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KHANMAMEDOV A.Kh.

THE EXISTENCE OF THE ATTRACTOR FOR THE SEMI-LINEAR WAVE
EQUATION WITH LOCALIZED DAMPING.

Abstract

In the paper the mixed problem with Diriclet homogeneous condition for the semi
linear wave equation with local dissipation is considered. Using Massat theorem the
existence of the minimal global attractor of the considered problem is proved.

The global behavior of solutions for a semi-linear wave equation in bounded
domains was studied in paper [1], [2], {3] and etc. In these papers, the coefficient of the
damping term of the equation had no degeneration. Exponential decrease of energy for
wave equation with localized damping, where the coefficient of the damping term has no
degencration on a neighbourhood of the boundary of the domain, was studied in [4].

In the given paper, the behavior of solutions the semilinear wave equation with
localized damping, where conditions on the degeneration domain are not imposed, are
studied in one-dimensional case.

Consider the following mixed problent:

vy ta(x)v, ~ v, + f(v) = glx), (r,x) «(0;+00) x (0;1)
v(£,0) = v(1,]) = 0, 1 e(05+0) (D
v(0,x) =vo(x), v.(0,x)=v(x), xe(0))

where o) eC[0l], a{x)20, a()}#0, f()eC*(R),

tim 76

e $ 20, g()eL,(0,1), vy{x) and v,(x) - are given functions.

v

a
By means of the transformation 8= [ J ‘the problem (1) on the space W 3(0,1) x 1,(0,1)

Vi

is reduced to the following problem
g'()= A60()+ F(6(1))+ G, te (0,+oo)}

9(0) =6, ' @

where

gx*

4= 2 oy =6 ) eme),

0

P00~y 10 s - )

According to the results of [5] the problem (2) under the given conditions has a unique
a
solution  6(") eC([0,+oo); w,{0,1) x LI(O,I)}, that satisfies the following integral

equation:
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&(1) = exp(14)6, +j:exp((:-s)A)(F(a(s))+G)ds. 3)

Therefore, the problem (1) generates a strongly continuous nonlinear semi-group
V(1) =U(#) + W(r), where

() = exp(td), ()0, = j;exp((r - )Y F{o(s)) + Gs.

Theorem 1. There exit M >0 and £>0, such that
‘Mt)nh[u‘:,'(o,l)x[,,(o_l)] SM-e™, t20. @)

Proof. By definition ["(’ ) J ~U(1)e

u, (r)
where u(f) in the solution of the following problem
u, +a(x)u, —u, =0, (f,x)e{0,40)x(0,))
u(t,0)=u(t,1)=0, te(0,+w) %)
u(0,x) =u,(x), #{0.x)=u(x), xe(0])
By multiplying (5) by », and integrating by parts over (0,7) x (0,1) we get:

1
i[i uldx + j‘uidx} + j'j‘ a(x)u} dds < ~1-|;][ uldx +j ugxdr], t20. (6)
2{% 0 00 205 0

' ol
Denote #{t;) = [u(s;)ds +@(x), where ¢ eW;(01)nW2(0]) and @, =u, +aou,. Then
0
by integrating (5); by t we get:
i, +oil, ~#, =0, (t,x)e(0,+0)x(9,)
#(t,0)=i(t,) =0, re(0,+)
#(0,x)=@(x), #{0,x)=u,(x), xe(0l)

Hence it follows that the estimate similar to {6) is valid for % :

t1 1 1 :
“m-;tza&dfs%[j‘ugdxﬂ‘mfdx], rz0. M
00 il a
Thus from (6) and (7) we get:
1
jjwzdxds+jjaufdrdsSc-[iufdx+ju§xdr], t20, (3)
00 00 i i]

Since the continuous function a(x)is non-negative on [0,1] and a(x)+ 0, then exists
{a,b] < [0,1] such that e(x) 28> 0 for Vx €[a,b]. Then from (8) for V¢ =0 we get:

i?(ﬂz +uf)cﬁcd§'5-§-_:€(uf +u§x]d,r_ )

Let W()eCila,b] and ¥(x)=1 for Vx efa,,4,1ca,b]. By multiplying both sides of
(3)1 by ¥+ u and integrating by parts over (0,r)x{(a,), considering (9) we get:
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jj‘?-uidxdssq .lf(uf +u§x)a5:, t20
a 0
consequently 0

j? 2dxds <C, j(u1 +ul i, t20. (10)

0a
Let p()eCi01], p(x)=x for Vxe[0,a] and p(x)=x-1 for Vxe[b,l]. By
multiplying (5), by p(x)-u, and integrating by parts over (0,¢)x(0,1) considering (6) and

(10) we get:
el 1
”(uf+u ) j(u(,x-rul)dx £20.
[V L]

It follows from the latter that

I Ju)es || ar<C, o

WAOINLL(0) mOApL4(01)

Hence according to [6] we get (4).
By virtue of reversibility of the operator A from theorem 1 we get the following
Corollary: There exists a constant >0, such that

"U(t ” {W;‘(o 1)nw‘ ol ngl(Dl)] <M e, 120. (1)

. 0
Theorem2. For any bounded set B W,(0,1)x L,(0,1) the subset UW(r)B is
. 0

precompact in P%’;(O,I) x L,(0,1).
Proof. Lt 6, = B. Then

W(1)6, = iexp((t — ) ANE((5)6) + G)ds =

= jexp((r - s)A)F(V ()8, Jds + A7 (exp(t4)G - G). Y
Since for V20, '
USLEY I TRE TS C(l|9o I }xL,(U,l))’
then from (4), (11) and (12) we get
aritson i S (Ol anyeon) (13)

The last inequality proves theorem 2.
Now prove the pointwise damping of the semi-group ¥(r).

0
Theorem 3. On the space le((},l) X LZ(O,I) thére exists a bourdied set 7 such
0
that for any @ e W 4(0,1) x L,(0,1)

V(o in WD) x L,(0).
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Proof. By applying the results of paper [1], from theorems 1 and 2 we obtain that
: :
each point 8, € W ,(0,1]) x (0,1} has a compact @ - limit set

o{8) =7 ()8, < WHO1) x L,(0,),

t= gt

which is invariant with respect to the semi-group ¥(r). It follows from the invariance of

a(6,) that for Vo =[¢;] ew(d,) there exist {r,}", 1, - +oo and
.
P, = [40 :) € w(@o) such that
V(t)o, =0 (14)
By passing to the limit on the space P‘;’ 3(0.1) x L, (0.1}, considering (4) we get
¢ =lmw(,),. (15)

Denote [o{6,)] = wg(;ﬂ:ﬂ )"gv" - By (15) according to (13) we have:

Ikollwg(o,l)nl;'z(ﬂ,ljxl?’i(ﬂ,‘l} < 61 (“‘" (GU)II;%;(oJ)xL,(OJ)) ’
Since ¢ is an arbitrary element from w(6, ), if follows the last inequality that

”0)(80)";&;’{o,l}nli?’;{o,l]n.;;{o.l} < 5’(”w(go)”p?ﬂ,(o,l)x[,(o.l)) ) (16)
Afier substituting variables under the integral in the equation (3), for the vector function
["" (’)] V(1)p, we get
= , we get.
""nt(lf )

)ttty

Since @, € a)(Oo) and f eC? (R) then by (16) the right hand side of the last equation has a
derivative on ¢t . By differentiating it we get:
0 onopeol ool )
=exp{d) Ap, + + | exp{sd ds
)= )[ 70+ &) [ L o=
By virtue of (14) v,,(r,,)= ' and v,,,(t,,)-—— @°. Then taking into account that v, ()
satisfies the equation (1), we have:
Varlta)}=0* = ol ~ap® - f(¢') +g
and we obtain:

(;] - exp(f,,A)[A ?,+ (j“(‘?’l) . g]]+ ;Eexp(sA)[f' o (rf_ ot~ SJ i,

Here we pass to the limit in #,(0,1)x L,(0,1) for » — w0 by considering (4). Then




The existence of the attractor | 93

fos g e ()

<&, lo(a)

W,‘(o,l)ni:r;{o,l)x;:",(o.l)

Since by (16)

[f {vn(fno— )P ultn - s)}

then from (17) it follows that
“Qz‘wzz(o,umg",(o,l) < a(“a’(‘go)“;%;(o,l)xb,(o.l)) ’
1

e

“q’nwg(ql)xwf(o,l) S 64(||w(90)||r°v;(o,l)xl,z(o,l))

||w(9°}1|w2’(0,1)xwf(0.1) s 64 (“a)(ﬁo) }%‘S(O,I)xb)(o,l)] ' (18)
Prove that there exist ¢ > 0 such that for V8, eﬁf;(o,l) x L,(0,1)
Ilw(t?)"pg",{o,l}xx,,(o,l) <e. (19)

By definition of the set @(8,), for any @ ew(f,)there exists {t,1 }:;1, t, - +o, such

that
[v(E:))] =V(t,)8, ——=—>¢ strongly in P(;’;(O,l)xL:(O,I). (20)
vt n

On the other hand, from the problem (1) we get that the Lyapunov function
1 i 1 1
Ly ()8,) =5 ] vids % [vide + [ @(v)ax+ | gvax
Q 0 a 0

»‘s’f;(osmo.l)]’ |

Thus, for = [

ie.

doesn’t increase (here @(s)= | f{¢}dr). And therefore there exists a finite limit
0

tim L(V(1)8,)=a.

L—ptor

Hence, by virtue of (20) it follow‘s that for Vo e{6,)
1! 1! 1 Lot
L((p) = Ef(@i)zdx + EJ (qu)ldx + Id)(qol)dx + I go'dx=a.
[} a (4] 4]
In other words, the function L:Ig’;(o,l) x L,(0,]) > R onthe set @(8,) is constant. Then it

V(1)

remains constant, and on the trajectory (i" (t)) =V(e (q; ca(8, )) , ie.

J |
EL(V(:);») =0, V120, Veeo(d).

By virtue of the properties of the semigroup ¥(r), it follows from the latter that ¥(r,)
satisfies the following problem:
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V, -V, +f(?3') =g, (t.x) E(O,+oo) X (0,1)
¥, =0, (t,%) €(0,+0) x (0.0)
$(1,0) = ¥(r,) =0, t &(0,+0) el
V(rx)=9', v,(0,x)=9 xe(0]})
Therefore, by denoting w =7, and @° =g, — f (tp‘) +g we get
Wy ~We + f(Fw=0, (r.x) €(0,+00) x(0,1)
w=0, (2.x) €(0,+o0) x (a;,4,)
w(t.0) = w(t.1) = 0 ¢ €(0;+%0) @2
w(0,x) = @7, w,{0,x)=¢? x €(0,))

v(r)
50 ew(6;,), then from (18), (21), and (22) we get:
w{) ec,,([o,m); Wf(o,i)mg”z(o,l)), w, €C,([0,4); L,(0,1))
and w, €C,{]0,+0); L,{0,1)).

Multiply (22); by x"w,(n>1) and integrate by parts over (0,£)x(0,6). By using the
Holder and Hardy inequality we get

n‘? 1 zdrd n:? n-1 Zd,“is 5 th n1...2
-é—{ﬂx W, s+—2—£ﬂx W, - 5(nm(eo)";ﬂ,(o,l)xg(o.n)XHx w dxds <

S 00 M

Choose 7 so that 1> 4C, ("m(é},)
Then we have

b
2 [ xmasdes 2 w2 < oy
4 o0 2 04

Since for V=0 [

), Yiz0

1;&3’(0,1)xwf(0,1)]‘

o) @

To complete the proof of theorem 3 we need the following lemma, whose validity is simply
verified.

3

Lemma. If' () e L{0,+0)(NC" [0+oo) and y'() € L,(0,40) then lim w#)=0.
featon
By applying the lemma to (23) we get
b Y
Lim [e*'widc =0, lim [x"'wldx=0. (24)
40 tpreny .
Since
w() eC, ([0,+oo); W (0,1)) and w,(-) €C, ([0,-;—00);12(0,1)), then we get from (24) that
W(f)—575—>0 weakly in #7(0,8,) and w, () —r=—0 weakly in L,(0,5,), therefore

Vi{f}—55> 0 strongly in 1,(0,8,), and ¥, (f)—~=—0 weaklyin 1,(0,5,).
Similarly we obtain that
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Py{t) >0 strongly in L, (5,,1) and ¥, (£)—55>0 weakly in L, (6,,1).
Thus
(r) ——;—>0 strongly in. I?(O,l), (25)
¥ () ——0 weakly in  L,(0,1). 26)
By multiplying (21) by ¥{t,x) and integrating by parts over (0,1) get:

1 .
fozas < {tvlell o)+ Felron Phigon-

By passing to the limit, by con51der1ng (26) we have

, :
T | Tim [ 92 < {1+l o) @7
On the other hand, as we have already stated

_.I-(Q’x)z‘bc‘*‘_j(ﬁg )zdr+_l[¢(¢?])2dx+jg¢ldx=

=——j"2dx+-—j'i?2dx+jfb(v jgvdx

By virtue of (25) and 2n from the last equahty it follows (19) and the set
W = Um(Bﬂ) satisfies theorem 3.

B, Y0 )xL(01)
As it is shown in [1] existence of the minimal global attractor follows from
theorems 1-3.
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