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VARIATIONAL INEQUALITIES FOR A FOURTH ORDER
QUASILINEAR HYPERBOLIC OPERATOR

Abstraét

A variational inequality for a class of fourth order quasilinear hyperbolic
operators is considered in the paper. Theorems on the solvability «in the largey are
proved.

0. Theory of variational inequalities for second order quasilinear hyperbolic
operators developed in papers {1], [2], [3], [4] and etc. Variational inequalities for higher
order quasilinear operators are investigated only for operalors with integral nonlincarity
{51

In this paper we consider a variational inequality for a class of fourth order
quasilinear hyperbolic operators. The theorem on the solvability «in the large» is proved.
These operators are characterized by the fact that a mixed problem for the corresponding
linearized operator is correct by Petrovsky.

1. Statement of the problem and main result. Let xcQ,fe (O,T) where

Q< R" and have a sufficient smooth boundary T =8Q, 7 > 0.
Introduce denotations

(u,er) = ﬁ[u(t,x)v(t,x)a’x, ””(ill;}(n) = (u,u)(t) .
=0, izO,l,...,l(k_i]},

=T ) k
W, :{u.ueWp (©Q), Au LT

-

where i:-k—;—lJ is the whole part of —kil, l<p<w. By X, and K, we denote the
following convex and close sets in the spaces W, and W, respectively.

K, ‘:{u:ueﬁ;, /_\u(x]Sl,

Ky = {u ue Wy, [Au(x)<1 ac. on Q},

Azu(xﬂ < A almost everywhere (a.¢) on Q}

noa?
where A=-) —5.
it O
Let H,c H cH, be Hilbert spaces. We denote by H,(H,,H,, H,) the
following space:
Hy(Hy Hy Hy)={uiue L (0T H,) )’ e L(OT;H L u"e L {0,711, )} .
We also determine the set: '
Hr'(K:quHnHu)E H}"(Kﬂ)z
={uwe Hy(H,, H ,H,) u)(t.)e K, ae.on(0,T)], 0<i<ow.
Let’s consider a fourth order quasilinear operator on the domain @, =(0,T)xQ
L(u) —u, + A(a(u)Au) s
where a(}e C?(R) and which satisfy the condition
alu)>a, >0, uecR. (N
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We shall investigate an one-sided problem corresponding to the operator L with
the boundary and initial conditions :

- ult,x)=Au{t,x)=0, (t,x)e(0,T)xT, ~ 2
u(O,x)=u0(x), _u,(O,x)=u1(x), xef2 3)

with the restriction
ut)e K, ae on{0,T). 4)

The following main result is valid.
Theorem 1. Let the hyperbolicity condition (1) is satisfied. Then for any

FOew0.7:2,{Q), 4, e W} Q)N C‘(ﬁ), w, €K, there exists a unique function

ul)e H, (K W WL, (Q)), which satisfies the conditions (2)-(3) and the inequality
(Lluyv - M)z (f,v-uXt) ae on [O,T],

where ve K.

2. Solvability of a regularized one-sided problem. First of all, we shall study
the corresponding linearized problem. To this aim put aft,x)= a(u(t,x)), where
ul)e H, (KA;WZQ’WII’LE(Q))'

We determine the operator B(r) on the space L,{C2) by the following equalities:

DB()=W;

B()h = Alalr, x)an), heW).
It is easy to show that for any w{)e HT(K A;WQE,W;,LZ(Q)), B(_t) is a self-adjoint,
positive defined operator, and the mapping ¢ - B(t)h is twice strongly continuously

differentiable.
Consider the following one-sided problem

(w, + B w— f, v—w)(t)20,a.e.0n [O,T], (3)
{W(O):“m w(0)=u . (©6)
where ve K.
We know that for any u, € D(B), u, € K, ﬂD(B”Z) the problem (5)-(6) has a
unique  solution w,  where wel, (0, T J_D(B”2 )) . wel, (0, 7; D(B”2 }),
wh € L,{0,7:L,{Q)), wi{t.)e K, ae. on (0,T) (see [6)).
Since D(B”z)z W}, weget we H;-(Ki;ﬁf,ﬁ’f,l,z{ﬁ]).
Thus, we have the mappings
u—w: H (K 2,02, L@ > H (K, 92,7, 1,(0)).
Using this, we can construct a sequence {u,, } such that

u, € H K, W2,W2,L,(02)), %)
where for any #, u,,, is the solution of the following problem:
(f(u,,)uml,v— Uy, )(t):z 0, veKk,, ae. on [O,T], (8)
o (0)=tt0, .y, (0)=24 - ©)
Here :
L{ulr =k, + Aalu)rr) - £(r,x).
From (7) it Tollows that .

u,',f'(t,-)e K, ae.on (0,7).
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Hence, we get the following priori estimates:

law;, (x)<1), [0, (x)< 4, ae. 0n (x)eQ; (10)
that give also the following a priori estimates
|An, (1, x) <, IAzun @ x‘ sci, b
[V, (. xf<c, [VAu, (t,.x) <cA, ' an

|un (t,x] <¢,ae. on (t,x)e Or.

Let’s introduce the following denotations: D, Alf)= Wi +8)-hlt), Dy = —(1§ Dy

In inequality (8) put v=u,,, (r+6.,}. Then we have

(‘E(un )"mlﬂ Dau;;ﬂ)(f) 20.

Hence we get that

(E o Wtpus Dyt JO) 20, i 550 ;.
(Z(un)unﬂ’ Dy, }(t)<0 1f5<0} (12)

Passing to the limit for & — 0 in mequalmes {12) we get
(E (02 )}(‘ )=0, (13)

hence we have:
gﬂ l, (t, xj dx<cﬂﬂ[a(u 1,x)Au, (¢, r))” dx<

s CU\ o (f»'mw;(n} + ])' (14) ‘

Now, by using Lagrange’s integral formula and Holder inequality we have

2
ﬂ5§“;+1 (0, xfdx = ! lju,’;”(r&, A)dl{ dx <
Q Qo

1
< [ flun, (28, %)’ ez . (15)
LX)
From (14) and (15) we get the following inequality.
~ 2 !
j']Dd,-u,'HI (0, xj dx s J'”at,,,+l (ré‘,}]fmmdx
£ 0

Hence we have
lim _ﬂDéunH {0, xl dx < Cyu, Imw*(n <Cy, (16)

where ¢, >0 doesn’t depend on A > 0.
Let’s write the inequality (8) at the point 1+ & and take v =1, (¢,). Then in the
inequality (8) take v = u,,, (¢ + 6,-).
The obtained inequalities we have the following
(Daf(un ... Dstel kr) <0 ae. on{0,7).
Then we integrate the last inequality on [0, r], te (0, T]: s
f
JJ.DEI”:H (s,x)Dsu’,, (s, x Jdxds +

U0
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+ ;.fJDﬁ (a(un (S=x))}Aun+1 (Ssx)DgAHLH (S,x)dxd_g <

'R )

+ ].fDJf(s’x)DJ“;+|(é', x)dxds .

a0
Hence (after integrating by parts) we have:

% .ﬂDfs“;n (t,x12dx “’%éﬂDJ“:HI (0, x]zd" + :;'.A-Dé [a(“n(s’x))A“nH (s,x)]x

x DyAu',,, (s, x)dxds < ]'ﬂDJf(s, x]zdxds + ]'_ﬂDau:m (s, x]z dxds .
0q 60

If we divide the both sides of last inequality to &° and pass to the limit for
& — 0, then we have the following inequality:

15 j unalt, x]z dx — ~I~ lim ‘ﬂﬁﬁu,’m (0, 'xfcbc <
ﬂA[a(u (S I))Au

< I_ﬂu:,(i (s. x} dxds .

00
Taking into account (10), (11) and (16) we obtain

ﬂu:+1(!‘,x]2dx <¢+e i{ﬂu;ﬂ (.s,,\:]2 dxds ,
Q e

from which, we have a priori estimate
fluraltxy ax<c, an
Q

i

! (s x] dxds +

dxds+ jj

where ¢ >0 is independent of n and in generally, it dependson 4 > 0.
In view of existing a priori estimates (10), (11) and (17) we can select from the
sequence {u,} such a subsequence {u,, } , that

u, >u  *-weakin L (0.7 (Q)), (18)
u, —>u -weakin L, (0,77 (@), (19)
up, —»ul  *-weakin L(0,7;L,{(C2). (20

In view of compactness of imbedding W;(O, T W2 (Q))c

< c{[o.7}#2(©2)} from (18) and (19) it follows that
u, - u in C0,7I72(@)). @21
Let’s write the inequality (8) for n=#n,. Then, we can get over to limit in

obtained inequalities by using (18)-(21).
If we denote the limit of the sequence iunl_ } by u,(t,x), we shall get that «, (t,x)

is the solution of the following problem:
( Ll Y, v - u&)’(r)>0 veK, ae.on (0,T), ° 22)
2,0, %)=y (x), 2, (0. x)=u (x). e

So we proved the following theorem.
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Theorem 2. Lef the conditions of Theorem I are satisfied. Then problem (22)-
(23} has a unigue solution
u()e H, (K, 77 W2, L, (Q)).
3. Proof of the main theorem.
From {(18)(21} it follows that forany A >0

u, e L 0.1 i Inclfo,Tiw (@), (24)
w, e L{0. 7wt ), (25)
wy, e L (0.T;L,(Q), (26)
u, (t,-)e K, ac.on (0, T), A>0, 27
from the last expression it follows that '

|aws, () <1 ae. on @ (28)

Hence, in particular we get the following a priori estimate
[, (e.x)| < e, Vu, ()| <c, l 9

Vu, (t, x)‘ <c, ‘Aui (I,x] <ca.e.on QI}

, (nx) <c,
By virtue of (8) we also have a priori estimate
i 2
_[i*D(,-u;T (0, xj dx<c,, (30)
0

where ¢, > 0 is independent from & and 4.
Using the similar way as it was done with done with equality (8) from (22) we
will get the following estimate, for u, {t,x)

[DATG s Dy, )eds <0, 650,
I3}
Integrating by parts we have
! J"D{.,,uf2 (r_.xf dx — 1 ﬂD(-,.u:-L (ﬂ,xfdx +
2 0o 2 {1

]
4 Eﬁfa(uﬁ (fs-’f))

D,Au, (O,xrdx -

DyAu, (1, )(1 dx - ; Ia(ui {0, r))
0

1 s (o 4 A o s +

hl*h )

!
+ ”a(u AP, (s + 8, x)DyAu, (s, x)dxds <

/RS

< j Dy fls.x)Dat (s, x)edxdds (30

i
We transform the last summand at the left hand side as:

J = J.D‘Sa(u,-_ (tx)hu, (0 + 5, _x)DSAu,l (£ x)ax -
9]

- J.Dé-.:a(_u,i {0, )Aw, (5,.\7)D1§-Au,-_ {0, x)dx IJ' I(Db-a(u,‘ (s,x))]!_\- Au, s + 8,x)x

42 ey

x, Au, (s, x )dxeds ~ J-ID(-}-(I(H ; (.s',x))Au';b_\_ (s +& ,x)Do-Au (s, x)dvds.

g2
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Taking this into account, we divide both sides of obtained inequality into 5° and
pass to the limit for § —» 0 in (31). Then we get the following inequality:

— 'ﬂul(s x] dx——wllm ﬂDo'“,t(O x‘ dx +
+ % A A > {l)j_ﬂ {{a(ui (0.)) 58, (0, ) s -

_ %;[f!'a'(ug (s.x)-u, (s,x))‘ Auy (s,xr dxds -+ é{a'(”,z (6.t (6 x)x
x Au, {1, .vc)Au,';r {£,x)dx — tlslfg {_!ﬁ;a(u (0, x))Au, (8,x)D; Au, (0, x)dx

- ]ﬂa"(u . (.1;,):))1,‘:}L (5,%)+ a'(u, {5, x ) (s, x)}ﬁu(s, x)Au_: (s,x)dxds -
_ ]Ia'(”,: (s,x))u;_, (s,x)l Auy (s,x)fz dxds < ;[S_}ﬂuﬁ (s,x)’2 dxds +

+ J_ﬂﬂ(s,x) ‘deds.
0Q
Taking intc account a priori estimates (28)- (30) we get

.ﬂu,t(t x] dx<e +czj'ﬂui(s x] dxds ,

0
where ¢,c, are independem of A > 0. From the last inequality it follows that

Iﬂu% (exf dx<e, (32)

where ¢ >0 is independent from 4 >0.
Now determine operator 4 on the space L, (Q2) by the following equalities

{n@a): W Y0),
Au=—Anu
4 is a self-adjoint, positive defined operator, and for any >0 the operator 4 has a
resolvent R, = {7+ ud)".

Lemma. For any A>0 and u>0 the following embedding R K, K, is

satisfied. '
Proof. Let v=R h, where he K,;. Then v be is a solution of the following

boundary value problem:
oo
From the maximum principle it follows that
M) Sy (34)
As since h e ;' (Q2), H,=0 and Al =0 we shall get from (33) that
AV =0, Av— A’y = Ak, (35)

Ay =0, Alv— uNv=Ah. (36)
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From (34)-(36) we shall have that

oy
Ave W1 {Q), -
Avew? (Q)
and besides
|Av‘rﬂ{n} < ‘Ah(r‘c[n}’ (38)
2 2
‘A v|f.m[$2} = IA h'f@(n)' (39)
From (35)-(37) thus it follows that
ve ;' (Q), (40)
and from (38) and (39} it follows
2
M s |8, g <4 (41)

From (35), (36), (40) and (41) it follows that ve K, .
As since u) ()€ K, , by virtue of Lemma v(t] =R, (t+) € K, . Then from (22)
we shall get
(Lo, s, R, 0, Ne)> 0. (42)
It is clear that R, — 1= R#[I—R;'F ~pAR, . Taking this into account in (42) we have
the tollowing inequality
(G, ey, AR, Ys)s 0.

£
Hence, passing to the limit for # —> 0 we get

! i
- “u"{ (s, x)Au’, (s, x Jbwdls — _”A (alu, (s.x)Au, (s, x sy (5, x))dxds <0 . (43)
00 a5
We can transform the second summand by the following way:

J= —]' J"?J?[‘:z(zag1 (5, x )V u, (s, x)+ ', (s, x)Vu, (s, x)Au, (s, x))]x

Q0

x Aty (s, x Ydeds = ’_"ﬁ|'|:;:'(w;L (5, 3))Vu, (5, x)V ., (s, x Jdxds —
- 9 V5 o, s =
= Jolu, ()] 7 (o - falu, @7 (0.x) d -

I T N

ne

- ]l .29) o oY, » 5 2+
+ ar(“,l (S, x))Vu;L (.s',x)V3u1 (Ssx)]Au; (S,x)dxds .

Putting this in (43), and also taking into account (28), (29) and (32) we get

_ﬂV;.:.g1 (f,x]2 <e +ey fjﬂvsuﬂ (S.xfdxds,
o 00

L
2
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where ¢ >0,c, >0 are independent from A>0. By applying the Grownwell’s
inequality we have a priori estimate

[V (s, xf desc. (44)
By virtue of (28), (29) andrz44) we can select a subsequence {u A, } such that
u;, — u *—weak in I, (0, W (QNW? (Q)), (45)
u, »u' *-weak in L, (O,T;Wj @nw; (Q)),_ (46)
u; ~>u" *-weak in L, (0,7;L,{)). @7
From (28) and (46) it follows that
u'ltsye K, ae.on (0,T). (48)

It is clear that if A > A, thenK; c K, . Taking this into account from (22) for A =24,
we get : :
(f(uiﬂ )u,{",v-uflm kx)z 0,vek,,
where 4, >4 .
Here, passing to the limit for 4, -« we get

(TG, v-u )20, vek,, 4>0. (49)

Since UK;t w2 = Ko we get that the inequality (49) is valid for any ve K.

A=l

The unigueness of the solution is proved by standard method (see [6]).
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