VOL. XII(XX)

DEHGHAN Y.N., SHAHBAZOV A.I.

WEIGHTED COMPOSITION TYPE OPERATORS ON THE SPACES OF VECTOR-VALUED FUNCTIONS

Abstract

In this paper we will investigate compactness of finite sums of weighted composition operators, acting on the spaces of vector-valued functions defined on a compact set X, namely on the cartesian products of uniformly closed subspaces of C(X).

AMS Subject classification: 47B38

Key words and phrases: Weighted composition operator, compact, uniform algebra, peak set, Shilov's boundary.

1. Introduction. Let X be a Hausdorff space and let C(X) denote the space of all continuous complex-valued functions defined on X equipped with Sup-norm. Let A(X) be a uniformly closed subspace of C(X), and $C^n(X)$, $A^n(X)$ denote the cartesian products of C(X), A(X) respectively, where $n \in N$. For any vector-valued function $u = (u^1, ..., u^n)$ in $C^n(X)$ we introduce the following norm: $\|u\| = \max_{1 \le i \le n} \|u^i\|$, where

$$||u^{i}|| = \max_{x \in X} |u^{i}(x)|, (i = 1,...,n).$$

The space $C^n(X)$ with this norm is a Banach space and $A^n(X)$ is a closed subspace of C''(X). Let $\omega_i: X \to X$ (i=1,...,m) be continuous mappings. In this paper we will consider the operator $T: A^n(X) \to C^n(X)$ of the form $u(x) \mapsto \sum_{k=1}^m M_k(x) u(\omega_k(x))$, where $M_k(x) = (m_{ij}^k(x))_{i,j=1}^n$ is an $n \times n$ matrix of functions $m_{ij}^k \in C(X)$ for any k such that $1 \le k \le m$, and for any i, j = 1,...,n. In other words, we will consider the weighted composition operator (m=1) and its finite sums (m>1) on the uniformly closed subspaces $A^n(X)$ of continuous vector-valued functions on X. We will investigate compactness of the operator T. In the case n=1, m=1, i.e., compactness of weighted composition operator (w.c.o) on C(X) ([9], [11]) and on its uniformly closed subspaces (in particular, on the uniform algebras) are studied in [2], [3], [4], [5], [8], [10], [11], [13]; and w.c.o. acting on the space of vector-valued continuos functions are studied in [14], [15]. [16]. When n=1, m>1, i.e., compactness of the finite sums of weighted composition operators which are studied in [5], [6], [7], [12]. The importance of this kind of operators is that they are applicable in solving and the existence of solutions of equations of form $\sum_{k=1}^{m} M_k(x)u(\omega_k(x)) = f(x)$, i.e., the functional-differential equations containing both the argument and its shifts.

1. Representation Theorem. In this section we will find a relation between the compactness of $T: A^n(X) \to C^n(X)$ and the find finite sums of weighted composition operators acting on the space of complex-valued functions A(X).

Let p_i be the projection $A^n(X) \to A(X)$, i.e., $p_i u(x) = u^i(x)$ where $u \in A^n(X)$, $u^i \in A_i(X)$ i -th factor of u, i.e., the projection to i -th factor $A_i(X)$; let $q_i : A(X) \to A^n(X)$ be the embedding for A(X) into $A^n(X)$ as i -th factor. We define the operators $T_{ij} : A(X) \to C(X)$ and $T_i : A^n(X) \to C(X)$ such that $T_{ij} f(x) = \sum_{k=1}^m m_{ij}^k(x) f(\omega_k(x))$, for any $f \in A(X)$, $T_i u(x) = \sum_{j=1}^n T_{ij} u^i(x) = E \sum_{j=1}^n \left(\sum_{k=1}^m m_{ij}^k(x) u^j(\omega_k(x)) \right) = \sum_{k=1}^m \left(\sum_{j=1}^m m_{i,j}^k(x) u^j(\omega_k(x)) \right)$, for any $u \in A^n(X)$.

Now we can prove the following theorem, while assuming that $M_k(x) \neq 0$ (zero matrix) and $\omega_k(x) \neq constant$ for k = 1,...,m.

Theorem 2.1. The operator $T: A^n(X) \to C^n(X)$ is compact if and only if, for any i, j = 1,...,n the operators $T_{ij}: A(X) \to C(X)$ are compact.

Proof. It is clear that $T_i = p_i \circ T$. Indeed, for any $u \in A^n(X)$

$$(p_{i} \circ T)u(x) = p_{i} \left(\sum_{k=1}^{m} M_{k}(x)u(\omega_{k}(x))\right) =$$

$$= p_{i} \left(\sum_{k=1}^{m} \sum_{j=1}^{n} m_{ij}^{k}(x)u^{j}(\omega_{k}(x)), ..., \sum_{k=1}^{m} \sum_{j=1}^{n} m_{ij}^{k}(x)u^{j}(\omega_{k}(x))\right) =$$

$$= \sum_{k=1}^{m} \sum_{j=1}^{n} m_{ij}^{k}(x)u^{j}(\omega_{k}(x)) = \sum_{j=1}^{n} \left(\sum_{k=1}^{m} m_{ij}(x)u^{j}(\omega_{k}(x))\right) = \sum_{j=1}^{n} T_{ij}u^{j}(x) = T_{i}u(x),$$
and
$$T = \sum_{i=1}^{n} q_{i} \circ T_{i}, \quad \text{indeed}, \quad \text{for} \quad \text{any} \quad u \in A^{n}(X), \sum_{i=1}^{n} q_{i} \circ T_{i}u(x) =$$

$$= \sum_{i=1}^{n} q_{i} \left(\sum_{k=1}^{m} M_{k}^{i}(x)u^{i}(\omega_{k}(x))\right) = \sum_{k=1}^{m} M_{k}(x)u(\omega_{k}(x)) = Tu(x), \quad \text{where} \quad \text{denote } i \text{ -th row}$$
of matrix $M_{k}(x)$.

Since the operators p_i and q_i are linear bounded ones, so T is compact if and only if T_i 's are compact. On the other side, we can show that $T_i = \sum_{j=1}^n T_{ij} \circ p_i$ and $T_{ij} = T_i \circ q_j$. Indeed, $\sum_{j=1}^n \left(T_{ij} \circ p_i\right) u(x) = \sum_{j=1}^n T_{ij} u^j(x) = T_i u(x)$ for any $u \in A^n(X)$; and $\left(T_i \circ q_j\right) f(x) = T_i(0,...,f(x),...,0) = T_{ij} f(x)$ for any $f \in A(X)$. So the theorem is proved.

3. Compact Sums Of Weighted Composition Operators On Spaces Of Vector-Valued Functions.

In this section we will investigate the compactness of the operator T inducted by continuous mappings $\omega: X \to X$ (i = 1,...,n) of the form $T: A^n(X) \to C^n(X)$, $u(x) \mapsto \sum_{k=1}^n M_k(x)u(\omega_k(x))$ as a simple deduction from Theorem 2.1 for certain uniform subspaces of $C^n(X)$ (in particular, for uniform sunalgebras).

Let A(X) be a closed uniform subspace of C(X) and $A''(X) = A(X) \times ... \times A(X)$.

Definition 3.1. A closed subset $E \subset X$ is called a peak set with respect to $A^n(X)$, if there exists a sequence $\{u_k\}_{k=1}^{\infty}$ such that $u_k \in A^n(X)$, $|u_k^i(x)| = ||u_k^i|| = 1$ for any $i \ (1 \le i \le n)$, k and $x \in E$, moreover, outside any neighborhood of E the sequence $\{u_k^i\}$ tends to 0 uniformly. A peak set consisting of only one point is called peak point.

The set of all peak points with respect to $A^n(X)$ is denoted by Γ . Put $G = X \setminus \Gamma$. To each point $x \in X$ corresponds a functional $\delta_x : u \mapsto u(x)$ which lies in the

unit ball of the conjugate space $A(X)^*$. Thus induces the $A(X)^*$ -topology, which is, generally speaking, stronger that the original one. Further, we shall always suppose that the original topology on G coincides with $A(X)^*$ -topology, G is everywhere dense in X and Γ is not empty. A typical example is given by $A^n(D)$ where A(D) is the disc algebra $(X = \overline{D}, \Gamma = \partial D = \overline{D} \setminus D, G = D)$. For such subspaces of $A^n(D)$ we consider the operator T induced by a finite number of mappings ω_i which preserve G, i.e., we assume that $\omega_i: X \to X$ are continuous mappings such that $\omega_i(G) \subset G$, (i=1,...,n). Except for easy degenerate case we shall assume that $\omega_i \neq constant$ for all i. As [6] we will identify the unit ball of the conjugate space $C(X)^*$ of C(X) with all complex Borel measures on X with variation less than 1, any point $x \in X$ will correspond to a δ measure. Since the compactness of an operator is equivalent to the compactness of its conjugate, so it can easily be shown that (see [1], Theorem VI, 7.1.) the compactness of is equivalent to the continuity of T_{ii} $x \mapsto T_{ij}^* x = \sum_{k=1}^n M_{ij}^k(x) \omega_k(x)$ acting on X with original topology into $A(X)^*$ with metric topology. If $x \in G$ then because of $\omega_i(x) \in G$ and since the original topology coincides $A(X)^*$ -topology on G, then the above mentioned $x \mapsto T_{ij}^*(x)$ for $x \in G$, (i, j = 1,...,n) is automatically continuous. This is the reason for the following definition.

Definition 3.2. Let $\zeta \in \Gamma$ be a fixed point, we say that indices i, j are equivalent with respect to $\zeta \in \Gamma$ if $\omega_i(\zeta) = \omega_j(\zeta) \in \Gamma$. Equivalent classes will be denoted by $K \cdot K_0$ will denote those indices i such that $\omega_i(\zeta) \in G$. Indices i, j are called strongly equivalent if $\|\omega_i(x) - \omega_j(x)\|_{A(X)} \to 0$ when $x \to \zeta$. Equivalent classes of this kind will be denoted by L.

Now by using Theorem 2.1, Lemma 1 [7] the following theorem can easily be deduced.

Theorem 3.3. If the operator $T: A^n(X) \to C^n(X)$ is compact then for any class K (with respect to ς) and for any i, j = 1,...,n we have $\sum_{k \in K} m_{ij}^k(\zeta) = 0$.

The conditions $\omega_i(G) \subset G$, i = 1, 2, ..., m in Theorem 3.3 are essential as the following example (for the case n = 1) shows.

Example 3.4. Let $X = \{z \in C : |z| \le 1 \text{ or } |z-2| \le 1\}$, and let A be the algebra of all continuous functions on X and analytic inside, put $\omega_1(z) = z$ for all $z \in X$,

$$\omega_{2}(z) = \begin{cases} z, & for \ |z| \leq 1, \\ 1, & for \ |z - 2| \leq 1, \end{cases} \qquad \omega_{3}(z) = \begin{cases} 1, & for \ |z| \leq 1, \\ z, & for \ |z - 2| \leq 1. \end{cases}$$

Since $\omega_i(1)=1$ for all i, then for $\zeta=1$ all indices are equivalent. Since $-f\circ\omega_1+f\circ\omega_2+f\circ\omega_3=f(1)$, so that the operator is compact, but $m_{11}^1+m_{11}^2+m_{11}^3=1$.

Combinations of Theorem 2.1 and 1 [7] gives the following theorem.

Corollary 3.5. The operator $T: A^n(X) \to C^n(x)$ is compact, if and only if, for an arbitrary point $\zeta \in \Gamma$ and for any $1 \le i$, $j \le n$ we have $\sum_{k \in K_0} m_{ij}^k(\zeta) \omega_k(x) \to 0$ with

respect to $A(X)^*$ -norm as $x \to \zeta$ (in original topology of X) and $\sum_{k \in K} m_{ij}^k(\zeta) = 0$ for any class $K \neq K_0$.

Corollary 3.6. If $\sum_{k\in L} m_{\eta}^k(\zeta) = 0$ for any class $1 \le i$, $j \le n$ and $\zeta \in \Gamma$, then the operator T is compact.

The following example (in the case m=1) shows that the converse of the corollary is not in general true.

Example 3.7. Let X and A be as in Example 3.4. Put now:

 $\omega_1(z)=z$ for all $z\in X$, $\omega_2(z)=\frac{z+1}{2}$ for all $z\in X$,

$$\omega_3(z) = \begin{cases} z, & \text{if } |z| \le 1, \\ \frac{z+1}{2}, & \text{if } |z-2| \le 1. \end{cases} \quad \omega_4(z) = \begin{cases} \frac{z+1}{2}, & \text{if } |z| \le 1, \\ z, & \text{if } |z-2| \le 1. \end{cases}$$

It is obvious that $\omega_i(z) \in G$, when $z \in G$ and $\omega_i(1) = 1$ for all i, so for $\zeta = 1$ all indices are equivalent (consists of the class), however, we can easily show that no pairs of indices are strongly equivalent. But regardless of this, we have $-f \circ \omega_1 - f \circ \omega_2 + f \circ \omega_3 + f \circ \omega_4 = 0$, i.e., the operator corresponding to given ω_i and $m'_{11} = \pm 1$ is zero.

But by using Theorem 4 [7] and Theorem 2.1, when A(X) is uniform algebra and $m \le 3$ then the following theorem which is the converse of Corollary 3.6 can be proved.

Theorem 3.8. If A(X) is a uniform algebra, then the operator $Tu(x) = \sum_{k=1}^{m} M_k(x) u(\omega_k(x))$ (where $m \le 3$), from $A^n(X)$ into $C^n(X)$ is compact if and only if, for any strong class L and for any $1 \le i$, $j \le n$ we have $\sum_{k \in L} m_{ij}^k(\zeta) = 0$.

References

- [1]. Dunford N., Schwartz J.T. Linear operators. 1, Interscience, New York, 1958.
- [2]. Dehghan Y.N., Shahbazov A.I. Compactness and nuclearity of weighted composition operators on uniform spaces of continuous functions on local connected compact spaces (Part 1). Proc. of the 26-th Ann. Ir. Math. Conf., Kerman, Iran, 1995, 105-107.
- [3]. Dehghan Y.N., Shahbazov A.I. Compactness and nuclearity of weighted composition operators on uniform spaces of continuous functions on locally connected spaces (Part 2). Proc. of the 27-th Ann. Ir. Math. Conf., Shiraz, Iran, 1996, 43-49.
- [4]. Dehghan Y.N., Shahbazov A.I. Weighted composition operators which are induced by a finite number of mappings on uniform spaces. Research supported by Tabriz University, 1995.
- [5]. Gorin E.A., How does look the spectrum of an endomorphism of the disc-algebra? Zap. Nauch. Sem. LOMI, 1983, v.126 pp., 55-68 (Russian).
- [6]. Gorin E.A., Shahbazov A.I. Compact combinations of weighted substitutions of disc algebra. Trans. of 17-th Voronezh Winter Math. School, 1984, 69-71 (Russian).
- [7]. Gorin E.A., Shahbazov A.I. Compact combinations of weighted substitution operators. Proc. Regional Conf. on Math. and Theor. Physics., Tabriz Univ (Iran), 22-25 Nov., 1992, 122-128.
- [8]. Kamowitz H. Compact operators of the form uC_φ. Pacific Jour. of Math. vol.80, №1, 1979, 205-211
- [9]. Kamowitz H. Compact weighted endomorphism of C(X). Proc. Amer. Math. Soc., vol.83, 1981, 517-521.

- [10]. Mirzakarimi G., Seddighi K. Composition operators on uniform algebras. Bulletin of the Ir. Math. Soc., vol.20, №1, 1994, 1-7.
- [11]. Shahbazov A.I. On some compact operators in uniform spaces of continuous functions. Dokl. Acad. Nauk Azer.SSR, vol.36, №12, 1980, 6-8 (Russian).
- [12]. Shahbazov A.I. Compactness criterion of weighted substitution sums. Proc. of VI Conf. on Math. and Mech., Baku, 1985, p.214-217.
- [13]. Shahbazov A.I. Spectrum of a compact operator of weighted composition in certain Banach spaces of holomorphic functions. Jour. Sov. Math. 48, №6, 1990, 696-701.
- [14]. Singh R.K., Summers W.H. Compact and weakly compact composition operators on spaces of vector valued continuous functions. Proc. Amer. Math. Soc., vol.99, №4, 1987, 667-670.
- [15]. Sigh R.K., Bhopinder Singh. Weighted composition operators on weighted spaces. Journ. Of the Indian Math. Soc., vol.59, 1993, 191-200.
- [16]. Takagi H. Compact weighted composition operators on certain subspaces of C(X, E), Tokyo J. Math. 14 (1991), 121-127.

Dehghan Y.N.

Dept.of Mathematics, Tabriz University, Tabriz, Iran.

Shahbazov A.I.

Institute of Mathematics and Mechanics of AS Azerbaijan 9, F.Agayeva str., 370141, Baku, Azerbaijan. Tabriz University, Tabriz, Iran.

Received September 2, 1999; Revised May 24, 2000. Translated by authors.