\ddot{u}(t) + Au(t) = \varphi(t), \quad t \in [0, T]$$
(5)

with conditions (2)-(4).

Theorem 1. Let

- 1) A be the self-conjugated positive determined operator acting in Hilbert space H and having the discrete spectrum;
- 2) $a,b \in H_A$; $a \neq b$;
- 3) $\varphi(t) \in C([0,T],H)$;
- 4) for some $\xi, \xi \in (0,T)$ it takes place the inequality

$$\left[\left\|b-a\right\|_{H_{A}}Cth\sqrt{\lambda_{1}}\xi+\left\|b\right\|_{H_{A}}+\sqrt{T}\left(\int_{0}^{T}\left\|\varphi(s)\right\|^{2}ds\right)^{1/2}\right]^{2}<\vartheta,$$

where λ_1 is the least eigen number of operator A.

Then the problem (5), (2)-(4), where the conditions (2), (3) are fulfilled even in sense of the norm of space H_A , has though one solution $(u(t),\tau):\tau\in(0,T]$ $u(t)\in C^{(2)}([0,\tau]H)$. If instead of condition (4) the inequality

$$\left[\left|b_{n}-a_{n}\right|\sqrt{\lambda_{n}}\frac{1}{Sh\sqrt{\lambda_{n}}T}-\left\|b\right\|_{H_{A}}-\sqrt{T}\left(\int_{0}^{T}\left\|\varphi(s)\right\|^{2}ds\right)^{1/2}\right]^{2}>9$$
(6)

is fulfilled, where a_n , b_n are Fourier n-th coefficient of elements a, b by the system of eigen functions $\{u_n\}$ of operator A, and λ_n is the corresponding n-th eigen number of operator A, then the problem (5), (2)-(4) has not the solution $(u(t),\tau):u(t)\in C^2([0,\tau],H)$ $\tau\in(0,T]$.

Theorem 1 is proved by analogy to [3].

Remark. Solution (5), (2), (3) under the conditions of Theorem 1 by virtue of [2] can be given by the formula

$$u(t) = \sum_{n=1}^{\infty} \left(a_n \frac{Sh\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} + b_n \frac{Sh\sqrt{\lambda_n}t}{Sh\sqrt{\lambda_n}\tau} - \int_0^{\tau} G_n(t, s, \tau) \varphi_n(s) ds \right) u_n, \tag{7}$$

where

$$G_n(t,s,\tau) = \frac{1}{\sqrt{\lambda_n} Sh\sqrt{\lambda_n} \tau} \begin{cases} Sh\sqrt{\lambda_n} tSh\sqrt{\lambda_n} (\tau - s) & 0 \le t \le s \\ Sh\sqrt{\lambda_n} (\tau - t) Sh\sqrt{\lambda_n} S & s \le t \le \tau \end{cases}$$
(8)

 a_n , b_n , $\varphi_n(t)$ are Fourier coefficients according to a, b and $\varphi(t)$ by the system $\{u_n\}$, $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n \le \cdots$, $\lambda_n \to \infty$ are eigen numbers of operator A.

Further, with help of the obtained results for the considered auxiliary problem, the problem (1)-(4) is reduced to the system of operator equations and the method of dependent variables suggested by Shamilov A.Kh. [2] is used.

Let's introduce the following operator

$$(P_0\varphi)(t) = \sum_{n=1}^{\infty} \left(a_n \frac{Sh\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} + b_n \frac{Sh\sqrt{\lambda_n}t}{Sh\sqrt{\lambda_n}\tau} - \int_0^{\tau} G_n(t, S, \tau)\varphi_n(s) ds \right) u_n ,$$
 (9)

where $G_n(t, s, \tau)$ is determined by (8).

Let's consider the operator

$$(P_r \varphi)(t) \stackrel{\text{def}}{=} f(t, (P_0 \varphi)(t)). \tag{10}$$

Using (9) and (10), we reduce the problem (1)-(3) to the following operator equation

$$\varphi(t) = (P_r \varphi)(t). \tag{11}$$

Taking (9) into account in (4) we obtain

$$g_{r}\varphi = \int_{0}^{def} \left(\frac{d(P_{0}\varphi)(t)}{dt}\right)^{2} dt = \vartheta.$$
 (12)

So we obtain the following system of operator equations equivalent to the problem

$$\begin{cases} \varphi(t) = (P_r \varphi)(t) \\ g_r \varphi = \mathcal{G} \end{cases} \tag{13}$$

Theorem 2. Let

- A is the self-conjugated positive determined operator acting in Hilbert space H and having the discrete spectrum;
- 2) $a,b \in H_A$; $a \neq b$;

- 3) $f:[0,T]\times H\to H$ is continuous and satisfies the Lipshits condition by the norm C([0,t]:H), i.e. $\forall \overline{u}(t), u(t)\in C([0,T]:H)$, $\forall (t,\overline{u}(t)), (t,u(t))\in [0,T]\times H$, $\|f(t,\overline{u}(t))-f(t,u(t))\|_{c}\leq \theta\|\overline{u}(t)-u(t)\|_{c}$;
- 4) for some $\xi \in (0,T]$ the inequality

$$\sqrt{9} - \|b\|_{H_A} - \|b - a\|_{H_A} Cth\sqrt{\lambda_1}\xi > 0$$
;

5) the inequalities are fulfilled

$$\theta_{0} = \frac{\theta T}{2\sqrt{\lambda_{1}}} < 1, \quad \frac{\left\| f(t, (P_{0}O)(t)) \right\|}{1 - \theta_{0}} \le \frac{\sqrt{\theta} - \left\| b \right\|_{H_{A}} - \left\| b - a \right\|_{H_{A}} Cth\sqrt{\lambda_{1}} \xi}{\xi}$$

$$\forall \tau \in (0,T], \text{ where } (P_0O)(t) = \sum_{n=1}^{\infty} \left(a_n \frac{Sh\sqrt{\lambda_n}(\tau-t)}{Sh\sqrt{\lambda_n}\tau} + b_n \frac{Sh\sqrt{\lambda_n}t}{Sh\sqrt{\lambda_n}\tau} \right) u_n.$$

Then the problem (1)-(4), where the conditions (2) and (3) are fulfilled even in sense of the norm of space H_A , has though one solution $(u(t),\tau):u(t)\in C^{(2)}([0,\tau]:H)$; $\tau\in(0,T]$.

Proof. It is known that the problem (1)-(4) is equivalent to the system (13). In order to solve the system (10) first we find the immovable point of operator $P_r \varphi$.

It is known the problem (5), (2)-(4) has a solution for $\varphi(x) \in C([0,T]:H)$ by Theorem 1. Also by this theorem $(P_0\varphi)(t) \in C^{(2)}([0,T]:H)$. So $(P_r\varphi)(t) = f(t)$, $((P_0\varphi)(t))$ also belongs to C([0,T]:H) by the condition (3) of this theorem. So we obtain

$$P_{\tau}: C([0,T]:H) \to C([0,T]:H).$$

The problem (5), (2)-(4) is also solvable by virtue of condition (4) of Theorem 1 for the following $\varphi(t)$: $\varphi(t) \in C([0,T];H)$

$$\left\| \varphi \right\|_{C} \leq \frac{\sqrt{\mathcal{G}} - \left\| b \right\|_{H_{A}} - \left\| b - a \right\|_{H_{A}} Cth\sqrt{\lambda_{1}} \xi}{\xi}.$$

Now let's prove that operator P_r is the compressive mapping. We take

$$\forall \varphi_1(t), \varphi_2(t) \in \left\{ \varphi \in C[0,T] : H \middle| \|\varphi\|_C \le R \right\}^{def} = S_R,$$

where R is some given positive number.

$$(P_{\tau}\varphi_{1})(t) - (P_{\tau}\varphi_{2})(t) = f(t, (P_{0}\varphi_{1})(t)) - f(t, (P_{0}\varphi_{2})(t)).$$

Further, by virtue of Lipshits condition

$$\|(P_r\varphi_1)(t)-(P_r\varphi_2)(t)\|_{C} \leq \theta \|(P_0\varphi_1)(t)-(P_0\varphi_2)(t)\|_{C}$$

In the last inequality using (9) we obtain

$$(P_0\varphi_1)(t) - (P_0\varphi_2)(t) = \sum_{n=1}^{\infty} \left(-\int_0^{\tau} G_n(t,s,\tau) (\varphi_{n,1}(s) - \varphi_{n,2}(s)) ds \right) u_n .$$

Hence using Bunyakovsky inequality we obtain

$$\|(P_0\varphi_1)(t) - (P_0\varphi_2)(t)\|^2 = \sum_{n=1}^{\infty} \left(-\int_0^{\tau} G_n(t,s,\tau) (\varphi_{n,1}(s) - \varphi_{n,2}(s)) ds \right)^2 \le$$

$$\le \sum_{n=1}^{\infty} \int_0^{\tau} G_n^2(t,s\tau) ds \int_0^{\tau} (\varphi_{n,1}(s) - \varphi_{n,2}(s))^2 ds.$$

Bu virtue of [2-3] it is valid the inequality

$$|G_n(t,s,\tau)| \le \frac{1}{2\sqrt{\lambda_n}} \,. \tag{14}$$

Then

$$\begin{aligned} \|(P_{0}\phi_{1})(t) - (P_{0}\phi_{2})(t)\|^{2} &= \sum_{n=1}^{\infty} \int_{0}^{\tau} \left(\frac{1}{2\sqrt{\lambda_{n}}}\right)^{2} ds \int_{0}^{\tau} (\phi_{n,1}(s) - \phi_{n,2}(s))^{2} ds \leq \\ &\leq \frac{\tau}{4\lambda_{1}} \sum_{n=1}^{\infty} \int_{0}^{\tau} (\phi_{n,1}(s) - \phi_{n,2}(s))^{2} ds = \frac{\tau}{4\lambda_{1}} \int_{0}^{\tau} \sum_{n=1}^{\infty} (\phi_{n,1}(s) - \phi_{n,2}(s))^{2} ds = \\ &= \frac{\tau}{4\lambda_{1}} \int_{0}^{\tau} \|\phi_{1}(s) - \phi_{2}(s)\|_{H}^{2} ds \leq \frac{\tau}{4\lambda_{1}} \cdot \tau \max_{[0,\tau]} \|\phi_{1}(s) - \phi_{2}(s)\|_{H}^{2} = \frac{\tau^{2}}{4\lambda_{1}} \|\phi_{1}(s) - \phi_{2}(s)\|_{C([0,\tau]H)}^{2}. \end{aligned}$$

Hence

$$\|(P_0\varphi_1)(t) - (P_0\varphi_2)(t)\|_C \le \frac{\tau}{2\sqrt{\lambda_1}} \|\varphi_1(s) - \varphi_2(s)\|_C.$$
 (15)

By virtue of (15) from (13) we obtain

$$\|(P_{r}\varphi_{1})(t)-(P_{r}\varphi_{2})(t)\|_{C} \leq \theta \frac{\tau}{2\sqrt{\lambda_{1}}} \|\varphi_{1}(s)-\varphi_{2}(s)\|_{C} \leq \frac{\theta T}{2\sqrt{\lambda_{1}}} \|\varphi_{1}(s)-\varphi_{2}(s)\|_{C}.$$
 (16)

From (16) it follows that operator P_r is the compressive mapping in C([0,T];H) if $\theta_0 = \frac{\theta T}{2\sqrt{\lambda_1}} < 1$.

Let

$$R = \frac{\sqrt{9} - \|b\|_{H_A} - \|b - a\|_{H_A} Cth\sqrt{\lambda_1}\xi}{\xi}.$$
 (17₀)

Then from (5) of this theorem we obtain

$$\frac{\|P_{\tau}O\|_{C}}{1-\theta_{0}} \leq R.$$

Hence

$$\left\| P_{\tau} O \right\|_{C([0,T]H)} \le R \left(1 - \theta_0 \right). \tag{17}$$

The last inequality shows that the compressing mapping P_{τ} represents the sphere S_R with radius R into itself. By virtue of compressing mappings principle P_{τ} in sphere S_R has the only immovable point $\varphi(t)$. Moreover, the coefficient of compression doesn't depend on τ . Consequently, the immovable point φ continuously depends on τ on any closed segment $0 < t_0 \le \tau \le T$.

Let take into account the found immovable point $\varphi(t;\tau)$ of the operator in the second equation of system (13). Then it takes the form:

$$g_{\tau}\varphi(t\tau) = \int_{0}^{\tau} \dot{u}^{2}(t)dt = \left\|\dot{u}(t)\right\|_{L_{2}([0,\tau])}^{2} =$$

$$= \left\|\sum_{n=1}^{\infty} \left(-a_{n}\sqrt{\lambda_{n}}\frac{Ch\sqrt{\lambda_{n}}(\tau-t)}{Sh\sqrt{\lambda_{n}}\tau} + b_{n}\sqrt{\lambda_{n}}\frac{Ch\sqrt{\lambda_{n}}t}{Sh\sqrt{\lambda_{n}}\tau} - \int_{0}^{\tau} \frac{\partial G_{n}(t,s,\tau)}{\partial t}\varphi_{n}(s;\tau)ds\right)u_{n}\right\|_{L_{2}}^{2} = \theta. \quad (9)$$

Now the whole problem has been reduced to the establishment of the sufficient conditions of existence or absence of the solution of the equation (9').

Let's study that $g_{\tau} \varphi$ by parameter τ . It's clear that $g_{\tau} \varphi$ can be represented in the following form:

$$g_{\tau} \varphi = \sum_{n=1}^{\infty} \left\{ (b_{n} - a_{n}) \sqrt{\lambda_{n}} \frac{Ch\sqrt{\lambda_{n}}(\tau - t)}{Sh\sqrt{\lambda_{n}}\tau} + b_{n} \sqrt{\lambda_{n}} \frac{Ch\sqrt{\lambda_{n}}t - Ch\sqrt{\lambda_{n}}(\tau - t)}{Sh\sqrt{\lambda_{n}}\tau} - \frac{Ch\sqrt{\lambda_{n}}t - Ch\sqrt{\lambda_{n}}(\tau - t)}{Sh\sqrt{\lambda_{n}}\tau} - \frac{Ch^{2}\sqrt{\lambda_{n}}(\tau - t)}{Sh^{2}\sqrt{\lambda_{n}}\tau} + \frac{Ch^{2}\sqrt{\lambda_{n}}(\tau - t)}{Sh^{2}\sqrt{\lambda_{n}}\tau} + \frac{Ch\sqrt{\lambda_{n}}t - Ch\sqrt{\lambda_{n}}(\tau - t)^{2}}{Sh^{2}\sqrt{\lambda_{n}}\tau} + \left(\int_{0}^{\tau} \frac{\partial G_{n}(t, s, \tau)}{\partial t} \varphi_{n}(s) ds \right)^{2} \right\} = 3(u_{1} + u_{2} + u_{3}), \quad (18)$$

where

$$u_1 = \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n \frac{Ch^2 \sqrt{\lambda_n} (\tau - t)}{Sh^2 \sqrt{\lambda_n} \tau}; \quad u_2 = \sum b_n^2 \lambda_n \frac{\left(Ch\sqrt{\lambda_n} t - Ch\sqrt{\lambda_n} (\tau - t)\right)^2}{Sh^2 \sqrt{\lambda_n} \tau};$$

$$u_3 = \sum_{n=1}^{\infty} \left(\int_0^{\tau} \frac{\partial G_n(t, s, \tau)}{\partial t} \varphi_n(s) ds \right)^2.$$
 (19)

As far as $0 < t \le \tau$

$$\frac{Ch(\tau - t)}{Sh\tau} \le \frac{Ch\tau}{Sh\tau} = Cth\tau \quad ; \quad \frac{Cht}{Sh\tau} \le \frac{Ch\tau}{Sh\tau} = Cth\tau \quad . \tag{20}$$

From (19)

$$u_{1} = \sum_{n=1}^{\infty} (b_{n} - a_{n})^{2} \lambda_{n} \frac{Ch^{2} \sqrt{\lambda_{n}} (\tau - t)}{Sh^{2} \sqrt{\lambda_{n}} \tau} \leq \sum_{n=1}^{\infty} (b_{n} - a_{n})^{2} \lambda_{n} Cth^{2} \sqrt{\lambda_{n}} \tau \leq$$

$$\leq Cth^{2} \sqrt{\lambda_{1}} \tau \sum_{n=1}^{\infty} (b_{n} - a_{n})^{2} \lambda_{n} = Cth \sqrt{\lambda_{1}} \tau \|b - a\|_{H_{a}}^{2}. \tag{21}$$

From (19)

$$u_{2} = \sum_{n=1}^{\infty} b_{n}^{2} \lambda_{n} \frac{\left(Ch\sqrt{\lambda_{n}}t - Ch\sqrt{\lambda_{n}}(\tau - t) \right)^{2}}{Sh^{2}\sqrt{\lambda_{n}}\tau} = \sum_{n=1}^{\infty} b_{n}^{2} \lambda_{n} \left(\frac{Sh\sqrt{\lambda_{n}}(t - \frac{\tau}{2})}{Ch^{2}\sqrt{\lambda_{n}}\frac{\tau}{2}} \right)^{2}.$$

As far as $0 < t \le \tau$

$$\frac{Sh(t-\tau/2)}{Ch^{\tau/2}} \leq \frac{Sh^{\tau/2}}{Ch^{\tau/2}} = th^{\tau/2}.$$
(22)

From the last one and the fact that $th\xi \le 1$ for $\xi \in (0,\infty)$ we obtain

$$u_{2} \leq \sum_{n=1}^{\infty} b_{n}^{2} \lambda_{n} t h^{2} \sqrt{\lambda_{n}} \sqrt[\tau]{2} \leq \sum_{n=1}^{\infty} b_{n}^{2} \lambda_{n} = \|b\|_{H_{A}}^{2}.$$
 (23)

From (19) using Bunyakovsky inequality by virtue of [2, 3]

$$\left| \frac{\partial G_n(t, s, \tau)}{\partial t} \right| \le 1 \tag{24}$$

we obtain

$$u_3 = \sum_{n=1}^{\infty} \left(\int_{0}^{\tau} \frac{\partial G_n(t, s, \tau)}{\partial t} \varphi_n(s) ds \right)^2 \le \sum_{n=1}^{\infty} \int_{0}^{\tau} \left(\frac{\partial G_n(t, s, \tau)}{\partial t} \right)^2 ds \cdot \int_{0}^{\tau} \varphi_n^2(s) ds \le C$$

$$\leq \sum_{n=1}^{\infty} \tau \cdot \int_{0}^{\tau} \varphi_{n}^{2}(s) ds = \tau \int_{0}^{\tau} \sum_{n=1}^{\infty} \varphi_{n}^{2}(s) ds = \tau \int_{0}^{\tau} \|\varphi(s)\|_{H}^{2} ds.$$
 (25)

Taking (21), (23) and (25) into account in (18) we obtain the following

$$g_{\tau} \varphi \leq 3 \left(\|b - a\|_{H_{A}}^{2} Cth \sqrt{\lambda_{1}} \tau + \|b\|_{H_{A}}^{2} + \tau \int_{0}^{s} \|\varphi(s)\|^{2} ds \right). \tag{26}$$

From the last one it follows that the initial series in (18) uniformly converges. By virtue of its uniform convergence of the series it will be continuous by τ . Therefore $g_{\tau}\varphi$ is continuous by parameter $\tau \in \{0, T\}$.

Now let's consider the equation (9')

$$g_{\phi} = g$$

Oľ

$$\left\| \sum_{n=1}^{\infty} \left\{ (b_n - a_n) \sqrt{\lambda_n} \frac{Ch\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} + b_n \sqrt{\lambda_n} \frac{Ch\sqrt{\lambda_n}t - Ch\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} - \int_0^t \frac{\partial G_n}{\partial t} \varphi_n(s) ds \right\} u_n \right\|_{L_2([0, \tau])}^2 = \mathcal{G}.$$

Let's consider the left-hand side

$$g_{\tau} \varphi = \|V_1 + V_2 + V_3\|^2, \tag{27}$$

$$V_{1} = \sum_{n=1}^{\infty} (b_{n} - a_{n}) \sqrt{\lambda_{n}} \frac{Ch\sqrt{\lambda_{n}}(\tau - t)}{Sh\sqrt{\lambda_{n}}\tau} u_{n}; \quad V_{3} = \sum_{n=1}^{\infty} \left(-\int_{0}^{\tau} \frac{\partial G_{n}(t, s, \tau)}{\partial t} \varphi_{n}(s) ds \right) u_{n};$$

$$V_2 = \sum_{n=1}^{\infty} b_n \sqrt{\lambda_n} \frac{Ch\sqrt{\lambda_n}t - Ch\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} u_n.$$
 (28)

From (28) and taking (20) into account

$$||V_1||^2 = \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n \frac{Ch^2 \sqrt{\lambda_n} (\tau - t)}{Sh^2 \sqrt{\lambda_n} \tau} \le \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n Cth^2 \sqrt{\lambda_n} \tau \le Cth^2 \sqrt{\lambda_n$$

$$\leq Cth^2\sqrt{\lambda_1}\tau\sum_{n=1}^{\infty}(b_n-a_n)^2\lambda_n=Cth^2\sqrt{\lambda_1}\tau\|b-a\|_{H_A}^2,$$

$$||V_1|| \le ||b - a||_{H_1} Cth\sqrt{\lambda_1}\tau. \tag{29}$$

From (28) and taking into account (22)

$$\|V_2\|^2 = \sum_{n=1}^{\infty} b_n^2 \lambda_n \left(\frac{Ch\sqrt{\lambda_n}t - Ch\sqrt{\lambda_n}(\tau - t)}{Sh\sqrt{\lambda_n}\tau} \right)^2 \le \|b\|_{H_A}^2,$$

$$\|V_2\| \le \|b\|_{H_A}^2.$$
(30)

From (28) and taking into account (25)

$$\|V_3\|^2 = \sum_{n=1}^{\infty} \left(\int_0^{\tau} \frac{\partial G_n(t, s, \tau)}{\partial t} \varphi_n(s) ds \right)^2 \le \tau \int_0^{\tau} \|\varphi(s)\|^2 ds ,$$

$$\|V_3\| \le \sqrt{\tau} \left(\int_0^{\tau} \|\varphi(s)\|^2 ds \right)^{\frac{1}{2}}. \tag{31}$$

Taking into account (29), (30) and (31) in (27)

$$g_{\tau} \varphi = \|V_1 + V_2 + V_3\|^2 \le (\|V_1\| + \|V_2\| + \|V_3\|)^2 \le$$

$$\le \left(\|b - a\|_{H_A} Cth\sqrt{\lambda_1}\tau + \|b\|_{H_A} + \sqrt{\tau} \left(\int_0^{\tau} \|\varphi(s)\|^2 ds \right)^{1/2} \right)^2.$$

Thus

$$g_{\tau} \varphi \leq \left[\|b - a\|_{H_{A}} Cth \sqrt{\lambda_{1}} \tau + \|b\|_{H_{A}} + \sqrt{\tau} \left(\int_{0}^{t} \|\varphi(s)\|^{2} ds \right)^{1/2} \right]^{2}. \tag{32}$$

From (25)

$$\|V_{3}\|^{2} \leq \tau \int_{0}^{\tau} \|\varphi(s)\|^{2} ds \leq \tau \max_{[0,\tau]} \|\varphi(s)\|^{2} \int_{0}^{\tau} ds = \tau^{2} \|\varphi\|_{C([0,\tau]H)}^{2},$$

$$\|V_{3}\| \leq \tau \|\varphi\|_{C}.$$
(31')

Taking (31') into account in (32)

$$g_{\tau} \varphi \le \left\| b - a \right\|_{H_A} C t h \sqrt{\lambda_1} \tau + \left\| b \right\|_{H_A} + \tau \left\| \varphi \right\|_{C([0,\tau]H)} \right\}^2.$$
 (32')

Let's now estimate $g_r \varphi$ below

$$g_{\tau} \varphi = ||V_1 + V_2 + V_3||_{L_2([0,\tau])}^2$$

From (28)

$$||V_1||^2 = \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n \frac{Ch^2 \sqrt{\lambda_n} (\tau - t)}{Sh^2 \sqrt{\lambda_n} \tau}.$$

So as by the known property of function chx the inequality $ch \ x \ge 1$, $x \in (0, \infty)$ has place

$$\begin{aligned} \left\|V_1\right\|^2 &= \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n \frac{Ch^2 \sqrt{\lambda_n} (\tau - t)}{Sh^2 \sqrt{\lambda_n} \tau} \geq \\ &\geq \sum_{n=1}^{\infty} (b_n - a_n)^2 \lambda_n \frac{1}{Sh^2 \sqrt{\lambda_n} \tau} \geq (b_n - a_n)^2 \lambda_n \frac{1}{Sh^2 \sqrt{\lambda_n} \tau} , \quad \forall n \in \mathbb{N} \\ \left\|V_1\right\|^2 &\geq (b_n - a_n)^2 \lambda_n \frac{1}{Sh^2 \sqrt{\lambda_n} \tau} , \quad \forall n \in \mathbb{N} \end{aligned}$$

or

$$||V_1|| \ge |b_n - a_n| \sqrt{\lambda_n} \frac{1}{Sh_2/\lambda_n \tau}, \quad \forall n \in \mathbb{N}.$$
 (33)

Hence it follows that if $b-a\neq 0$, then there is such n that $b_n-a_n\neq 0$ and the product $|b_n-a_n|\sqrt{\lambda_n}\frac{1}{Sh\sqrt{\lambda_n}\tau}$ for $\tau\to 0$ becomes rather big. So $||V_1||\to +\infty$ for $\tau\to 0$.

From (30) it follows that $||V_2||$ becomes restricted upper $(||V_2|| \le ||b||_{H_A})$. And from (31) also it follows that $||V_3||$ becomes restricted upper too.

Taking (33), (30) and (31) into account in (27)

$$||V_1 + V_2 + V_3|| \ge ||V_1|| + ||V_2|| + ||V_3|| \ge |b_n - a_n| \sqrt{\lambda_n} \frac{1}{Sh\sqrt{\lambda_n}\tau} - ||b||_{H_A} - \sqrt{\tau} \left(\int_0^\tau ||\varphi(s)||^2 ds \right)^{1/2},$$

$$g_{\tau}\varphi = \|V_1 + V_2 + V_3\|^2 \ge \left[|b_n - a_n| \sqrt{\lambda_n} \frac{1}{Sh\sqrt{\lambda_n}\tau} - \|b\|_{H_A} - \sqrt{\tau} \left(\int_0^{\tau} \|\varphi(s)\|^2 ds \right)^{1/2} \right]^2.$$

Thus,

$$g_{\tau} \varphi \ge \left[|b_{n} - a_{n}| \sqrt{\lambda_{n}} \frac{1}{Sh\sqrt{\lambda_{n}}\tau} - ||b||_{H_{A}} - \sqrt{\tau} \left(\int_{0}^{\tau} ||\varphi(s)||^{2} ds \right)^{1/2} \right]^{2}. \tag{34}$$

From the last one it follows that for $\tau \to 0$ the first component in the right-hand side of (34) tents to $+\infty$, and the second and third components are restricted. So we obtain that $g(\tau) \to +\infty$ for $\tau \to 0$ $(g(0) = +\infty)$. So for all $\theta > 0$ for $\tau \to 0$ $(\tau) = 0$ for $\tau \to 0$ for τ

Moreover, the inequality (32') is fulfilled

$$g_{\tau} \varphi \leq \|b - a\|_{H_{A}} C t h \sqrt{\lambda_{1}} \tau + \|b\|_{H_{A}} + \tau \|\varphi\|_{C}^{2} \leq \|b - a\|_{H_{A}} c t h \sqrt{\lambda_{1}} \tau + \|b\|_{H_{A}} + \tau R^{2}.$$

As we have proved that (32') is valid for all $\tau \in (0,T]$, so (32') is valid for $\xi \in (0,T]$ namely

$$g_{\xi} \varphi \leq \left\| b - a \right\|_{H_A} Cth \sqrt{\lambda_1 \xi} + \left\| b \right\|_{H_A} + \xi R^{\frac{1}{2}}.$$

Taking (17) into account in the last inequality we obtain

$$g_{\xi} \varphi \leq \left\| b - a \right\|_{H_{A}} Cth \sqrt{\lambda_{1}} \xi + \left\| b \right\|_{H_{A}} + \sqrt{9} - \left\| b \right\|_{H_{A}} - \left\| b - a \right\|_{H_{A}} Cth \sqrt{\lambda_{1}} \xi \right\|^{2} = 9.$$

Hence

$$g_{\xi}\varphi - \vartheta < 0. \tag{35}$$

Taking into account by virtue of continuity of $g_{\tau}\varphi$ on (0,T] we obtain that equation $g_{\tau}\varphi = \vartheta$ has on the segment $(0,\xi]$ at least one solution.

The author expresses his deep gratitude to doctor of physical and mathematical sciences, professor A.Kh. Shamilov for attention to this work and useful discussions.

References

- [1]. Шамилов А.Х. К теории специальных краевых задач для абстрактных дифференциальных уравнений. Докл. АН СССР, 1988, т. 301, №1, с.54-57.
- [2]. Шамилов А.Х. Специальные вопросы теории функционально-дифференциальных уравнений. Баку, 1990.
- [3]. Шамилов А.Х. О специальных краевых задачах для дифференциальных уравнений в гильбертовом пространстве. Диф.ур-я, январь 1994, т.30, №1.
- [4]. Shamilov A.Kh. On the theory of the ballistical problem for the nonlinear abstract differential equations with manin linear part. Ist. University ODLAR YURDU, 1998, p. 25-30.
- [5]. Михлин С.Г. Линейные уравнения в частных произведениях. М.: Высшая школа, 1977.

Guliyev N.A.

Baku State University named after M. Rasulzadeh.

23, Z.I. Khalilov str., 370148, Baku, Azerbaijan.

Received December 2, 1999; Revised February 16, 2000. Translated by Soltanova S.M.