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Abstract

In this paper we will investigate compactness of finite sums of weighted
composition operators, acting on the spaces of vector-valued functions defined on a
compact sel X, namely on the cartesian products of uniformly closed subspaces of
c(x). -
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1. Introduction. Let X be a Hausdorff space and let C(X) denote the space of
all continuous complex-valued functions defined on X equipped with Sup-norm. Let
A(X) be a uniformiy closed subspace of C{X), and C"{X), A"(X) denote the
cartesian products of C(X),4(X) respectively, where ne N . For any vector-valued

i!

function =(1¢ri ,...,u”) in C"(X) we introduce the following norm: [Ju = maxlgsnuu’

where

u"(xH, (1' = 1,...,n).

The space C"{X) with this norm is a Banach space and 4"(X) is a closed subspace of

”u’ ” = max

xed

C"{X). Let @, :X—)X(1'=_1,...,m) be continuous mappings. In this paper we will
consider the operator T:4"(X)—>C"(X) of the form u(x)> 3, M, (x}u(w,(x)),

where M, (x)= (m,f ().‘)I'J=1 is an »xnp matrix of functions m;‘. e C(X) for any k such

that 1<k <m, and for any i, j=1,.,n. In other words, we will consider the weighted
composition operator (m =1} and its finite sums (m>1) on the uniformly closed

subspaces A"(X) of continuous vector-valued functions on X . We will investigate
compactness of the operator 7. In the case n=1, m=1, i.e., compactness of weighted
composition operator (w.c.q) on C(X ) ([91, [11]) and on its uniformly closed subspaces

(in particular, on the uniform algebras) are studied in [2], [31, [4], [5], [8], [10}, [11],
[13]; and w.c.o. acting on the space of vector-valued continuos functions are studied in
[14], [15]. [16]. When n=1 m>1, ie., compactness of the finite sums of weighted

composition operators which are studied in [5], [6], 7], [12]. The importance of this kind
of operators is that they are applicable in solving and the existence of solutions of

equations of form Y, M, (x)ulew, (x)}= f(x), i.e., the functional-differential equations

containing both the argument and its shifis.

1. Representation Theorem. In this section we will find a relation between the
compactness of T:4"(X)— C"(X) and the find finite sums of weighted composition
operators acting on the space of complex-valued functions A(X )
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Let p, be the projection A"(X)—> A(X), ie., pulx)=u'(x)
where ue A"(X), ' €4(X) i-th factor of u, ie, the projection to
i-th factor 4(X); let g,:4(X)> 4"(X) be the embedding for A(X)
into  A"(X) as i-th factor. We define the operators T,: AX)->c(x) and
7,:4"(X)>C(x})  such  that T,f(x)=37 mi(x)flwdx)), for  any
7 €A Tale)= T () B (5 b o O S5 5 b (0, ),
forany ue 4"(X).

Now we can prove the following theorem, while assuming that M, (x)#0 (zero
matrix) and @, (x) = constant for k=1,.,m .

Theorem 2.1. The operator T: A"(X)— C"(X) is compact if and only if, for
any i, j=1,..,n the operators T, :A(X)~—> C{X) are compact.

Proof. It is clear that 7, = p, o7 . Indeed, for any u & 4”(X)

(p, o Thle)= (1, My (el ()=
= (0 o (D S K e e ()=
=30 e @)= B (5, e ()= B T ()= T

and T=3%"4q-°T, indeed, for any ue A" (X), > g, o Tulx)=
=34 (Z’" M (' (w0, (x)))r " M, (e, (x))=Tu(x), where denote i -th row
of matrix Mk(x)

Since the operators p, and g, are linear bounded ones, so T is compact if and

only if 7;'s are compact. On the other side, we can show that 7, = Z;‘=1 Tyop, and

T, =104, Indeed, 3" (T, o p, Ju(x)= 3 Tl (x)=Tulx) for any weA"(X); and
(T,- °g; )f(x) = T,(O,...,f(x),...,O)= i'}}-f(x) forany fe A(X). So the theorem is proved.

3. Compact Sums Of Weighted Composition Operators On Spaces Of
Vector-Valued Functions.
In this section we will investigate the compactness of the operator 7' inducted by

continuous mappings @:X — X {i=1,..,n) of the form 7:4”(X)— C"{X) u(x)>
zzlek(x)u(wk (x)) as a simple deduction from Theorem 2.1 for certain uniform

subspaces of C” (X )(in particular, for uniform sunalgebras).

Let A4(X) be a closed uniform subspace of C{X)and 4”(X)= 4(X)x...x 4(X).

Definition 3.1. 4 closed subset EC X is called a peak set with respect to
A" (X ) if there exists a sequence {u,{ }L such that u, € A"(X }, ‘ui (x* :nu;" =1 for any
f(l <i< n)Jc and xe E, moreover, vutside any neighborhood of E the sequence {u;(}
tends to O uniformly. 4 peak set consisting of only one point is called peak point.

The set of all peak points with respect to 4"(X) is denoted by I'. Put
G=X\T . To each point xc X corresponds a functional &_:u > u{x) which lies in the
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unit ball of the conjugate space 4{X)". Thus induces the A(X)"-topology, which is,
generally speaking, stronger that the original one. Further, we shall always suppose that
the original topology on G coincides with 4(X)" -topology, G is everywhere dense in
Xand T is not empty, A typical example is given by 4" (D) where A(D) is the disc
algebra (X =D, T=0D=D\D,G= D) . For such subspaces of 4"(D) we consider the
operator T induced by a finite number of mappings @, which preserve G, ie., we
assume that @,:X — X are continuous mappings such that ,(G)cG,{i= 1,...,n).
Except for casy degenerate case we shall assume that w, = constant for all i . As [6] we
will identify the unit ball of the conjugate space C (X )* of C{X) with all complex Bore!

measures on X with variation less than 1, any point xe X will correspond to a & -
measure. Since the compactness of an operator is equivalent to the compactness of its
conjugate, so it can easily be shown that (see [1), Theorem VI, 7.1.) the compactness of
the operators 7, is equivalent to the continuity of the mappings
x> T x= ZL{M ,j‘ (¥}, (x) actingon X with original topology into A(X)’ with metric
topology. If xe G then because of @,{x)e G and since the original topology coincides
with  A(X) -topology on G, then the above mentioned x> T; (x) for

xeG, (f, j=1,...,n) is automatically continuous. This is the reason for the following

definition.
Definition 3.2. Let ¢ €T be a fixed point, we say that indices i, j are equivalent

with respect to ¢l if w, (g) =w, (¢)e . Equivalent clusses will be denoted by K . K,
will denote those indices | such that w,(¢c)}eG. Indices i,j are called strongly
equivalent if “w,- (x)—m_}. (xll)4 oy 0 when x — . Equivalent classes of this kind will

be denoted by L.

Now by using Theorem 2.1, Lemma 1 [7] the following theorem can easily be
deduced.

Theorem 3.3. f the operator T A"(X)—> C"(X} is compact then for any class
K (with respect to ¢ ) and for any i, j=1,...n we have ), .« m;(§)=0.

The conditions a),.(G)c G,i=12...,m in Theoremm 3.3 are essential as the
following example (for the case » =1} shows.

Example 3.4, Let X = {z eC: ‘zl <1 or |z - 2| < l}, and let A be the algebra of
all continuous functions on X and anaiytic inside, put o, (z)= z forall ze X,

()= {z, for |2)s1, oy(2) = {l, for |z|<1,

1, for|z-2s1, z, for|z-2<l.

Since w, (I)=1 Jor all i, then for (=1 all indices are equivalent. Since
~fow +fomw, +fow,=f(), so that the operator is compact, but
m, —|rmf1l +m131 =}.

Combinations of Theorem 2.1 and 1 [7] gives the following theorem.

Corollary 3.5. The operator T : A"(X }—> C"(x) is compact, if and only if for an
arbitrary point el and for any 1<i, j<n we have Z kek, m: (g‘,' )wk (x)—~+0 with




28 Dehghan Y N., Shahbazov A.L

respect to A(X) -norm as x —> ¢ (in original topology of X ) and 3 ;. m, (Q' )=0 for
anyclass K 2 K.
Corollary 3.6. If > keLm}f (£)=0 forany class V<i, j<n and { €T, then the

vperator T is compact.

The following example (in the case m=1) shows that the converse of the
corollary is not in general true.

Example 3.7. Let X and A be as in Example 3.4. Put now.

a),(z):z Jorall ze X, wz(z)t-—z— Jorall ze X,

2 i Bist 241 4 et
wy{(z)= z+1 w,(z)=7 2 -
f[ “2‘51 z,zf‘z—Z‘gl.
It is obvious that e, (z)eG, when ze G and o,{(1)=1 for all i, so for ¢ =1 all indices
are equivalent (consists of the class), however, we can easily show that no pairs of
indices are strongly equivalent. But regardless of this, we have
~fowmy~ fewy, + fow+ fow, =0, ie., the operator corresponding to given , and
my, =1 is zero.

But by using Theorem 4 {7] and Theorem 2.1, when A(X) is uniform algebra
and m<3 then the following theorem which is the converse of Corollary 3.6 can be

proved,
Theorem 38. I/ A(X) is a uniform algebra, then the operator

Tufx) = Zle M, (x)u(ew, (x]) (where m <3), from A"(X) into C"{X) is compact if and
only if, for any strong class I and for any 1 <i, j<#»n we have de mf; (g”)z 0.
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