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MAMEDOYV L.T.

BOUNDARY PROPERTIES OF SOLUTIONS OF THE SECOND ORDER
PARABOLIC EQUATIONS IN NON -CYLINDRICAL DOMAINS

Abstract

In present paper the first boundary value problem for parabolic equations of the
second order in non-divergence form with continuous coefficients is considered. It has
shown, that if coefficients satisfy the uniform Dini condition by space variables, then
boundary point will be regular with respect to first boundary value problem if and only if
this boundary point is regular for the heat equation.

Introduction. Denote by R ,, the (#+1) - dimensional Euclidean space of points

-+

(x,5) = (x;,...,x,.t) and let D be bounded domain in R,,, T{D) is its parabolic
boundary (see [1]), (0,0) eF(D). Consider in D the first boundary value problem

Lu = i%(x”)‘x,.x, ~-u,=0, (x,f)eD, )

rioy =S  Je o(r()). @)

with supposition, that "ai,-(x,r)" is real symmetric matrix, moreover for (x,t) € D and any

u

n - dimensional vector & the following condition holds

alg < .iay(x,r)éfj < a"‘flz, a e(O,l]. . 3)

i,i=1
Further everywhere we will suppose, that generalized solution % ,(x,r) of the problem (1)

- (2) in sense of Wiener - Landis exists [2]. For this, for example, it is sufficient for
coefficients of operator L to satisfy the uniform Dini condition in each strictly inner
subdomain of domain D.

Boundary point (0,0) is called regular with respect to the first boundary value
problem for equation (1), if for any continuous on I'(D) fimction f

%x,x?_l;?a_o] iy (x s t) = f (0,0) .

xtiel

The regularity criterion of boundary point in terms of divergence of series of heat
potentials for multidimensional heat equation for the first time was obtained by
E.M Landis [2]. In our opinion, the criterion of Landis is a full analogue of one of the form
of corrcsponding Wicner’s criterion for Laplace’s equation. Nevertheless, the problem of
obtaining the equivalent criterion in terms of heat capacities was of the most interest.
During the long time period the attempts to obtain such criterion were failed,
although very effective from the standpoint of their verification separately necessary and
sufficient conditions of regularity in capacitary terms were obtained [3-8]. Finally,
L.C.Evans and R F.Gariepy in [9] obtained above-mentioned criterion for heat equation,
which can be considered as full analogue of classical form of criterion. In {10-12] the
criterion of Landis was extended for the class of parabolic equations in non-divergence
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form with variable coefficients. The main result of these papers is the following: if
coefficients of operator L satisfy the uniform Dini condition by aggregate of vartables,
then regularity conditions of the boundary point for equation (1) and the heat equation
coincides. At present paper it has shown, that for very wide class of domains the above -
mentioned fact is valid for weakening of Dini condition by time variable for condltlon of
uniform continuity.

For the other researches concerning the problem of regularity of boundary point
for parabolic equation of the second order we can mark papers {13-15].

1°. Denotations, definitions and auxiliary facts,

For n-dimensional vector x°, scalars R>0, ¢' and ¢ (t’ <r1) by C’B‘R
will denote cylinder {(x,r)-.[x -x%<R, << rz} . Under parabolic & -neighborhood of

the point (xo,t[’), ie O (x”,r"), we will understand cylinder C'B j;’ We will suppose
for coefficients of operator L that following conditions hold

a;(x.1) e C‘[m s fag(x.t)-ay (y,r)[ < @ﬂx -yj)szgi)dz <0, )

where 7,7 =1,....n; (x,{)€DN04(0,0), (3,1)eI(D)N0;(0,0); ¢(z) is non-negative
non-decreasing function on (0,2\/3 ) , and
a,( ’t)=5’"':{(l}: :; :;; for ( 7)€ (D)nog(o,o). &)

If there exists §>0 such, that for all 7 e(-38,0), (v,7) eI'(D) the segment
{z.y z=y, —r<r<0} docsn’t intersect D, then we will say that D is R-domain in
the neighborhood of the point (0,0).

The simplest example of R-domain is figure of rotation
{(x, f). |x12 <af-t),-8<r< O} , where a(z) is increasing continuous on [0, 8] function,

Further everywhere, we will suppose that D is R -domain in the neighborhood of
the point (0,0). Function #{x,#} e C*'(D) is called L - subparabolic ( Z ~ superparabolic)
in D, if Lu(x,£)2 0 (Lu(x,r)<0) for (x,f) e D.

Let

G(x,6)= & exp[@;], yr=o
0 , I 10,
We will usc fact, which was proved in [16].
Lemma 1, Let conditions (3)-(5) hold with respect to coefficients of operator L.
Then there exist functions ®*(x,y;1,r) . such that if

(x,r) EDDOa(0,0), (y,r) EF(D)DOS(O,O), §<l, t>r, then
L(M)CI)* =0
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G-, #f pe—yft > 2+ 1)t 7)in——
F-t £¢)*'£C3G(x—y, t~r);

GGk, 1=5), if [e-3f <2+ 1)(e-r)in——
and
L(x.r)(b- <

C,(r—r)m, if |J|:—y|2>2(;'.!-%1)(1‘—*r)ln:lt_wr

C,,G(x-y, t—r), if |Jc—y|2 SZ(n+l)(t—r)1n.twr

For this, positive constants C,, i=1,...,6 depend only on coefficients of operator L, »
and domain D>,

Everywhere further the record C(...) means, that positive constant C depends
only on contents of brackets. Introduce following sequence of positive numbers:

C‘dG(x—y,t—r)s O <

- T
r, =e 2, Topsi = "'l for m>1.
In—
rm
Lemma 2. The sequence {rm} is uniformly decreasing, moreover limr,, =0.

-y

Proof. At first, we will show that sequence {r,} is decreasing one. We have

fl=l<l. Let for m=#k ~2:<1. We will prove that this inequality is true for

T, 2 T,

m=k+1. From supposition -—*1<1 follows that t, <e”'. Therefore
T
T, = —%_<e¢ . Thus, LI TR <1, and decreasing of {r,, }is proved. On the
1 T 1
In— 1 In
Ty Ten
other hand
. T Tm—‘l rm—l rm—l
Pt =7 1 T M
#1ln— In ‘In— In
T T L™ rm—l
-2
SUNSHL~ SN JL7S S By
n L
m w2
T2 Tl T2 3

and lemma is proved.
Let for natural m

4, = {(x,t): ()" <G{(-x,1) s(rml)‘"”}, H, = A,\D,
H) = {(x,t): — Ty S S O}HHm, H) = {(x,t): t< ~rm2}ﬂHm.
It is easy to see, that
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= . —_ _T_m+_1 2 — £k zﬂ _ ;
A, {(x,r). Zn( r)ln > <" < 2n( t)n_r, r,,,Stso}
Let E< R,,, is compact, (x“,ro) € R,,,. We will call measure u with support on £

admissible, if U} (x,1)= IG(x - y,t = 7)du(y,7)<1 for (x,r) 2 E . The number
E

U (x°,r°) =supl,; (xo,ro), where exact upper boundary we will take by all admissible
measures, is called the heat potential of compact E with respect to the point (x°,r°) . The

mumber p(E) = sup u(E), where again exact upper boundary is taken by all admissible
measures, is called the heat capacity of the compact £ .
We denote for m=12,... by U ,?,(0,0) the potential of compact H., with respect
to the point (0,0).
Lemma 3. For any domain D
S (0,0) < . (6)
=l

Proof. For simplicity we restnict ourselves by case n>3. Let 4 be admissible
measure such, that
o 1 -
U=(0,0)= 3 U.(0,0).
Then

U2(0.0)<2U7*(0.0) =2 [G(- y~r (3, 5) < A7) ™ ().
Hy,

But from the other side y(H f,) < p(H 3,) , therefore

—nt
U2(0,0) <2(z,, ) " p(Hf,). )
We have for sufficiently big m  H° < C~"20 ____ Really, so as function zln- 2 is

v e o, ’me, ]n-;t‘L Y -4

mtl

increasing one for z E[O,Iﬂ-) and 7, <Tppy = Tml <Im for sufficiently big m (by
e 24
. n——
T

virtue of lemma 2), then above-mentioned inclusion is the corollary of definition of H®.
Taking into account that for sufficiently big m

2nt,, . In n_ > 2nr,.,In T - 2nT,,., lnln-l— 2T,
w2 Tl m
. o —anmzln:" 0 . R0 "
we obtain H,, < C =1 _. But according to {1] p(C oR ):C?(n)R .
. 0, 1217 gy In—2

Taerz

Therefore from (7) we conclude, that

iuj,’,(o,o) <G (n)i[-’;ﬂ m’—mj _ (8)

1 T2
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1 Ty

, T 1
From the other side, so as —2-=In— <In——<« , We have
T rm rnﬁ] tm+2
T T T T
In—%-=In—2L 4 ln— < 2ln—mtL
rm—l T2 rml Tz

Using last estimation in (8), we obtain

ni niz
S UL(00)<C, (n)z[’ﬂlnMJ -Gy z(ﬁln-fr—J .
=1 m=1% Ty Toera m=2\ T Tl
Now it is enough to take into account, that
T 1 1 |
—ml < < ,
T, lni ln(g:;2 2”"‘1) (m— 1) In2
T

and then
@ © ni2
S 209G T2 <
m=1 m=2

Lemma is proved.

2°. Theorem on increasing of positive solutions,

Let for m=12,..., UL(0,0) is potential of compact H,, with respect to the point

0,0), €, is cylinder C"™° S  is lateral surface C,,, I, is that part of I'(D), which is
m Y O,ﬁ: m L. "

strictly interior with respectto C,,.

Theorem 1, Let in domain D the coefficients of operator L, which satisfy the
conditions (3)-(3), are defined, and let u(x,t) be positive solution of equation (1) in D,
which is continuous in D and vanishes on T,. Then there exists positive constant 3

which depends only on coefficients of operator L and on domain D such, that if m is
sufficiently big and M, = sup u, then

pnc,
M, 2 (1+ 79U, (00)M, . ©)
Proof. We will suppose that U,,(0,0) > 0, otherwise inequality (9) is obvious, We
will fix arbitrary ¢ € (O, Ul (0,0)) and let measure g, on ), be such that
Vm(x,t) = jG(x -y, t- r}ipm(y,z’) <1 for (x,t) gH, (10
HL '
V,(0,0)> U, (00)-¢. (11)

Consider in G, , an auxiliary function W,,(x,r) =El— Jo (x5 t,7)du,(v.7), where
3 H; .

function @* and constant C, correspond to lemma 1, Now we will estimate sup#, .
5,

With this aim we’ll fix point (y,7) €H,, and x is such, that |x|= JTor - According 1o
lemma 1
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sapW, <supV,,. (12)
S

&

ml

Now we will find that value of ¢ > 7, for which function W¢)= G(x -y, ~7) reaches its

. r
o o ' v
maximum. Equating v, to zero, we obtam (-7 =| 2})‘ . But for
1]

(x.0)e8,., t-r<7,, < gﬁrm . Therefore
e .

2n T, | _ _jen 1
‘x_ylz'\‘rm—-l(]_ ?rm—l =Tt} 1 fe - |
Ton-1

Thus for sufficiently big m

2
.l_{:i > _1.:.’!.'__!_ >r..
2n 4n "
From increasing of v(r) up to the fist maximum and (13) we obtain

1

In—=- |

oot (o] )= e -

-1 81'.”1

(13)

=) " pimlH) < 0,0 {00),
where b, = (rm_l)m. From the last estimation and (12) we conclude, that for sufficiently
big m
sup W, < b,U,(0,0). (14)

Consider now function Z,(¥,f) =M, , [1 -W,(x.)+b,U, (0,0)].
According to (14) Zmlftﬂ}nsﬂ =M, = u| r(B)NS,.,

Moreover for points of F(D) on low foundation of cylinder
C,, ' =G=W,=0, ie there Z, = Mm[1+me,‘,,(0,0)] >u. Finally, for

(x.f)€l,, u(x,)=0, and Z,(x,/)2 M, b,U,(00)>0. Thus everywhere on
[(D)NE,,., Z, =u. According to lemma 1 and maximum principle the last inequality is
valid for (x,t) € DNC,,., (if m is sufficiently big) and, in particular,

: 1
M, < Mﬁ[l - pinf SW,,, +me,,,(0,0)]. 15)
Estimate now Dri]ncf W,.Let (x,1)€C,.,, (v,7) €H,,. Wehave forany o> 0
W5

1x -~ y\z <(i+ cr)lyf +(1 +%}1x|2 <2n(1+ o)(- r)ln% +(1 +~;—)rm3 =i, +i,. (16)
But from the other side
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lnLSZn(l+cr)(t—r)(l+ T3 Jln r_
-T Twz—fm3 !‘—1’

1
=2n(l+o)(1+d, ) - ;)m:,

-7

i <2n(l+o)i-1)

ke rm+3

T:m-S

where d,, = . Moreover

Tz ™ T

iy S(H-—l—](t-— ?:)AM——S [l-i-gl:)dm(i - r)lnL.

o — T =Tz t—-7
Taking into account these estimations in (16), we obtain

ix_ylz S[2n(l+a)(1+dm)+(l+l)dm](t—r)h1—l~u.

a t—1
Choose now ¢ > 0 such that

2n(1+cr)(l+0'2)+0'(1+0')s 2(n+1).
So as limd,=0, then for sufficiently big m d,<oc’.  Thus

. ]x—y|1 52(n+l)(t-z')ln-~—1-~, if m is sufficiently big. Therefore from lemma 1 and

t—r
inequality {15) we conclude that
Mo <M 1-C2 inf Vb U,,(0,0) an
3 = m-1 C3'Dncm3 [ om0 .

Now we will fix (y,r)eﬁ,i, and estimate -inf G[x—y,r—r). We have for

(xr) €G3
(x, r) €C,.,

Gx-pa-7)z (-5) "{ %}( 7 """{ %}
’{e’q’[_ Z(%ﬁ]] >(-9)" e"p{' 4(?’ ! r)Ie"p{' 4(‘;y L T)D

Moreover

and further

-d, |1
> mix_,
A exp[ 41 >

if m is sufficiently big. So as f—% <2 (for sufficiently big m), then
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rm
- 20, ln 2 S
j12f:xp|: ]2(:.':(p~'——-——-_—l zexpl - Yf———22 |=
-7 -7 Tpis

Thus from (38) we obtain
G(x -y, t- r) = exp[-ZJ;; ](— r)_g exp|:—

From the other side
% M I | LI |
"""[ 4 f)} [ 4(—r)I WD “"""[ i) ("""[ 25

P i :
= exp|:- 4—l(y_l;-)~ k—f:} = exp|:—~ Z%%:!J .

But for sufficiently big m

].l'l m
T .. T
LIPSO S T I § WS R 7t Sy
J 2 Tz Tz Tapi2 T2 L) la
T

m+2
Therefore from (19) we obtain G(x - y,f - ) 2 exp|{~ 3n])G(- ,-7), and this incquality
with (17) and (11) gives us

M

C
s SM, [1 - -C—jexp[w 3n}V . (0,0) +me,;(0,0)] <

C C.
<M_,|1-Ul(0,0 (J-ex ~3n —bmJ+—iex ~-3nlel
|02 00) Gomt--b. )+ ol |
Taking into account an arbitrarity of £ > 0, we conclude that

M, <M, _ {1 U,.(0, 0)[ exp[ 3n] J] (20)

Now it is enough to note, that limb, =0, i.e. for sufficiently big m &, < E%—exp[— 3n] :
3

ity

Now from (20) follows required estimate (9) with = E%w—exp[— 3n]. Theorem is proved.
3
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3°. Sufficient condition of regularity.

Now we denote for natural m the potential of compact H,, with respect to the
point (0,0) by U,,(0,0).

Theorem 2. Let in the domain D coefficients of operator L, which satisfy the
conditions (3)-(5), are defined. For regularity of point (0,0) with respect to the first
boundary value problem for equation (1) is sufficient that

> UL(00)=c. ' 2D
m=1 .
Proof, From (21) and lemma 3 it follows that
S UL(00)=.
m=1
Therefore, in its turn, it follows, that diverges at least one of the serics Y U,,,,(0,0),
m=1

where [ =0,1,2,3. Suppose for certainty that the above-mentioned series diverges for /=1,
For regularity of point (0,0) it is sufficient to show the following [1]; whatever the
numbers £ >0 and &, >0 are, whatever the subdomain D' of domain D, which

entirely lies in half-space ¢ <0 be, and whatever solution u(x,f)<1 of equation (1) in
D', continuous in D', be there exists & > 0 such that from inequality

I"| r(pino, (o0 <9
follows inequality

”‘D’no,(o,o} <&,

Let m, be the least natural number such, that 7,,, <& and for m2m, theorem 1
takes place. Let further the natural number m” 2 m, be such that there exists point
(x',t')eD'NC, ., in which u(x',t')zs. So as H,= {(x,t):r < -r,,,,,z}ﬂ
(A, \D")> H,,, then T(0,0)2U,(0,0), where T, (0,0) is potential of compact H?,
. with respect to the point (0,0). Therefore, applying successively theorem 1, we obtain

=1 "' -
12 M,, > 1‘[(1+ qum(0,0))Mm. > 1(1+ nUL . (0,0)).32 ,
i=m, i=imy

or
-1 . i
Y m(1+ quw(o,o)) <h—. 22)
f=my 2
Taking into account now the inequalities U,{(0,0)<1 and In(l+m)zCy(n) for
t €[0,1], we obtain from (20)
1

-1 ].
Ul 0,0y ——In—— .
,-;, 4i+1( ) C“ ngz

By virtue of divergence of scries Y U, , the last inequality could be valid only for

i=1
m" <7 . Now it is enough to choose o =7 4{m+1) » @0d theorem is proved.
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4°. Necessary condition of regularity.

Theorem 3. Let in domain D the coefficients of operator L, satisfying the
conditions (3-5), are defined. For regularity of point (0,0) with respect to the first
boundary value problem for equation (1} it is necessary the validity of condition (21 ).

Proof. Suppose that condition (21) doesn’t hold. Denote by m, the least natural
number, for which

U, 0054, (23)
m=iy
where positive number A will be chosen later. Now we choose continuous boundary
function f(x,f) of the first boundary value problem (1)~(2) such, that
f(00)=1, flx,f)=0for r<-z,, 05 f(x,£)<!. Now we will give onc definition,
Let 1° <t' <’ <...<t*, Q, are bounded n- dimensional domains, F- are

cylinders ©, (¢, r“); i=1,.. k. The domain O is called S -domain, if it represents as
ko % L

a set of interior points of union {JF; . For this N(Q)=UJ(a, x[#"*, +']).
i=1 i=1

For arbitrary (n2+ 1) - dimensional domain H by y{H) we denotc aggregate of all
points (x,f)edd, for each of which there exists r=7(x,f) such, that
Ci)*cH, Cii" c R, \H. Let now {s,}be the sequence of positive numbers

monotonely tending to zero for m-> oo, which will be defined later. According to [17] for
each natural m there exist §- domamn @, o H,, with sufficiently smooth boundaries of

foundations of compound its cylinders and measure v, with support in (,, that if
Y, (x.0) JG(x—y, r—r)dvm(y,r), then
Cn

Yl vegurie) =1 Ya(00)<UL(00)+6,. @4)
For this we could state, that

0. a:{(y,*r):Ly[2 < 2n(- r)lni"’-‘—’a; — T, £ < 0} )
.

Consider in D' = D\ | JQ_ function

r=m;
Wx,t)=u,(x,t) _CL i fd)‘(x,y;t,r)dvm(y, 7).
4 m=my O,
According to lemma 1 A(x,t) is L - subparabolic in D’. Moreover, from the choice of
boundary function f (x, t) and from inequality (24) if follows that h|r( »y 0. According
to maximum principle #{x,7}< 0 for (x,r) e D', ie.
x‘%ﬁm] uf(x,r)sci )uf f@7(0,5:0,7)dv,(.7). (25)

x Nel¥ 4 m=my a"




106 Mamedov LT.

But from the other side for (y,¢} €0,
1
Mz < 2n(—— r)lni—’";_‘ < 2(n + l)(—- r)h: ,
therefore by virtue of lemma 1, {23) and (25) we conclude
Ex_rii_’Ta?a'O]uf(x r)< ZY (00)< <_6 Z U0, 0)+_4»§«,€ ‘(*_6 C_G,,,Z:
x, e’
G,

C _
Now wechoose A =—2-, & = 27" om=12,...,
4C,0 T AC

Then

1
lim uf xt £,

e 2

i.e. the point (0,0) is irregular. Theorem is proved.

Corollary. If conditions of theorem hold, then for regularity of point (0,0) with
respect to the first boundary value problem for equation (1) it is necessary and sufficient
regularity of this point for the heat equation Ax = u, . In other words, if for natural m

!m+l!n

=3(x.2) 27 < G(-x,-t)<2 * }\D, then for regularity of the point (0,0) with

respect to the first boundary value problem for equation (1) it is necessary and sofficient
that

2% p(Hy)=co.
m=1
This statement follows from theorems 2-3 and criterion of paper [9].
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