VOL. XI (XIX)

GUSEYNOV S.T.

THE REGULARITY TEST OF A BOUNDARY POINT FOR NON-UNIFORMLY DEGENERATING SECOND ORDER ELLIPTIC EQUATIONS

Abstract

A class of second order divergent structure equations with non-uniform power degeneration is considered in the paper. The regularity test of the Wiener's type for a boundary point with respect to the first boundary value problem for such equations is proved.

Introduction. Let D be the bounded domain, arranged in n-dimensional Euclidean space E_n of points $x = (x_1, ..., x_n)$, $n \ge 3$, and ∂D be its boundary, $O \in \partial D$.

Consider in D the first boundary value problem

$$Lu = \sum_{i,j=1}^{n} (a_{ij}(x)u_{j})_{i} = 0, \quad x \in D, \quad u|_{\partial D} = \varphi,$$
 (1)

where $||a_{ij}(x)||$ is a real symmetric matrix with elements measurable in D,

$$u_i = \frac{\partial u}{\partial x_i}$$
 $(i, j = 1, 2, ..., n), \varphi \in C(\partial D).$

Assume that with respect to the coefficients of the operator L it is fulfilled the condition

$$\mu \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2} \leq \sum_{i,j=1}^{n} a_{ij}(x) \xi_{i} \xi_{j} \leq \mu^{-1} \sum_{i=1}^{n} \lambda_{i}(x) \xi_{i}^{2}, \qquad (2)$$

where

$$\mu \in (0,1], x \in D, \xi \in E_n, \lambda_i(x) = (|x|_{\alpha})^{\alpha_i}, \qquad |x|_{\alpha} = \sum_{i=1}^n |x_i|^{\frac{2}{2+\alpha_i}}, \qquad \alpha = (\alpha_1, \ldots, \alpha_n),$$

$$\alpha_i \in \left[0, \frac{2}{n-1}\right), i=1,...,n$$

The goal of this article is to find the Wiener's type regularity test of the boundary point O with respect to the problem (1). Note that for the Laplace equation the classical result in this direction was obtained by N. Wiener [1]. The Wiener's test was transferred to the equations with smooth coefficients in [2-3]. In [4] it was established that the Wiener's test is valid for arbitrary, uniformly elliptic second order equations of divergent structure with measurable coefficients. Elliptic equations with uniform degeneration were considered in [5]. In [6] the regularity test for a boundary point was obtained for elliptic equations with weak (so-called logarithmic) non-uniform degeneration. Note that none equation with non-uniform power degeneration satisfies the conditions of paper [6]. In the present paper the regularity test for a for a boundary point was obtained for class of second order divergent elliptic equations with non-uniform power degeneration. Concerning divergent structure elliptic equations we note the results obtained in the indicated direction in papers [7-11].

1°. Some notations, definitions and subsidiary statements.

Let Σ be a sufficiently great radius closed ball with a center in the origin of coordinates, $\overline{D} \subset \Sigma$.

Denote by $W_{p,\Lambda}^1(D)$, $\mathring{W}_{p,\Lambda}^1(D)$ the closure of functions correspondingly from $C^{\infty}(\overline{D})$, $C_0^{\infty}(D)$ at the following norm

$$\left(\int_{D} |u|^{p} dx + \int_{D} \sum_{i=1}^{n} \lambda_{i}(x) \left| \frac{\partial u}{\partial x_{i}} \right|^{p} dx \right)^{\frac{1}{p}}, \quad 1$$

The space adjoint to $\mathring{W}_{p,\Lambda}^{1}(D)$ denote by $W_{p',\Lambda}^{-1}(D)$:

$$W_{p',\Lambda}^{-1}(D) = \left\{ T = f_0 + \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} : f_0 \in L_{p'}(D), f_i \in L_{p',\lambda_i^{-1}}(D), i = 1,...,n \right\},\,$$

where $\frac{1}{p} + \frac{1}{p'} = 1$.

The function $u \in W_{2,\Lambda}^1(D)$ we call the solution of the equation (1), if it satisfies the following integral identity

$$\int_{D^{i}, j=1}^{n} a_{ij}(x) u_{i} v_{j} dx = 0 \text{ for any } v \in \mathring{W}^{1}_{2,\Lambda}(D).$$

If

$$\int_{D_{i},i=1}^{n} a_{ij}(x)u_{i}v_{j}dx \le 0 \quad \text{for any} \quad v \in \mathring{W}_{2,\Lambda}^{1}(D), v \ge 0,$$

then the function $u \in W^1_{2,\Lambda}(D)$ is called a subsolution of the equation (1). If the function $-u(x) \in W^1_{2,\Lambda}(D)$ is the subsolution of the equation (1), then u(x) is called a supersolution. We say that the charge ν belongs to $W^{-1}_{p',\Lambda}$, if for any $\varphi \in C_0^{\infty}(D)$

$$\left|\int_{D} \varphi dv\right| \leq c \|\varphi\|_{W_{p,\Lambda}^{1}(D)}.$$

Further, we shall denote positive constants by c. For k>0, R>0, $x^0 \in E_n$ by $\mathcal{E}_R^{x^0}(k)$ we denote the ellipsoid

$$\left\{x: \sum_{i=1}^n \frac{\left(x_i - x_i^0\right)^2}{R^{\alpha_i}} \leq (kR)^2\right\}.$$

Let $u \in W^1_{p,\Lambda}(D)$. We say that $u \ge a$ on $E \subset \overline{D}$ in the sense of $W^1_{p,\Lambda}(D)$, if there exists a sequence of functions $\{\varphi_k\} \in Lip(\overline{D})$ such that $\varphi_k(x) \ge a, x \in E$ and $\varphi_k \to u$, $(k \to \infty)$ by the norm of $W^1_{p,\Lambda}(D)$. Let u(x) be a measurable function. The function $u^{(\varepsilon)}(x) = \min \{u(x), \varepsilon\}$ is called ε -truncation of u(x). Let

$$D(u,v) = \int_{\sum i,j=1}^{n} a_{ij}(x)u_iv_j dx.$$

Lemma 1. Let $p_0 > 0$ is a sufficiently large number, $p > p_0$, $T \in W^{-1}_{p,\Lambda}(\Sigma)$ and Lu = T in the sense of $W^1_{2,\Lambda}(D)$, $u \in \mathring{W}^1_{2,\Lambda}(\Sigma)$. Then, the function u(x) is continuous by Hölder in $\overline{\Sigma}$ and

$$\begin{split} \max_{\widetilde{\Sigma}} |u| &\leq c_1 \|T\|_{W_{\rho,\Lambda}^{-1}(\Sigma)},\\ \max_{\substack{x,y \in \widetilde{\Sigma} \\ |x-y| \leq \rho}} |u(x) - u(y)| &\leq c_2 \rho^{\alpha} \|T\|_{W_{\rho,\Lambda}^{-1}(\Sigma)}. \end{split}$$

Lemma 2. Let $u \in \mathring{W}_{2,\Lambda}^{1}(\Sigma)$, $\varepsilon > 0$. Then, if $u^{(\varepsilon)}$ is a ε -truncation of the function u(x), then $u^{(\varepsilon)} \in \mathring{W}_{2,\Lambda}^{1}(D)$. Moreover, if $\{\varphi_j\} \in C_0^{\infty}(D)$ and $\varphi_j \to u$, $(j \to \infty)$ by the norm $\mathring{W}_{2,\Lambda}^{1}(D)$, then $\varphi_j^{(\varepsilon)} \to u^{(\varepsilon)}$, $(j \to \infty)$ weakly in $\mathring{W}_{2,\Lambda}^{1}(D)$. Moreover $\|u^{(\varepsilon)}\|_{\mathring{W}_{2,\Lambda}^{1}(D)} \leq \|u\|_{\mathring{W}_{2,\Lambda}^{1}(D)}$.

These lemmas are proved by a standard method as for instance in [5].

Lemma 3. If $u \in W^1_{2,\Lambda}(\Sigma)$ is the subsolution of the equation (1), non-positive on ∂D in the sense of $W^1_{2,\Lambda}(D)$, then the function u(x) is non-positive almost everywhere on D.

Proof. Let $\varepsilon > 0$ be an arbitrary number. Then, $u - u^{(\varepsilon)} \ge 0$ in D and by Lemma 2 $u - u^{(\varepsilon)} \in \mathring{W}^{1}_{2,\Lambda}(D)$. Since u is a subsolution of the equation (1), then

$$\int_{D_{i,j=1}}^{n} a_{ij} u_{i} \varphi_{j} dx \leq 0$$

for any function $\varphi \in \mathring{W}_{2,\Lambda}^{1}(D)$, $\varphi \ge 0$.

Assume $\varphi = u - u^{(\varepsilon)}$. We have

$$\int_{D_i} \sum_{i=1}^n a_{ij} u_i \left(u - u^{(s)} \right)_j dx \le 0.$$

Since

$$\int_{D^{1},j=1}^{n} a_{ij} u_{i}^{(\varepsilon)} \left(u - u^{(\varepsilon)} \right)_{j} dx = 0,$$

then

$$\int_{D_{i}} \sum_{i=1}^{n} a_{ij} \left(u - u^{(s)} \right)_{i} \left(u - u^{(s)} \right)_{j} dx \le 0.$$

By the Friedrichs type inequality [12] and (2) we get that $u(x) = u^{(\varepsilon)}(x)$ almost everywhere in D. Since ε is an arbitrary positive number, then $u \le 0$ almost everywhere in D. The Lemma is proved.

Denote

$$V_{\Sigma}(\mathcal{X}) = \left\{ u \in \mathring{W}_{2,\Lambda}^{1}(\Sigma) : u \ge 1 \text{ on } \mathcal{X} \text{ in the sense of } W_{2,\Lambda}^{1}(\mathcal{X}) \right\},$$

where $\mathcal{K} \subset \Sigma$ is some compact set. If $\Sigma = E_n$, then we denote $V_{E_n}(\mathcal{K})$ by $V(\mathcal{K})$.

20. Capacity and capacitary potential.

The number $cap_{\Sigma}(\mathcal{X}) = \inf_{u \in V_{\Sigma}(\mathcal{X})} \int_{\sum i,j=1}^{n} a_{ij}(x) u_{i} u_{j} dx$ is called capacity of the compactum \mathcal{X} with respect to the ball Σ , generated by the operator L.

The number $cap(\mathcal{X}) = \inf_{u \in V(\mathcal{X})} \int_{E_n^{j,j+1}}^n a_{ij}(x) u_i u_j dx$ is called capacity of the compactum \mathcal{X} , generated by the operator L.

Lemma 4. There exists a unique function $u \in V_{\Sigma}(\mathcal{K})$, for which $cap_{\Sigma}(\mathcal{K}) = D(u,u)$. Moreover, u = 1 on \mathcal{K} in the sense of $W_{2,\Lambda}^1(\Sigma)$ and $D(u,v) \geq 0$ for any function $v \in \mathring{W}_{2,\Lambda}^1(\Sigma)$ such that $v \geq 0$ on \mathcal{K} in the sense of $W_{2,\Lambda}^1(\Sigma)$.

Proof. It is easy to show that $V_{\Sigma}(\mathcal{X})$ is a convex and closed set in $\mathring{W}_{2,\Lambda}^{1}(\Sigma)$. Then by the known theorem on a functional analysis there exists a unique function $u \in V_{\Sigma}(\mathcal{X})$, possessing minimal norm among the elements of $V_{\Sigma}(\mathcal{X})$. By [12] a bilinear form of D(u,v) is a scalar product in $\mathring{W}_{2,\Lambda}^{1}(\Sigma)$, therefore $cap_{\Sigma}(\mathcal{X}) = D(u,u)$. By Lemma 2 we get u=1 on \mathcal{X} in the sense of $W_{2,\Lambda}^{1}(\Sigma)$.

Let $v \in \mathring{W}^{1}_{2,\Lambda}(\Sigma)$, $v \ge 0$ on \mathcal{K} in the sense of $W^{1}_{2,\Lambda}(\Sigma)$ and $\varepsilon > 0$. It is obvious that $u + \varepsilon v \in V_{\Sigma}(\mathcal{K})$ for any $\varepsilon > 0$. Then

$$D(u + \varepsilon v, u + \varepsilon v) \ge D(u, u)$$

Hence it follows that

$$2\varepsilon D(u,v) + \varepsilon^2 D(v,v) \ge 0.$$

Therefore $D(u,v) \ge 0$. The Lemma is proved.

The function u is called a capacitary potential of the compactum x.

Corollary 2. Capacitary potential of the compactum \mathcal{Z} is the supersolution of the equation (1) in Σ

Lemma 5. Let u be a capacitary potential of some compactum $\mathcal{K} \subset \Sigma$. Then Lu = 0 in $\sum \setminus \mathcal{K}$ and $0 \le u(x) \le 1$ almost everywhere in \sum .

Proof. Let u be a capacitary potential of some compactum $\mathcal{K} \subset \Sigma$. Then Lu = 0 in the sense of $W_{2,\Lambda}^1(\Sigma \setminus \mathcal{K})$. Indeed, let v(x) be any function from $\mathring{W}_{2,\Lambda}^1(\Sigma \setminus \mathcal{K})$. Denote

$$\widetilde{v}(x) = \begin{cases} v(x), & x \in \Sigma \backslash \mathcal{X} \\ 0, & x \in \mathcal{X} \end{cases}$$

It is obvious that $\widetilde{v} \in \mathring{W}_{2,\Lambda}^{1}(\Sigma)$. Then by Lemma 4

$$\int_{\Sigma\setminus \mathbf{x}} \sum_{i,j=1}^n a_{ij}(\mathbf{x}) u_i v_j d\mathbf{x} = D(u,\widetilde{\mathbf{v}}) \ge 0.$$

Since v any function from $W^1_{2,\Lambda}(\Sigma \backslash \mathcal{X})$, then Lu = 0 in $\Sigma \backslash \mathcal{X}$. On $\partial \Sigma$ u = 0 in the sense of $W^1_{2,\Lambda}(\Sigma)$. On $\partial \mathcal{X}$ u = 1 in the sense of $W^1_{2,\Lambda}(\Sigma)$, i.e. on $\partial(\Sigma \backslash \mathcal{X})$ $0 \le u(x) \le 1$. On the other hand, u = 1 on \mathcal{X} in the sense of $W^1_{2,\Lambda}(\Sigma)$, i.e. u = 1 almost everywhere on \mathcal{X} . Therefore $0 \le u(x) \le 1$ almost everywhere in Σ . The Lemma is proved.

Let $\varphi \in C_0^\infty(\Sigma)$, $\varphi(x) \ge 0$, $x \in \mathbb{Z}$. By Lemma 4 $D(u,\varphi) \ge 0$, where u is a capacitary. Then by Schwartz's theorem there exists a unique measure μ , such that $D(u,\varphi) = \int \varphi d\mu$.

Corollary 3. $S(\mu) \subset \mathcal{K}$, where $S(\mu)$ is the support of measure μ .

Measure μ is called the capacity distribution of the compactum $oldsymbol{\mathcal{X}}$.

Lemma 6. Let μ be the capacitary distribution of the compactum $\mathcal{K} \subset \Sigma$. Then $S(\mu) \subset \partial \mathcal{K}$ and $\mu(\mathcal{K}) = cap_{\Sigma}(\mathcal{K})$.

Proof. Let u be a capacitary potential of \mathcal{Z} . By Lemma 4 there exists a sequence of functions $\{\varphi_j\} \in C_0^{\infty}(\Sigma)$, $\varphi_j(x) = 1$, $x \in \mathcal{Z}$, j = 1, 2, ..., $\varphi_j \to u$, $(j \to \infty)$ by the norm of $W_{2,\Lambda}^1(\Sigma)$. Let ψ be an arbitrary function from $C_0^{\infty}(\Sigma)$ such that $S(\psi) \subset \mathcal{Z}^0$ (\mathcal{Z}^0 is the interior part of \mathcal{Z}). We have

$$\int_{\Sigma} \psi d\mu = D(u, \psi) = \lim_{j \to \infty} D(\varphi_j, \psi)$$

and

$$cap_{\Sigma}(\mathcal{K}) = D(u,u) = \lim_{j \to \infty} D(u,\varphi_j) = \lim_{j \to \infty} \int_{\partial \mathcal{K}} \varphi_j d\mu = \mu(\mathcal{K}).$$

The Lemma is proved.

Corollary 4. The capacitary distribution of the compactum $\mathcal{K} \subset \Sigma$ belongs $W_{2,\Lambda}^{-1}(\Sigma)$.

Let $T \in W_{p,\Lambda}^{-1}(\Sigma)$, $p \ge p_0$, where a positive number p_0 is chosen by Lemma 1.

By Theorem 1 [12] there exists a unique function $u(x) \in \mathring{W}_{2,\Lambda}^{1}(\Sigma)$, for which Lu = T in the sense of $W_{2,\Lambda}^{1}(\Sigma)$. Let G(T) = u. Then by Lemma 1 G maps $W_{p,\Lambda}^{-1}(\Sigma)$ into $C(\Sigma)$ and it is a linear bounded operator. Denote by $M(\Sigma)$ a class of finite charges in Σ .

30. Weak solutions.

Definition. Let μ be the charges of bounded variation on Σ . We say that the function $u \in L_1(\Sigma)$ is a weak solution of the equation $Lu = \mu$, equal to zero on the boundary $\partial \Sigma$, if it satisfies the equality

$$\int_{\Sigma} u L \varphi dx = \int_{\Sigma} \varphi d\mu$$

for any $\varphi \in \mathring{W}_{2,\Lambda}^{1}(\Sigma) \cap C(\overline{\Sigma})$, such that $Lu \in C(\overline{\Sigma})$.

Definition. The function $u \in L_1(\Sigma)$ is called a weak solution of the equation $Lu = \mu$ $(\mu \in M(\Sigma))$, converging to zero in $\partial \Sigma$, if

$$\int\limits_{\Sigma}u(x)\psi(x)dx=\int\limits_{\Sigma}G(\psi)d\mu$$

for any $\psi \in C(\overline{\Sigma})$. It is obvious that if $\psi \in C(\overline{\Sigma})$, then $\psi \in L_p(\Sigma)$ for any $p \ge 1$ and $\psi \in W_{ph}^{-1}(\Sigma)$. Therefore $\int_{\Sigma} G(\psi) d\mu$ has sense for any $\psi \in C(\overline{\Sigma})$.

Lemma 7. Let $\mu \in M(\Sigma)$. Then there exists a unique weak solution of the equation $Lu = \mu$. Moreover $u \in \mathring{W}^1_{p',\Lambda}(\Sigma)$,

$$\|u\|_{W^1_{a,\Lambda}(\Sigma)} \le c_3 \|u\|_{M(\Sigma)}$$
, where $1 \le p' \le p_0$

 $\frac{1}{p'} + \frac{1}{p_0} = 1$, and p_0 is a constant from Lemma 1.

The following statements we cite without proof.

Lemma 8. If the charge $\mu \in M(\Sigma)$ is the measure, then a weak solution of the equation $Lu = -\mu$ is a non-negative function almost everywhere in Σ .

Lemma 9. Assume that $\mu \in M(\Sigma)$ is the measure and $\mu \in W_{2,\Lambda}^{-1}(\Sigma)$. Then a weak solution of the equation $Lu = -\mu$ belongs to $\mathring{W}_{2,\Lambda}^{1}(\Sigma)$. Moreover $Lu = -\mu$ in the sense of $\mathring{W}_{2,\Lambda}^{1}(\Sigma)$.

Lemma 10. Let $B_1 = \mathcal{E}_r^y(1)$, $B_2 = \mathcal{E}_r^y(2)$ and Lu = 0 in the sense of $W_{2,\Lambda}^1(B_2)$. Then it is valid the inequality

$$\int_{B_i=1}^n \lambda_i(x) u_i^2 dx \le c_4 \frac{1}{r^2} \int_{B_1} u^2 dx.$$
 (3)

40. Green's function and its properties.

Fix $y \in \Sigma$. Denote by g(x,y) a weak solution of the equation $Lg = -\delta_y$, where δ_y is a Dirac's measure, concentrated at the point y, g(x,y) is called a Green's function of the sphere Σ . It possesses a number of properties of classical Green's function.

Lemma 11. $g(x,y) \in W^1_{2,\Lambda}(\Sigma \setminus \mathcal{E}^y_r(1))$ for any r > 0. Moreover, we can so change the function g(x,y) on the set of Lebesgue's zero measure that the obtained function will be continuous by Hölder in $\Sigma \setminus \{y\}$ and converge to zero on $\partial \Sigma$ (see [13]).

Lemma 12. For any $\mu \in M(\Sigma)$ the integral

$$u(x) = \int_{\Sigma} g(x, y) d\mu(y)$$

exists almost everywhere in Σ , moreover u(x) is a weak solution of the equation $Lu = -\mu$.

Lemma 13. Let $\psi \in C(\overline{\Sigma})$. Then

$$G(\psi)(y) = \int_{\Sigma} g(x,y)\psi(x)dx$$

is the solution of the equation $L\varphi = \psi$.

Proof. We have

$$\int_{\Sigma} g(x,y)\psi(x)dx = \langle g(\cdot,y),\psi \rangle = \langle G^{\bullet}(\delta_{y}),\psi \rangle = \langle \delta_{y},G(\psi) \rangle = G(\psi)(y).$$

The Lemma is proved.

Lemma 14. g(x,y)=g(y,x) for all $x,y \in \Sigma \times \Sigma$.

Lemma 15. Let $\mathcal{E}_r^x(2) \subset \Sigma$, $y \in \partial \mathcal{E}_r^x(1)$. Then

$$\frac{c_5}{cap_{\Sigma}(\boldsymbol{\mathcal{E}}_r^{\mathbf{x}}(\mathbf{l}))} \leq g(x,y) \leq \frac{c_6}{cap_{\Sigma}(\boldsymbol{\mathcal{E}}_r^{\mathbf{x}}(\mathbf{l}))}.$$

Proof. Let μ is a capacitary distribution of $\mathcal{E}_{r}^{x}(1)$, and

$$u(z) = \int_{\Sigma} g(z,\tau) d\mu(\tau)$$

is a capacitary potential of $\mathcal{E}_r^x(1)$.

According to previously proved $S(\mu) \subset \partial \mathcal{E}_r^x(1)$. Therefore

$$u(z) = \int_{\partial \mathcal{E}_r^x(1)} g(z,\tau) d\mu(\tau).$$

Since $x \notin \partial \mathcal{E}_r^x(1)$, then $x \neq \tau$, therefore $g(x,\tau)$ is a continuous function and u(z) is continuous at the point x, so

$$1 = u(x) = \int_{\partial \mathcal{E}_{\tau}^{I}(1)} g(x, \tau) d\mu(\tau).$$

Hence we get

$$\min_{\tau \in \partial \mathcal{E}_r^x(1)} g(x,\tau) \cdot cap_{\Sigma} \left(\mathcal{E}_r^x(1) \right) \le 1 \le \max_{\tau \in \partial \mathcal{E}_r^x(1)} g(x,\tau) \cdot cap_{\Sigma} \left(\mathcal{E}_r^x(1) \right).$$

With regard to Lemmas 8, 10 and the Harnack's inequality [14] we conclude

$$\max_{\tau \in \partial \mathcal{E}_{\tau}^{x}(1)} g(x,\tau) \leq c_{7} \min_{\tau \in \partial \mathcal{E}_{\tau}^{x}(1)} g(x,\tau).$$

The Lemma is proved.

Lemma 16. Let $x^0 \in \mathcal{E}_r^0(4)$. Then

$$c_8 r^{n-2} \prod_{i=1}^n r^{\alpha_i/2} \le cap \left(\mathcal{E}_r^{x^0} (1) \right) \le c_9 r^{n-2} \prod_{i=1}^n r^{\alpha_i/2}.$$

Proof. Let $\prod_{r}^{x^0} = \left\{ x : \left| x_i - x_i^0 \right| < r^{1+\alpha_i/2}, i = 1, ..., n \right\}$. Then $\mathcal{E}_r^{x^0}(1) \subset \prod_r^{x^0}$, therefore $cap\left(\mathcal{E}_r^{x^0}(1)\right) \le cap\left(\prod_r^{x^0}\right)$.

Consider the functions $f_i(t)$. $f_i(t) = 1, |t| < r^{1+\alpha_i/2}, f_i(t) = 0, |t| \ge 2r^{1+\alpha_i/2}, 0 \le f_i(t) \le 1,$ $f_i(t) \in C_0^{\infty}(E_1), i = 1,...,n$. We may assume that

$$\left|\frac{df_i}{dt}\right| \leq \frac{c}{r^{1+\alpha_i/2}}.$$

Let $u(x) = \prod_{j=1}^{n} f_j(x_j - x_j^0)$. Then u(x) = 1 in $\prod_{j=1}^{\infty} f_j(x_j - x_j^0)$. Besides it,

$$u(x) = 0$$
 outside $\widetilde{\prod}_{r}^{x^{0}} = \left\{ x : \left| x_{i} - x_{i}^{0} \right| \le 2r^{1+\alpha_{i}/2}, i = 1, ..., n \right., \quad \left| u_{i} \right| \le \frac{c}{r^{1+\alpha_{i}/2}}.$

Let
$$x \in \widetilde{\prod}_{r}^{x^{0}}$$
. Then $|x|_{\alpha} = \sum_{j=1}^{n} |x_{j}|^{\frac{2}{2+\alpha_{j}}} \le \sum_{j=1}^{n} (|x_{j} - x_{j}^{0}| + |x_{j}^{0}|)^{\frac{2}{2+\alpha_{j}}}$.

But
$$|x_j - x_j^0| \le 2r^{1+\alpha_j/2}$$
, $|x_j^0| \le (4r)^{1+\alpha_j/2} \le 4^{\frac{1+\alpha_j}{2}} \cdot r^{\frac{1+\alpha_j}{2}} \le c_{10}r^{1+\alpha_j/2}$, $\lambda_j(x) \le c_{11}r^{\alpha_j}$, $j = 1, ..., n$. Here $\alpha^+ = \max\{\alpha_1, ..., \alpha_n\}$. Therefore $cap(\prod_r^{x_0}) \le \int_R a_{ij}u_iu_jdx \le c_{11}r^{\alpha_j}$

 $\leq \mu^{-1} \sum_{i=1}^{n} \int_{\widetilde{\Pi}_{r}^{n}}^{\lambda_{i}} (x) u_{i}^{2} dx \leq c_{12} (\mu, n, \alpha) \times \times r^{-2} mes \widetilde{\prod}_{r}^{x_{0}} = c_{13} (\mu, n, \alpha) r^{n-2} \prod_{i=1}^{n} r^{\frac{\alpha_{i}}{2}}.$ Denote by

Cap the capacity generated by the operator

$$L_0 = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\lambda_i(x) \frac{\partial}{\partial x_i} \right),$$

It is clear that $\mu Cap(E) \le cap(E) \le \mu^{-1} Cap(E)$.

Let E be a compactum, \widetilde{E} be it's image for transformation $y_i = k^{1+\alpha_i/2} \cdot x_i$, i = 1, ..., n, k > 0. Then

$$Cap(E) = \frac{Cap(\widetilde{E})}{k^{n-2} \prod_{i=1}^{n} k^{\alpha_i/2}}.$$

In particular $Cap\left(\prod_{r=1}^{x^0}\right) = r^{n-2} \prod_{i=1}^n r^{\alpha_i/2} Cap\left(\prod_{i=1}^{y^0}\right)$.

Estimate $Cap(\Pi_1^{\nu^0})$. Let u(x) is a capacitary potential of $\Pi_1^{\nu^0}$, and μ is a capacitary distribution of $\Pi_1^{\nu^0}$.

It is clear, that $S(\mu) \subset \partial \prod_{1}^{y^0}$. We have

$$u(z) = \int_{\partial \prod_{z}^{p^0}} g(z,\tau) d\mu(\tau),$$

since $y^0 \notin \partial \prod_{1}^{y^0}$, then u(z) is continuous at the point y^0 ,

continuous at the point
$$y^0$$
,

$$1 = u(y^0) = \int_{\partial \Pi_r^0} g(y^0, \tau) d\mu(\tau).$$

For $\tau \in \partial \prod_{i=1}^{y^0}$, $dist(y^0, \tau) \ge 1$. Therefore $g(y^0, \tau) \le a(n, \alpha)$ $1 \le a\mu(\partial \prod_{i=1}^{y^0}) = aCap(\prod_{i=1}^{y^0})$

and we get

$$Cap\left(\prod_{r}^{x^0}\right) \ge ar^{n-2} \prod_{i=1}^n r^{\alpha_i/2}$$
.

On the other hand

$$Cap\left(\prod_{r}^{x^0}\right) \ge \mu Cap\left(\prod_{r}^{x^0}\right) \ge \mu ar^{n-2} \prod_{i=1}^n r^{\alpha_i/2}$$
.

Now after considering the inclusion $\mathcal{E}_r^{x^0}(1) \supset \prod_{\frac{1}{2+\sigma^*}}^{x^0}$ Lemma is proved.

Lemma 17. Let $\Sigma = Q_R^0$. Then, if $r \le r^0$, $x^0 \in \mathcal{E}_r^0(4)$, R is sufficiently large, then

$$c_{14}r^{n-2}\prod_{i=1}^n r^{\alpha_i/2} \leq cap_{\Sigma} \left(\mathcal{Z}_r^{x^0}\left(1\right)\right) \leq c_{15}r^{n-2}\prod_{i=1}^n r^{\alpha_i/2}.$$

Lemma 18. Let $y \in \Sigma$. Then

$$cap_{\Sigma}\{y\} = \lim_{r\to 0} cap_{\Sigma}(\mathcal{E}_r^y(1)) = 0.$$

50. Generalized solution of Dirichlet's problem

Lemma 19. Let the measure $\mu \in M(\Sigma)$. Then a weak solution u(x) of the equation $Lu = -\mu$ is a lower semicontinuous function, i.e. for any $x^0 \in \Sigma$

$$\lim_{x\to x^0} u(x) \ge u(x^0).$$

Proof. Let g(x,y) is the Green's function. Then the weak solution of the $Lu = -\mu$ is represented in the form

$$u(x) = \int_{\Sigma} g(x, y) d\mu(y).$$

Fix $x^0 \in \Sigma$. Any measure $\mu \in M(\Sigma)$ is represented in the form of $\mu = \mu_1 + \mu_2$, where μ_1 is an absolute continuous, and μ_2 is a singular constituent, $\mu_1 \{x^0\} = 0$, $\mu_2 \{x^0\} = \mu \{x^0\} \delta_{x^0}$. Therefore

$$u(x) = \int_{\Sigma} g(x, y) d\mu_{1}(y) + \mu \left\{ x^{0} \right\} g(x, x^{0}),$$

$$\lim_{x \to x^{0}} u(x) \ge \lim_{x \to x^{0}} \int_{\Sigma} g(x, y) d\mu_{1}(y) + \mu \left\{ x^{0} \right\} g(x^{0}, x^{0}). \tag{4}$$

If $\mu\{x^0\} > 0$, then $\mu\{x^0\}g(x^0, x^0) = \infty$, then the Lemma is proved.

Let $\mu \{x^0\} = 0$. Choose the following sequence of functions

$$\varphi_k \in Lip(E_1), \quad \varphi_k \leq \varphi_{k+1}$$

 $\varphi_k = 0$ at the neighborhood of 0, $\varphi_k = 1$ for $t \ge \frac{1}{k}$

$$\lim_{k\to\infty}\varphi_k(t)=\begin{cases}0, & t=0\\1, & t\neq0\end{cases}$$

Let $g_k(x,y) = g(x,y)\varphi_k(x-y)$. It is obvious that $g_k(x,y) \le g_{k+1}(x,y)$, $\lim_{k\to\infty} g_k(x,y) = g(x,y)$, except the point x=y and

$$\lim_{k \to \infty} \int_{\Sigma} g_k(x^0, y) d\mu_1(y) = \int_{\Sigma} g(x^0, y) d\mu_1(y). \tag{5}$$

But $\int_{\Sigma} g_k(x,y) d\mu_1(y)$ is a continuous function. Therefore

$$\int_{\Sigma} g_{k}(x^{0}, y) d\mu_{1}(y) = \lim_{x \to x^{0}} \int_{\Sigma} g_{k}(x, y) d\mu_{1}(y) = \lim_{x \to x^{0}} \int_{\Sigma} g_{k}(x, y) d\mu_{1}(y) \le \lim_{x \to x^{0}} \int_{\Sigma} g(x, y) d\mu_{1}(y),$$

i.e. we obtained

$$\int_{\Sigma} g_{k}(x^{0}, y) d\mu_{1}(y) \leq \underline{\lim}_{x \to x^{0}} \int_{\Sigma} g(x, y) d\mu_{1}(y).$$

By using (5), we have

$$\int_{\Sigma} g(x^{0}, y) d\mu_{1}(y) \leq \underline{\lim}_{x \to x^{0}} \int_{\Sigma} g(x, y) d\mu_{1}(y).$$

Thus

$$u(x_0) = \int_{\Sigma} g(x^0, y) d\mu_1(y) \le \lim_{x \to x^0} \int_{\Sigma} g(x, y) d\mu_1(y) \le \lim_{x \to x^0} u(x)$$

and the Lemma is proved.

Definition. The number $cap_{\Sigma}^{\bullet}(E) = \inf \{ cap_{\Sigma}(U) \}$, where the greatest lower bound is taken over all open sets containing E is called the upper capacity of the set E.

Lemma 20. If μ is the measure, $\mu \in W_{2,\Lambda}^{-1}$ and for Berellian set E

$$cap_{\Sigma}^*(E)=0$$
, then $\mu(E)=0$.

Corollary 5. $\lim_{x\to y} g(x,y) = \infty$.

By H denote the factor space $W_{2,\Lambda}^1(D)/\mathring{W}_{2,\Lambda}^1(D)$. Let the mapping $B: H \to W_{2,\Lambda}^1(D)$ be such, that if $u = B\varphi$, then Lu = 0 in the sense of $W_{2,\Lambda}^1(D)$ and $u - \overline{\varphi} \in \mathring{W}_{2,\Lambda}^1(D)$, where $\overline{\varphi}$ is the representative of a class of equivalence φ . If the function φ is bounded on ∂D in the sense of $W_{2,\Lambda}^1(D)$, then by Lemma 3

$$\sup_{\mathcal{D}} |u| \le \max_{\partial \mathcal{D}} |\varphi|,\tag{6}$$

where by $\max_{\partial D} |\varphi|$ we denote the greatest lower bound of numbers c such that $\overline{\varphi} \leq c$, $-\overline{\varphi} \leq c$. By using (6) and (3), it is easy to deduce that

$$\|B\varphi\| \le c_{16} \max_{\partial D} |\varphi|$$

where $\|g\| = \sup_{\overline{D}' \subset D} \delta \left(\sum_{i=1}^n \int_{D'} \lambda_i(x) g_i^2 dx \right)^{1/2} + \max_{D} |g|$ and δ is the distance between \overline{D}' and

 ∂D . Therefore, B is a linear mapping of the subset $B^{1,2}$ of functions from H, bounded on ∂D (in the sense of $W_{2,\Lambda}^1(D)$), in a space of functions with finite norm $\|u\|$.

Since any continuous function φ on ∂D may be approximated in the norm $\max_{\partial D} |\varphi|$ by the functions being smooth on any set containing \overline{D} , then the set $B^{1,2}$ is dense in the space of continuous on ∂D functions φ with the norm $\max_{\partial D} |\varphi|$.

60. Boundary point regularity.

Definition. The point $y \in \partial D$ is called regular, if for any continuous on ∂D functions $\varphi(x)$ for a generalized solution $u = B\varphi$ it is valid the equality

$$\lim_{x \to y} u(x) = \varphi(y). \tag{7}$$

If there exist at least one continuous function φ on D, for which (7) is not fulfilled, the point y is called irregular.

Lemma 21. The point $y \in \partial D$ is regular if and only if there exists the barrier ϑ_y in it.

Lemma 22. Let u(x) is a capacitary potential of the compactum $\mathcal{K} \subset \Sigma$. Then

$$u(y) = \lim_{\substack{x \to y \\ x \in \Sigma \setminus \mathcal{X}}} u(x)$$

Corollary 6. Let $\mathcal{K} \subset \Sigma$ be some compactum $y \in \partial \mathcal{K}$, u(x) is a capacitary potential of x. For u(y)=1, it is necessary and sufficient that u(x) was continuous at the point y.

Lemma 23. $y \in \partial D$ will be a regular boundary point if and only if for any $\rho > 0$ $u_{\rho}(y)=1$, where u_{ρ} is a capacitary potential of the set $A_{\rho}=(\sum D)\cap \mathcal{E}_{\rho}^{y}(1)$.

Lemma 24. The point $y \in \partial D$ will be irregular if and only if

$$\lim_{\rho \to 0} u_{\rho}(y) = 0. \tag{8}$$

Lemma 25. If $\rho > r$, then

$$\mu_r(A_r) = \mu_\rho(A_r) + \int_{A_\rho \setminus A_r} u_r d\mu_\rho$$
 (9)

Proof. It follows from Lemma 20, Corollary 4, and Fubini's theorem that

$$\mu_{r}(A_{r}) = \int_{A_{r}} u_{\rho} d\mu_{r} = \int_{A_{r}} \left(\int_{A_{\rho}} g(x, y) d\mu_{\rho}(y) \right) d\mu_{r}(x) = \int_{A_{\rho}} u_{r}(y) d\mu_{\rho}(y) =$$

$$= \int_{A_{r}} u_{r} d\mu_{\rho} + \int_{A_{\rho} \setminus A_{r}} u_{r} d\mu_{\rho} = \mu_{\rho}(A_{r}) + \int_{A_{\rho} \setminus A_{r}} u_{r} d\mu_{\rho}.$$

The Lemma is proved.

Corollary 7. $\mu_{\rho}(A_r) \leq \mu_{r}(A_r) = cap_{\Sigma}(A_r)$.

Theorem 1. For the point
$$O \in \partial D$$
 to be regular, it is necessary and sufficient that
$$\sum_{k=0}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0}(1))} = \infty. \tag{10}$$

Proof. Necessity. Let the condition (10) be not fulfilled, i.e.

$$\sum_{k=0}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0}(1))} < \infty . \tag{11}$$

Fix arbitrary $\varepsilon > 0$. Then it follows from (11) that there exists $m = m(\varepsilon)$ such that

$$\sum_{k=m}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0,k}(1))} < \varepsilon. \tag{12}$$

We have

$$u_{2^{-m}}(0) = \int_{A_{2^{-m}}} g(x,0) d\mu_{2^{-m}}(x),$$

where $\mu_{2^{-m}}$ is the capacitary distribution of $A_{2^{-m}}$. Further

$$\int_{A_{2^{-m}}} g(x,0) d\mu_{2^{-m}}(x) = \sum_{k=m_{A_{2^{-k}}}}^{\infty} \int_{A_{2^{-k-1}}} g(x,0) d\mu_{2^{-m}}(x) \le \sum_{k=m}^{\infty} \sup_{x \in A_{2^{-k}} \setminus A_{2^{-k-1}}} g(x,0) \mu_{2^{-m}}(A_{2^{-k}}).$$

Thus

$$u_{2^{-m}}(0) \le \sum_{k=m}^{\infty} \sup_{X \in A_{2^{-k}} \setminus A_{2^{-k-1}}} g(x,0) cap_{\Sigma}(A_{2^{-k}}). \tag{13}$$

By the Harnack's type inequality and Lemma 15 we get
$$u_{2^{-m}}(0) \leq c_{16} \sum_{k=m}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0}(1))} < c_{16} \cdot \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, then $\lim_{m \to \infty} u_{2^{-m}}(0) = 0$. By the Lemma 24 the point 0 is irregular.

Sufficiency. Let 0 be an irregular point. We have

$$u_{2^{-m}}(0) \ge \sum_{k=m}^{\infty} \inf_{x \in A_{2^{-k-1}}} g(x,0) \left[\mu_{2^{-m}}(A_{2^{-k}}) - \mu_{2^{-m}}(A_{2^{-k-1}}) \right]. \tag{14}$$

Further

$$\inf_{x \in A_{2^{-k}} \setminus A_{2^{-k-1}}} g(x,0) \ge c_{17} \frac{1}{cap_{\Sigma} \left(\mathcal{E}_{2^{-k}}^{0}(1)\right)}.$$

Using this in (14), we get

$$u_{2^{-m}}(0) \ge c_{17} \sum_{k=m}^{\infty} \frac{1}{cap_{\Sigma} \left(\mathcal{E}_{2^{-k}}^{0}(1)\right)} \left[\mu_{2^{-m}} \left(A_{2^{-k}}\right) - \mu_{2^{-m}} \left(A_{2^{-k-1}}\right) \right]. \tag{15}$$

By Lemma 16 we get

$$u_{2^{-m}}(0) \ge c_{18} \sum_{k=m}^{\infty} 2^{k(n-2)} \prod_{i=1}^{n} 2^{k\alpha_{i}/2} \left[\mu_{2^{-m}} \left(A_{2^{-k}} \right) - \mu_{2^{-m}} \left(A_{2^{-k-1}} \right) \right]. \tag{16}$$

Now apply Abel's summation formula

$$u_{2^{-m}}(0) \ge c_{19} \sum_{k=m+2}^{\infty} \frac{\mu_{2^{-m}}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0}(1))}.$$
 (17)

By Lemma 25 and the Harnack's type inequality

$$u_{2^{-m}}(0) \ge \frac{c_{19}}{2} \sum_{k=m+2}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{Z}_{2^{-k}}^{0}(1))}.$$

Since $u_{2^{-m}}(0) \to 0$ for $m \to \infty$, then

$$\lim_{m\to\infty}\sum_{k=m+2}^{\infty}\frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{0^{-k}}^{0}(1))}=0,$$

i.e. $\sum_{k=0}^{\infty} \frac{cap_{\Sigma}(A_{2^{-k}})}{cap_{\Sigma}(\mathcal{E}_{2^{-k}}^{0}(1))} < \infty$ and the Theorem is proved.

Corollary 8. For the regularity of the point $0 \in \partial D$ it is necessary and sufficient that

$$\sum_{k=0}^{\infty} 2^{k(n-2+|\alpha|/2)} cap(A_{2^{-k}}) = \infty,$$

where $|\alpha| = \alpha_1 + \cdots + \alpha_n$

Let
$$\chi(\tau) = \frac{Cap(A_{\tau})}{Cap(\mathcal{E}_{\tau}^{0}(1))}, \tau \in (0,d), d = diamD$$
.

Corollary 9. For the regularity of the point $0 \in \partial D$, it is necessary and sufficient that

$$\int_{0}^{d} \frac{\chi(\tau)}{\tau} d\tau = \infty.$$

The author expresses his deep gratitude to his scientific leader Prof. I.T.Mamedov for the statement of the problem and useful discussion of results.

References

[1]. Wiener N. The Dirichlet problem. J. Math.and phys., 1924, v.3, p. 127-146.

- [2]. Олейник О.А. О задаче Дирихле для уравнений эллиптического типа. Мат.сб., 1949, т. 24(66), с. 3-14
- [3]. Tautz G. Zur Theorie der ersten Randwertaufgabe. Math. Nachr., 1949, №2, p. 279-303.
- [4]. Литтман В., Стампаккья Г., Вайнбергер Х.Ф. Регулярные точки для эллиптических уравнений с разрывными коэффициентами. Сб. перев. «Математика», 1966, т. 9, №2, с. 72-97.
- [5]. Fabes E., Jerison D., Kenig C. The Wiener test for degenerate elliptic equations. Ann.Inst. Fourier, Grenoble, 1982, v.32, №3, p. 151-182.
- [6]. Джалилов К.А. Задача Дирихле для неравномерно вырождающихся эллиптических уравнений в дивергентной форме. Доклады АН Азсрб.ССР, 1987, №5, с. 8-11.
- [7]. Herve R.M. Recherches Axiomatiques sur la theorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier, 1962, №12, p. 415-571.
- [8]. Крылов Н.В. О первой краевой задаче для эллиптических уравнений. Дифференц.урав., 1967, т.3, №2, с. 315-325.
- [9]. Новрузов А.А. О регулярности граничных точек для эллиптического уравнения с непрерывными коэффициентами. Вестник Моск. Ун-та, сер.матем. и мех., 1971, №6, с. 18-25.
- [10]. Мамедов И.Т. О поведении вблизи границы решений вырождающихся эллиптических уравнений второго порядка. Мат.заметки, 1981, т.30, №3, с. 343-352.
- [11]. Мамедов И.Т. О внутренней гладкости решений эллиптических уранвений 2-го порядка с неравномерным степенным вырождением. Труды ИММ АН Азерб., 1995, т.III (XI), с. 8-22.
- [12]. Guseynov S.T. On solvability of Dirichlet's problem for nonuniformly degenerating divergent elliptic equations of second order. Transact.of Acad.Sci.Azerb., 1998, v.XVIII, №3-4, p. 41-47.
- [13]. Mamedov I.T., Guseynov S.T. Interior a priori estimate of the Hölder's norm for the solutions of non-uniformly degenerate second order elliptic equations. Transact of Acad Sci. Azerb., 1999, v. XIX, № 1-2, p. 108-121.
- [14]. Гусейнов С.Т. Неравенство типа Харнака для решений неравномерно вырождающихся эллиптических уравнений 2-го порядка. Докл. АН Азерб., 1999, т. LV, №3-4, с. 3-10.

Guseynov S.T.

Institute of Mathematics and Mechanics of AS Azerbaijan, 9, F.Agayev str., 370141, Baku, Azerbaijan. Tel.: 39-39-24.

Received October 28, 1999; Revised December 24, 1999. Translated by Aliyeva E.T.