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GUSEYNOV S.T.

THE REGULARITY TEST OF A BOUNDARY POINT FOR NON-UNIFORMLY
DEGENERATING SECOND ORDER ELLIPTIC EQUATIONS

Abstract

A class of second order divergent structure equations with non-uniform power
degeneration is considered in the paper. The regularity test of the Wiener's type for a
boundary point with respect to the first boundary value problem for such equations is
proved.

Introduction. Let D be the bounded domain, arranged in n- dimensional
Euclidean space E, of points x=(x,,...,x,), n23, and 8Dbe its boundary, O e dD .
Consider in D the first boundary value problem

Lu=Yla,(},) =0, xeD; 4 =0, )
f,7=1 .
where “aﬂ (x1| is a real symmetric matrix with elements measurable in D,
u; o (,j=12...n), peC(@D).

o,

1

Assume that with respect to the coefficients of the operator L it is fulfilled the condition

ﬂglﬂ‘i(xkf < iag- (xkfgj S‘u_lgﬂy(x)f} , (2)

7=l

a 2
where ,ue((),l],xeD,feE”,ﬂ,,(x)=ﬁx]“)°‘ , W =Y e=(a...ay,),
P

a; e[(),-wgw], i=l...»n.
n-1

The goal of this article is to find the Wiener’s type regularity test of the boundary
point O with respect to the problem (1). Note that for the Laplace equation the classical
result in this direction was obtained by N. Wiencr [1]. The Wiener’s test was transferred
to the equations with smooth coefficients in [2-3]. In [4] it was established that the
Wiener’s test is valid for arbitrary, uniformly elliptic second order equations of divergent
structure with measurable coefficicnts. Elliptic equations with uniform degeneration were
considered in [5). In [6] the regularity test for a boundary point was obtained for elliptic
equations with weak (so-called logarithmic) non-uniform degeneration. Note that none
equation with non-uniform power degeneration satisfics the conditions of paper {6]. In the
present paper the regularity test for a for a boundary point was obtained for class of
second order divergent elliptic equations with non-uniform power degeneration.
Concemning divergent siructure elliptic equations we note the results obtained in the
indicated direction in papers [7-11].

1°. Some notations, definitions and subsidiary statements.

Let T be a sufficiently great radius closed ball with a center in the origin of
coordinates, D ¢ 3 . '
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Denote by W;,A(D),POVL,A(D) the closure of functions correspondingly from
c=(D), C2(D) at the following norm
r Vi
} , l<p<ow.

[“ulpaﬁt + IZA, (x*
The space adjoint to W'p‘ (D) denote by W', (D):

D=l
W, (D)z{?‘ =f,+ zfj%:f—:ﬁ, L D). fieL, . (D)?f=1,...,n},

where i+i,=l.
I 4

The function u € W; , (D) we call the solution of the equation (1), if it satisfies
the following integral identity

jji}ag (x);jvjabc =0 forany ve W;A(D)
Diy=
If

jiaﬁ(x)u,.vjdeO for any veﬁ’;h(l)),vzﬂ,

phi=l
then the function u € W, , (D) is called a subsolution of the equation (1). If the function

~u(x)eW;,(D) is the subsolution of the equation (i), then u(x) is called a
supersolution. We say that the charge v belongs to W}, , if for any @e Cg'(D)

= CII(PIIW‘ (D)

Further, we shall denote positive constants by ¢, For k>0, R>0, x° € E, by & (k)

we denote the ellipsoid
{ plaxif (kR)z}
I—I

R

q)dv

Let ue W, (D). Wesay that u 2a on Ec D in the sense of W, , (D), if there exists a
sequence of functions {p, }e Lz’p(l_)) such that ¢,(x)2a,xeE and @, »u, (k > »)
by the nom of W,,(D). Let u(x} be a measurable function. The function
u)(x)= min {u(x) &} is called &-truncation of u(x). Let
Dlu,v)= I Zlay (oc)ev ax
Tht=
Lemma 1. Let p, >0 is a sufficiently large number, p> p, , T €W A(Z) and
Lu=T in the sense of W;,A(D), wew ‘2 A(}:.). Then, the function u[x) is continuous by
Holder in'Y, and
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m_ax|u| <¢q ||T[|W1 L (£)

ma e) )< 2"y

I*—:PIS.o
Lemma 2. Let ueW'z‘A(Z), £>0. Then, if u¥is a - truncation of the
function u(x), then u(‘)el;’im(D)‘ Moreover, if {cpj}e CI(D) and ¢, >u, (o)

by the norm W‘2 (D), then QDJ(,-S} —>ul), (j —> ) weakly in W; +(D). Moreover

b

These lemmas are proved by a standard method as for instance in [5].
Lemma 3. If u e W, (X)) is the subsolution of the equation (1), non-positive on

7 A (D) = “u"WzIA(D)'

8D in the sense of Wy , (D), then the function u(x) is non-positive almost everywhere on
D.
Proof. Let £>0 be an arbitrary number. Then, x —%) >0 in D and by Lemma

2u-u®e W‘2 A(D). Since u is a subsolution of the cquation (1), then

_f iaﬂ.u,.(pfdx <0

Dig=l
for any function pe Fonz’A(D), @20,
Assume ¢p=u— «%) We have

J 3ayule ) dc<o.

Di.j=l
Since
I iau-u,{‘](u - u(s))jdx =0,
Di=l
then
I zn: a,j(u - u(‘})i(u - u[s))ja‘x <0.
Di,j=

By the Friedrichs type inequality [12] and (2) we get that u{x)=u")(x) almost
everywhere in D . Since £ is an arbitrary positive number, then u <0 almost everywhere

in D. The Lemma is proved.
Denote

V£(2)={ueﬁf12_1\(2):u21 on X in the sense of W;_A(K’)},

where X' X is some compact set. If T = £, , then we denote ¥ (%) by V().

2°. Capacity and capacitary potential.
The number capg(R)= i o jZa,J (xkeu,dc is called capacity of the
L\ Iy j=t
compactum 2 with respect to the ball =, generated by the operator L.
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The number cap(R)= inf jiag(x)u,.u s is called capacity of the

wey(z) et

compactum %, generated by the operator L.
Lemma 4. There exists a unique function ueVy(X), for which

capz(f)=D(u,u). Moreaver, u=1 on X in the sense of WQ‘A(}:) and Dlu,v)=0 for
any function ve I:V‘2 A(Z) such that v20 on X in the sense of W, ).

Proof. It is easy to show that V(%) is a convex and closed set in W}, (3).

Then by the known theorem on a functional analysis there exists a unique function
u €V (%), possessing minimal norm among the elements of ¥5(X). By [12] a bilinear

form of D(u,v) is a scalar product in ¥ 1.4(2), therefore capy (%)= D(x,u). By Lemma
2weget #=1 on % inthe sense of W, ,(T).

Let ve P;’IM(E), v20 on % in the sense of W, ,(Z) and &£>0. It is obvious
that u +&ve V. (X) for any £>0. Then
Dy +ev,u +gv)2D(u,u).
Hence it follows that
2eD(u,v)+ 5 Dy,v)=2 0.
Therefore D(,v)z 0. The Lemma is proved.
The function u is called a capacitary potential of the compactum % .
Corollary 2. Capacitary potential of the compactum X is the supersolution of
the equation (1) in 2.
Lemma 3. Let u be a capacitary potential of some compactum & < 2.. Then
Lu=0in T\R and 0<u(x)<1 almost everywhere in %

Proof. Let # be a capacitary potential of some compactum % =¥ . Then Lu=0
in the sense of W, , (T\%). Indeed, let v(x) be any function from W‘2 A(Z\%). Denote
5x)= {v(x), reX\%
0, xe®

It is obvious that V' e I:VIZ A(Z). Then by Lemma 4

I iaq(x)uivjdle)(u,f?)ztl.

pAL SIS
Since v any function from W} ,(Z\z), then Lu=0 in $\X. On 8% u =0 in the
sense of 7, (¥). On 8% u=1 in the sense of W, , (L), ie. on &(Z\%) 0<ulx)<1.

On the other hand, » =1 on R in the sense of ¥, , (T}, ie. u=1 almost everywhere on
% . Therefore 0 <u(x)<1 almost everywhere in % . The Lemma is proved.
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Let peCY(Y), @{x)20, xex . By Lemma 4 Dx,¢)=0, where u is a
capacitary. Then by Schwartz’s theorem there exists a unique measure 4, such that

Dle,0) = [gdu .

Corollary 3. S(u)c %, where S{u1) is the support of measure u.

Measure u is called the capacity distribution of the compactum X .

Lemma 6. Let o be the capacitary distribution of the compactum % <Z. Then
S(u)c 6z and u(%)= capy (=).

Proof. Let » be a capacitary potential of X . By Lemma 4 there exists a
sequence of functions {;oj}e Co(L), o,(x)=1, xex, j=12,.., @, —u, (j—>o) by
the norm of W, ,(Z). Let w be an arbitrary function from C’(X) such that Sy} x°
(% is the interior part of % ). We have

£W.“ =Dlu,y)= };lggloD(tPf,w)
and
capy (%) = Dlu,u)=lim Dl @, )= lim Jojdu=ntz).

The Lemma is proved.
Corollary 4. The capacitary distribution of the compactum % C X belongs

wia(Z).
Let TeW,,(Z), p= p,, where a positive number p, is chogen by Lemma 1.
By Theorem 1 [12] there exists a unique function x(x)e P;’;_A(Z), for which Lu =7 in

the sense of W, , (). Let G(Z')=u . Then by Lemma 1 G maps #;} (%) into C(X) and
it is a linear bounded operator. Denote by M () a class of finite charges in 3. .

3°, Weak solutions.

Definition. Let 1 be the charges of bounded variation on 3. We say that the
function ue L(S) is a weak solution of the equation Lu = 4, equal to zero on the
boundary 0%, if It satisfies the equality

Julqdx = [ qdu
z b

Jorany ge w b Konisle (f) such that LueC (E)
Definition. The function ue L, (L) is called a weak solution of the equation
Lu=pu (ueM(T)), converging to zero in 8L, if

£ () = iG(w)du

Jor any y/eC(—Z—)‘ 1t is obvious that if ye C(f) then W e L,,(Z) Jor any pzl and
Ve W;,{ (X). Therefore IG(w)d,u has sense forany yeC (i)
P
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Lemma 7. Let ueM(ZT). Then there exisis a unique weak solution of the

equation Lu = pu. Moreover uc W‘P-'A(Z).

”"”w;.‘,\(z) Sca“#‘"M[Z) , where 1< p'<p,
1

—+ 1. =1, and p, is a constant from Lemma 1.
PP

The following statements we cite without proof.
Lemma 8, If the charge ppe M(Z) is the measure, then a weak solution of the

equation Lu=—yu is a non-negative function almost everywhere in 2..
Lemma 9. Assume that ue M(Z) is the measure and p e W;;(L). Then a weak

solution of the equation Lu=—u belongs to ! alZ). Moreover Lu=—yu in the sense

of W A(z)
Lemma 10. Ler B, =&(1), B, =£7(2) and Lu=0 in the sense of W, ,(B,).
Then it is valid the inequality

E{?;A,(x)uzdeQ ; juzdx "(3)

4°, Green’s function and its properties.

Fix yeX . Denote by g(x,y) a weak solution of the equation Lg =-5,, where
d, is a Dirac’s measure, concentrated at the point y g(x, y) is called a Green’s function
of the sphere X . It possesses a number of properties of classical Green’s function.

Lemma 11. g(x,y)e W-},A(Z\sf (1)) for any r>0. Moreover, we can so change
the function g(x, y) on the set of Lebesgue 's zero measure that the obtained function will
be continuous by Holder in $\{y} and converge to zero on 8%, (see [13]).

Lemma 12, Forany pueM (Z) the integral

u(x)=[ glx, y)iu(y)
T
exists almost everywhere in 3., moreover u(x) is a weak solution of the equation
Lu=-u
Lemma 13, Let y C(f) Then
Gly)y)= [ gbx, yhwlax
T
is the solution of the equation Le=y .
Proof. We have
[ele yWledc =< g(y )y >=<G*(8, )y >=<4,,G(¥)>= Gy )y).
z
The Lemma is proved.

Lemma 14, g(x,y)}=g(y,x) for all x,ye TxX.
Lemma 15. Let £°(2)c Y, ye 8€7(1). Then




The regularity test of a boundary point 71

caps (€7 (1) Sgly)s caps (;:‘ )

Proof, Let u is a capacitary distribution of £7(1}, and

u(z)= ig(z,f)iu(r)

is a capacitary potential of £7(1).
According to previously proved S(y)c 2g*(1). Therefore

uz)= [glz,zulr).

PEX (1}

Since x¢ 8E7(1), then x#7, therefore g(x,7) is a continuous function and u(z) is

continuous at the point x, so
l=ue)= [gle,o)dule).

887(1)
Hence we get

g‘é‘n g(x,7)- cap,:( f(l))slségéa’._)((})g(x,r)-capz (3,"(1]).

With regard to Lemmas 8, 10 and the Hamack’s inequality [14] we conclude

Jmax glx,z)<c, min g(x7).

The Lemma is proved.
Lemma 16, Let x° € £°(4). Then

c rn—Zﬁrmﬂ < C‘ap%xo (1))5 Cgrmzﬁrau’z .

Proof. Let IT* = {x | X, ~ X; |<r]+“*ﬁ i=l..,n Then £ (1), therefore

cap(Z, (1))5 cap( . )
Consider the functions f(f). A{)=11<r"*" £{)=0,[dz2r" 0< f(r)<1,
fi()eCI(E,), i=1,...,n. We may assume that
CAP
dt

¢

rlmi,"z *

Let u(x)= Hfj(xj—xj) Then u(x)=1 in TT*, u(x)eCP(E,). Besides it,

u(x)=0 outside IT* ={n::|3cf - X! 'sz:-“"*fz,i:l,...,n .

|""T+?,jz_‘
2
F*"J.

at 2;

1Tdmn +—=
0 1+a, /2 > 5 e, /2 o
|xj|s(4r) L4 T 2L gpr , ﬂ,}.(x)Sc“r !

Let xeT]* . Then |, = i|xj
i=l

2 L8
24 — o 0
;sz}:q:cj x_,-|+|xj
i=

But |x1 -x?|s ZrH%”!z, <

3

j=l...n. Here o' =maxly,.,a,}. Therefore cap(ﬂf“)s j Qb ex <

By
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Sp‘lz [A(eldxe <, (uma)x  xr 2mesT1% mcn(pno:)r”'znr . Denote by

i=1 5 50
Cap the capaclty generated by the opera:or
0
Adx)— 1|,
Lot a0l
It is clear that uCap(E)}< cap(E)< u lCap(E)
Let E be a compactum, £ be it’s image for transformation y, =k"*/2.x

i=l..,n, k>0, Then

kn—lnkaul’z

i=]

*

Inpamcula.r Cap(ﬂ ) ”_ZHr“‘ﬁCap(n )

Estimate Ca*p(l’[l ) Let u(x) is a capacitary potential of I'[{’° ,and x4 is a
capacitary distribution of TI" .
It is clear, that S(u)< [T . We have
u(z)= [glz,)dulr),
or"
since ¥° ¢8I, then u(z) is continuous at the point »°,
=ul®)= [gl°,chaute).
g
For redIT), disl(y°,r)21 . Therefore g(yo,r)s a(n,a)
1<au 61'{;"o )= aCap(l'[,"o)
and we get
Cap(ﬂfo )2 ar’”ﬁ ref?
i=i

On the other hand

Cap(11f° )2 yCap(ﬂfn)a mr”‘zﬁr“‘f 2
i=l

Now after considering the inclusion Sj‘o U= H"n Lemma is proved.

1

”)Ml

Lemma 17. Ler =03 Then, if r<r°, x" € £°(4), R is sufficiently large then

Cr 21—‘[1"”“Hrz <caps (5 (1))5 izrwr"'"zl—j[.v"‘”’2

=l

Lemma 18, Lef yeE. Then
capy {y}=lim capy (€7 (1)=0
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5°, Generalized solution of Dirichlet’s problem

Lemma 19, Let the measure yeM(T). Then a weak solution u{x) of the

equation Lu=—yu is a lower semicontinuous function, i.e. for any x° e T,

Lim w(x)> u(x?).

x——ax

Proof. Let g(x,y) is the Green’s function. Then the weak solution of the
Lu =—y is represented in the form

u(x)= ££(’-’:J’)dﬂ(1’)-

Fix x® €Y. Any measure yeM (E) is represented in the form of u =y + 4,,
where 4, is an absolute continuous, and x4, is a singular constituent, g, {r“ }:0,

Hy {ta }= p{ra }5;:" . Therefore
u(x)= [ gle, v, () + e R, x°),
b
lim u(x)2 im § gc, y)ps () + e e, x°). )
X=X XX 2
If ,u{t" }> 0, then p{x" }g(x“,x"): o, then the Lemma is proved. '
Let ,u{r" }z 0. Choose the following sequence of functions
P € LIP(El )’ Py £ Py
@ =0 at the neighborhood of 0, ¢, =1 for tz}cl-

0, r=0
Ii =q
kﬁ(p"(r) {l, t#0

Let g,(x.)=g(r.y)o{x~ ). It is obvious that g,(x.¥)< g, (x,»), limg,(x, )=
= g(x, ), except the point x=y and

iﬁ“w)f:gx(xﬁ’y)dﬂl(yﬁgg(xo,y}lplbz). (5)

But ng (x,¥)du, (¥) is a continuous function, Therefore
b

Ig;,( °, ¥ (y)= lim ng(x v (y)= tim

[, (e, )i () <

x—)x E
< hm Ig(x y)dﬂl(J’)
xax® b
1.e. we obtained
ng( ¥ W (v)< lim [ g(x, )i (3).
x"-')x E

By using (5), we have

Ig( °, ¥ Yips ()< lim L [ g(x, ) (7).

I—Px 2

ulx,)= Ig( ¥ Hm (v )<hm Ig(x yXip (y)< im u(x)

x——)x

Thus
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and the Lemma is proved.

Definition. The number capy(E)=inf {caj,r:rE w )} where the greatest lower
bound is taker over all open sets containing F is called the upper capacity of the set E .
Lemma 20. If p is the measure, peW;) and for Berelllan set F

capy. (E)=0, then u(E)=0.
Corollary 5. limg(x,y)=.
Xy

By H denote the factor space W, A (D)/ w ‘2 D). Let the mapping
B:H —)W;‘A(D) be such, that if u=Be, then Lu=0 in the sense of W;,A(D) and

uU—pe W‘M(D) where @ is the representative of a class of equivalence ¢ . If the
Junction @ is bounded on 0D in the sense of W; A (D), then by Lemma 3

supl| < maxjp), ()
where by nalgx|¢r| we denote the greatest lower bound of numbers ¢ such that g <c,
— @ <c. By using (6) and (3), it is easy to deduce that

|“B ?’E" €6 ma%xl‘Pl )

., 112
where "! g]“: sup 5(2_[2,- (x)gfa‘xJ +mgx|g| and & is the distance between D' and
D'eD \ =1 p

8D . Therefore, B is a linear mapping of the subset B™* of functions from H , bounded
on 8D (in the sense of W, , (D)), in a space of functions with finite norm |||u|||

Since any continuous function ¢ on 6D may be approximated in the norm
I'[%XI@I by the functions being smooth on any set containing D, then the set B™* is

dense in the space of continuous on 8D functions ¢ with the norm néax|¢)] :
]

6". Boundary point regularity.

Definition. The point ye 8D is called regular, if for any continuous on oD

functions @lx) for a generalized solution u = Bq it is valid the equality
lima(x)=ofy). )

If there exist at least one continuous function ¢ on D, for which (7) is not
fulfilled, the point y is called irregular.

Lemma 21. The point y € 0D is regular if and only if there exists the barrier 3,
in it

Lemma 22. Let u{x) is a capacitary potential of the compactum % < 3. Then

u(y)= lim u(x)

e
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Corollary 6. Let X C ¥ be some compactum yed%, u(x) is a capacitary
potential of X . For u(y)z 1, it is necessary and sufficient that u(x) was continuous at
the point y.

Lemma 23. y € 8D will be a regular boundary point if and only if for any p>0
u, (y)=1, where u,, is a capacitary potential of the set A, = EwWwiN g ).

Lemma 24. The point y € 0D will be irregular if and only if

fimu,, (v)=0. ®)
Lemma 25. If p>r, then
#A4,)=p,(4,)+ fudu, . ®

A4,

Proof. It follows from Lemma 20, Corollary 4, and Fubini’ s theorem that

#,(4,)= [u du, = I[Ig(x,y)dﬂp(y)]d r(x)=Iu,(.lf)ﬂf;u,u(y)z

4, A\ 4,
= _[u Aau, + _[u du, = i#,(4,)+ ju dpp
AN, AN,
The Lemma is proved.
Corollary 7. M, (A,) i, (A,) = capy. (A,).
Theorem 1, For the point O € 8D to be regular, it is necessary and sufficient that
o, Caps Az_g _
k=0 CaPy (52-& (l)]
Proof. Necessity. Let the condition (10) be pot fulfilled, i.e.
2 caps 51
i=capy ‘534 1))
Fix arbitrary & > 0. Then it follows from (11) that there exists » = m(g) such that
g opsldn)
(12)
k=mCaPy (1)

e @)= (500 (),
Am
where s, . is the capacitary distribution of A, ... Further

Ig(x Mdupn(®)=3  [e(cOM ()<Y sp gl 0t (4,1,

k=g 4 \d, 4 me -t YA,k

(10)

<o (11)

We have

Thus
1@<y swp  g(eOeapy(4,.) (13)

k—m.”EA 3\44 kel

By the Harnack’s type inequality and Lemma 15 we iet

C“Pz (e
U, n (0) S0y, Z 82,. (1)

<Oy €.
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Since £:>0 is arbitrary, then limu, , (0)-_-0. By the Lemma 24 the point 0 is
M=y

irregular.
Sufficiency. Let 0 be an irregular point. We have

OSSR | 0

= mxeA M

1
inf )z .
MEA;?\AT*_l gk ) G capz(‘g;k (1))

Using this in (14), we get

Further

e @200 5l (4,0 ) - () (15
By Lemma 16 we get

2*‘ (0) 2 Cig sz (-2 H zlm‘ & Luz"' (Ar* )_ Hoyom (Az"‘“ )] . (16)

i=1

Now apply Abel’s summanon formula ( )
o . A "
Uym (0)2 €19 k:zm;-'zm. . (17)
By Lemma 25 and the Hamack’s type inequality
u,.(0)2 Qe § _Sr (Ari ) )
2 macapy E;ﬂ (l)j

Since #,..(0)— 0 for m —> o, then

w5 sl
"lgn‘”hmz Cﬂpz(sga o

2—*

.. capy4)
rocaps 1524 (l)j
Corollary 8. For the regularity of the point 0 8D it is necessary and sufficient

Le. <0 and the Theorem is proved.

that
i zk(nm2+laif2)cap( A )= o
k=0

where |a|=a, +--- +a,

Let y(z)= _C_‘_;()%) 7e(0,d), d =diamD .

Corollary 9. For the regularity of the point 0 8D , it is necessary and suficient
that

dr=cw.

[4t)

The author expresses his deep gratitude to his scientific leader Prof.
1. T Mamedov for the statement of the problem and useful discussion of results.
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