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MOTION OF THE ELASTIC HOLD UP INCLUSION IN THE FLUID
Abstract

In the paper the twodimensional problem on the motion of the elastic hold up
against the lateral motion of the circle inclusion in the fluid acting the wave resistance is
investigated.

Study of joint motion of constructions and environment is important for
calculation of constructions for rigidity and strength under action of seismic waves, gust,
se¢ waves and others.

With purpose of simplification of the problem we can model the construction as
a discrete medium. For example, if the object is arranged on a pile, then the pile can be
considered as elastic lateral strut and etc.

In this paper the twodimensional problem on motion of the elastic hold up circle
inclusion against lateral motion in the fluid acting wave resistance is consider.

1. Equation of motion and boundary conditions. Formulation of the problem.
Vortex-free motion of the medium is described by the equation
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B is coefficient of compression, ¢ is velocity potential, ¥ = gradyp , ¥ is vector
of velocity, A is Laplacian operator.

After wave going if we neglect the passing phenomena (diffraction) then the
moveless at initial moment inclusion is surrounded by the medium moving in one
direction with the known velocity. By principle of relativity we can consider the medium
moveless and give the velocity of the fluid to the inclusion.

The inciusion moves by the law
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where M, is mass of yoke; M, is mass of the springed body; x, is displacement of the
yoke; x, is displacement of the springed body; L is rigidity of the spring; P is force of
action of the fluid to the inclusion.

For the circle inclusion with radius #,
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where p is density, 8, is polar angle.
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Velocity of the yoke % can be expressed by radial ¥, and circle ¥,

components of velocity of the fluid on the bound of the fluid with the yoke. The last ones

are connected with potential ¥, = ;ﬂ
's
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At the same time
V, =V, cos6,, ()
where V, =§—x-'—.
dt
From (4) and (5) it follows:
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Condition (6} expresses equality of normal to the surface of the yoke components of
velocities of the fluid and the yoke.
It is obvious, tangential components of velocities won’t coincide. Taking into

account that the tangential component of velocity of the fluid ¥, :lg}- and the
F 06

inclusion i‘;:l—sing . it is possible to find the velocity of slippage of the fluid on the

surface of the inclusion
ﬁsinGJfU: sinf, dp 1 8p _ o 109 )

dt cosB, or rol, © @ rad,

Thus, the problem for equation (1) with boundary conditions (2) is considered taking into
account (3} and {(6) and the initial condition ¢ =0

2. Solution of the problem in general case.
The solution is sought in the form:

o(r,6y,1)=,{r,t)cos8,. (8)
Taking into account that Laplacian operator in cylindric coordinates has the form
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and also (8) equation (1) has the form:
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After Laplace-Korson transformation equation (9) in representations will be:
S
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Solution of (10) under the condition of restriction at infinity is:
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where v is McDonald’s function of the first order with known original, i.e.
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Further we determine force P from (2) with help of (3) . Taking into account the
represented expression for (pl from (8), i.e. for

a(p‘cosf? and ﬁ:%

p= _pgt_ odr or
From (3) we determine
=1 _[p::05(5'0(1«‘5'G = rp _fcos G,d6, = ,crofr—q(g'—. (13)
Equation (2) takmg into account (13), (6), (8) will have the form:
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In the case of elastic hold up inclusion in the first of equations (2), taking x, as the
coordinates of the bear in relative motion which is x, = &, we have:
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where x, is velocity of the fluid at minimal moment.

M,

2 1 s, ) =0, (15)

After Laplace-Karson transformation we obtain
. - D
PM(‘P1 - x0)+ Py poy + L[xl ‘TDO'J =0,

o

where X, =

Putting expression of ¢] from (1 1) mp, (ﬁkc + l-k, ) , the last equation can
a r

be reduced to the form:

C= ' (16)
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Taking into account, that pk, - ! ; zp 5 —>co’s£(ﬁ—-1) where
g°-1 p +@ @
6= A and time shift of the argument by time is obfained by multiplication and

fpt+1
division of nominator and denominator in (16) by exp(—‘er‘—’-), the denominator in the
- a

expression of ¢ will be:
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Original of the boundary function having expression (16) for known original of
the denominator (17) can be found by the method of Volterra integral’'equation (12).

Z =

Caleulations have been carried out for m =903, “ ~2 . Inthe figures the graphs
o
of dependence of function S, which is the original C on dimensionless time are shown.
This function let determine the potential and parameters.
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