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ON THE THEORY OF NORMAL EXPANSIONS OF ﬁIFFERENTIAL
OPERATORS OF THE FIRST ORDER. '

Abstract

The connection between property of formal normality of minimal operator
generated by differential expression of the first order in Hilbert space of vector-functions
on the finite interval, and variable operator itself, are investigated. And also all normal
expressions of minimal operator in terms of boundary conditions for admissible
coefficients describe.

The abstract theory of normal expansions of given non-bounded formally normal
operator in Hilbert space was investigated and developed in papers of Coddington E.A.
{more detailed in paper [1]). However, this theory was not applied for the theory of
differential operators in Hilbert space of functions (see {2]).

We can remind, that linear ¢lose dense definite operator 7 in Hilbert space H is
calied formally normal, if D(T')c D(T') and [T, = "T‘x"H for any x e D(T'). Formally
normal operators is called maximal, if it docsn’t contains formally normal expansions.
Formally normal operator, which satisfies condition D(T’ )=D(T'$ (see [1]), is called
normal operator 7 .

Further, by H we denote separable Hilbert space and L,(H, (0,1) is Hilbert space

of vector-functions (/A -valued) on finite interval. Note that all we have met integrals we
understand in Lebesgue sense.
Now consider differential-operator expression of the first order of the form
H)=u(t)+ At (r), O<t=1,
where A(r) are linear close operators in A for each t e [0,1], for which;
1 DAE)NN D(A‘(t)): D doesn’t depend on t & [0,1] and is dense in H ;

2) for some real number a it is clear, that 4,(r)>aF, where 4,(t)= %[A(t)-t— A*(r)], E

is identical operator in H ;

3) vector-functions A{f)f and A*(f)f forany feD are strongly continuous on [0.1] in
H;

4) vector-function Ap(¢)f forany feD is strongly continuously differentiable in # on

[0,1].

Formally adjoint differentiable expression I(-) in space L,{H,(0,1})) have the

form:
F(v)=—v"{)+ 4" ((e).
Denote by L(,(Lf,) minimal and by L(L‘) maximal operators, generated by

expression I(-) (i.e. by adjoint expression 1*{-}) in L,(H#,{0,])) (sec [3]). As a result the
following conclusions are valid

Lycl, L.
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In present paper the connection between property of formally normality of minimal
operator I, and operator coefficients A(f) of differential expression /() investigates, and

also describes all normal expressions of minimal operator in terms of boundary conditions
for admissible coefficients.
1. The following lemmas could be easily proved.

Lemma 1.1. Zet a(t)eC{0,1]. If for each function ¢{t) from w(0,1) following
condition holds:

;.;a(t)(pz ()t =0,

then a(t)=0, 0<r<l.

By the help of this lemma, the following theorem could be proven.
Theorem 1.2. For minimal operator L, to be formally normal in LZ(H ,(0,1)) it

is necessary and sufficient the validity of condition
A (4()- 4[4 () =24,() , 0<t<l. (.
From last theorem follows the .
Corollary 1.3, Let A(¢) is normal in H for each rel0,1]). Then for L, to be

formally normal it is necessary and sufficiently the validity of condition
A(t)=const, 0<t<l.

Corollary 1.4. If A4,(t)=0, 0<t<1, then condition (1.1) holds automatically
and minimal operator is antisymmetrical (i.e. formally normal).

2. In this item we will describe all normal expansions of minimal opcrator L, .

Theorem 2.1. Each normal expansion L of minimal operator I, in space
L,(H,(0,1)) generates by differential expression 1(u)=1'(f)+ A{)ult) and by boundary
condition '

u(l)=wu(0), 2.1)
where W is unitary operator in H and W(4,{0)-y)" =(AR(1)~—7)—1W, Y <a is some
member. Unitary operator W uniguely define expansr"an Liel =L(W).

Vice versa, constriction of maximal operator L onto the set of vector-functions
u(r)c:D(L), satisfying to condition (2.1) with some unitary operator W with property
W(A(0)-»)" = (4, () - )W, is a normal expansion of minimal operator in space
L@, 0.).

Proof. If I is normal expansion of operator L, then operator L, = (f - )/ (21)
is self- adjoint expansion of closed symmetrical minimal operator Ij, generated by
formally symmetric differential expression /7 (u)=~iu’+ 4, (tk . In this case it could be
proven, that triple (#,7,,7,):

#=H, 7)=BO)-sOUVZ, 7,6)=RO)+u0)){3)
is a space of boundary values of minimal operator I, (see [2], [4]). Then in H there exist
unique unitary operator in W such, that

@ - By lu)+i + Ely,)=0, u(t)< D(E, )

holds, here E is identical operator in H . The last statement is equivalent to the condition
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ull)=wu(0). (2.2)
From the other side from second condition of formally normality it follows, that
(), A 1) - G0), A, OWO)), =0, ()< DE). @3

From condition (2.3), taking account of (2.2), we have
40770, =}el0)- 7YY, 7 <a.
From last it follows that there exists unitary operator ¥ in H such that
u(t)= (A, ()~ 7Y 2V (4:0)- 7 2u(0), ult)e DIE). 2.4)

From all said-above, it became clear that self-adjoint expansion Z, is determined
with two boundary conditions (2.2) and (2.4). So as each sclf-adjoint cxpansion is
determined only by one unitary operator W (see [4]), then W =W, , ic.

V= (4O} W (4 (0)-7)".

Further, from relation ¥V" = E , we found

W =(A40)-7)" = (4 () -»)'W .

Vice versa. Suppose now that W is unitary operator in H with property W =
=(A4(0)- )" =(4,(1)~ 7)"'W . Denote by L(W¥) the constriction of maximal operator
L onto the set of vector-functions, satisfying to condition (2.1). It is clear, that L, <
cLW)cl.

Adjoint expansion L (W) generates by formally adjoint differential expression
I*(v)=—v'(t)+ A" (t}«(¢) and by boundary condition ¥(0)=#"v{1) in space L,(H,(0,1)).

Further, without any difficulties the normality of expansion L(#) could be
proven,
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