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ON THE CONVERGENCE RATE OF TRUNCATED HYPERSINGULAR
INTEGRALS IN CHARACTERISTIC POINTS AND IN THE NORM OF THE

SPACE L,(r")

Abstract

The convergence rate of truncated hypersingular integrals in characteristic
points and in the norm of the space L, (R") is studied in the paper.

As we known Bessel and Riesz potentials are determined in Fourier transforms
by the equalities (see, for example, [1], [2])

(P =+ 121" ote),

oy (x)=] x[ o(x).
Potential reversing constructions are realized in the form of hypersingular integrals
regarded as some limit of corresponding “truncated” integrals. In this paper, we study the

relation between the “smoothness order” of the density ¢ € L,(R") of potentials J%gp

and /¢ and the convergence rate of truncated integrals.
Introduce a truncated integral by the following scheme. As we know, the Gauss-
Weierstrass integral of the function f(x),x € R", has the form

. (GAx)=F 0% X0 = [W(r,0/(x-y)dy,t >0,
-

where the Gauss-Weierstrass kemel #(y,£) is determined by the formula
W(y.t)=(4m)™""* -exp(—| p |’ / 41)
1t is known that a family of operator (Gf)(-#) . ¢>0 forms a semigroup with re-

spect to a parameter (see, for example, {3], [4], [S)).
Introduce also a modified Gauss-Weierstrass semigroup:

(G f)x ) = e (G Yx.1), 1 >0,

where (Gf)(x,{) is the above determined semigroup.

a
Let />-—+1 and

2
e f

Ra,O)= | oy (0<a<?, £is a naturaf number).
a

Introduce the truncated integrals
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DI f = Z(k](*l)*(G""‘flx,kf)J “
SR[EJ’} FA\k=0 2

2" | 1)
el [ [ty € ILa
*R[E,f] 5 2
2
and
- <( ¢ (¢
D::fz___l___. Z( ](-—l)k(Gf)(x,kr)J di =
[#4 ) k 4+
9?[2—,1?] £ T 2
2)

= [ G0

T 2
Bessel’s J%@ and Riesz's /%¢p potentials are determined by the formulas
(7= op =0+ 122y p(x),
oy o),

where * means the Forier transformation in R”.

Constructions (1)-(2) and above-determined operators semigroup has a close rela-
tion that is described as follows:

a)if pe L, (R"), 1< p<ow and 0<a<w,
then for any & >0

(Dz% k)= K (- (6™ ok omyn. 3)

o 2

byif pe L, (R"),1< p<c and 0<a <2, then for any £ > 0
P

(Berow k= KO0+ Gox.emydn. @)
4]

5

=

In these formulas KX'”(77) is McDonald’s modified function.
The main result is
Theorem 1. Ler p e L (R"), 1< p<wand at the point x" e R" it is fulfilled the
condition
1

sup ——- flp(x* —2) - p(x" ez = 4,(x") <0 . (Ao)

Qzred ¥ Iz 2r
Then for ¢ -0

(DT )Xx") - p(x) = 0(s”)
Proof. Taking integral representation (3} into account we can write
(praoka’y - o) = [KO Gk em) - o)}
) %

Estimate the difference
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(6o )a®, en)- o) =1
for fixed >0.
We have

e (G, &) — ()| <le " (GoX(x em) -~
- (Gco)(x",an)‘ +[GoXx",emy - () =i + 4y
Estimate i, = |(th)(xﬂ,£q)‘ (1-e").

f0=

It is easy to prove that 1—e *" <e-gn7.
So, i, <c, - £17. Now estimate i,.

i, =(Ge)x,em) ~ p(x*) =

7 (. emep(x® - )y - p(x°)

[t fl<| ]+

N ) <8

<

[.

e

=i +1i,.

wemle® - v - o)y

Estimate i; . For this introduce the function

— p(x°), f —x, <8
0 Jfor |x—x,|>8
We have

iS¢y As(x°) IW(:', emr™F \dy,
0

where W(r,en)=W(y, ETI)‘.

M=r"
Taking into account that

1

Bl L) — ..r_. o
(W, eny™dr=c; - [(eny™e ™y dr =
o 8

ey (e [e (e P M dr = ¢, (e,
i}

we get &, <ci(en)’ .
Now estimate /,. We have

iy s F(Lem oG - y)-o(x° )|dy =

|¥=&

<lp(")- W (empy+ lol, W eml, s, =5 + 507 P +1/ P =1.
|#=5 P
Estimate i; and i, .
In a similar way it is proved
Theorem 2, Let pe L (R"), 1<p< 2 and at the point x° € R the relation (A,
o

be satisfied. Then
DI )y - p(x°) = 0(e") , for & 0.
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fr !
s *“?’(xu)" J'W(y,.s‘?})dy__cb -(gy?)"” . J}-”‘ie \5’?.] dr <
MF &

b ox -

<¢ e 7 _[e_”r"'ldr =cg-e 7
]

T

&
Taking into account that inf{er -r}:eﬁ , from the last estimate we have

i, £(e8)" -y & =c, - £7, where ¢ is independent of £and 77

&iam

® 1 g
A :“(0“;.,, 'HW(J}’&T?)HL,,.(.}—E>J) ==¢y { J-(é"?)'"pr(é‘?})" rle™ "’fdr} =

_".-I"’Jhl_ o« r —n-[l—-l-] ¥ (e I
=cp-(e) 7 - _[r”'le" " dr Leg(en)y ~ e -(J'r”"le"’"dr} =
Slen 1]
_s _n
=c e (e 7.

H+

no§
) . ] I e P .
Taking into account that mg -7 et :£ P» ] , from the last estimate we
r H+p

have

ad

. 1+ £
s 5311'{ epc’f TEN =6y £,

where ¢, is independent of £and 7.
Summing up all obtained estimates, we deduce that

‘(G{’"qu)(xu, en) - go()c0 )’ L¢3 ER+tCy (S'F)ﬂ -

Thus, for small £>0

;(Dﬁp’ra@lxﬂ) - @(x0)| = ]K;rf}z(’?)‘ . (CB N CM(‘”?VPW <

0
<g? ']K{(:;)z (7}‘)| ' (5'13 n+ CMT;'JIg }i?).
o

Taking into account asymptotics for K’} (n) and the condition ¢ >%+1 we ob-

tain that the integral at the right hand side of the last estimate converges and this com-
pletes the proof of the theorem. '
Then we study the convergence rate of truncated hypersingular integrals (1) and

(2).
Theorem 3. Let the function ¢ € L (R"), 1< p<w satisfy the condition
1
Oi‘:g oh ::|'<[r}|€0(x -z)- qp(x)HLP(RN ()= 45 <0 (A)

Then

DfJ"‘;p-—qa!L =0(f), for 6 5 0.
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Proof, From the estimate
(pr. 720k - @) < [ 0n)]- G0 kx.om) - ool
0

by means of Minkowskii inequality we get

(oz.70)-4], < ?]Ki?z(n)| Ne"io)x,en) - o), dn.
4 ]
Estimate the value i), = ”(G{’"]qpkx,gr;) - gp(x)"L for fixed 7 >0. We have (using

the denotations of [6])

iy =|[e™" (G)xm) - @(x)iL <le™ - (GoXx,em) -
~(GoXxen), +|Goxxem -~ =i+
Since 1—¢"" <e-£n and (Go)x,en)f, <|¢|, ,then

isell, -en=c-en.

i =[(GpXx em - p(x)|, = <

W .emlio(x - ») - p(x)ldy
s L

4

< jW(y,gq)|]¢(x ~-y)- ga(x)l]LP(R,,(x))dy = I + I =i +1,.
R .

|ped | M=d
Denoting
-y)- f <5
. 0= )= @), () Tor| 7!
Jfor {yl>48
we have

f3 = jW(y, 81}) . g(y)dy < cy Jﬁ(?,, gn) . ?’mﬁ_ldr,
I 3

where W(r,em=W(y, f:r;.v)llyizr .

In [6] we have shown that
[P r,omy- 7ol = ¢, -(em)’
o
So, iy =c,-(en)?, where ¢, is independent of £and 7. Estimate i,. We have

W [WOuen) o= - 00N, (@ <2el, - 7 .emdy,
=& Ws

and since

[W(y,enyy <c,-&n.

e
then i, <¢ e, where ¢, is independent of £ and 7. Now taking into account the as-

ymptotics K%, (;7) and the condition ¢ > %4—] , for small € >0 we have
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|pese 4|, < ]Kéf-)z(f})I Aes -em+ ¢y -(en) Hin <
oo

<o PRS-l mvcenP Yin=cy -
s}

The theorem is proved.
In conclusion we note that the following theorem is valid

Theorem 4. Let the density function pe L, and 1< p< 2 Then
a
‘5:.]“49—99”! =0(c”), 6> 0.
In conclusion nole that as it was shown in papers [6], [7] by B.S. Rubin, for ¢ - 0
limit of construction D and respectively 5?, regarded in a definite sense transforms
Bessel (respectively, Riesz) potcutials. Here we are to note that in B.S.Rubin’s indicated

s a .. . .
papers a natural condition €>-2—- 1s imposed on ¢ But we impose the condition

é’>f£+l.
2

1 express my gratitude to corresponding member of AS A.D. Hajiyev for his help
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